Selected Class of Enamides Bearing Nitro Functionality as Dual-Acting with Highly Selective Monoamine Oxidase-B and BACE1 Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Studies of MAOs and BACE1 Inhibitors
2.3. Kinetics
2.4. Reversibility Studies
2.5. Blood–Brain Barrier (BBB) Permeation Studies
2.6. Computational Studies
3. Materials and Methods
3.1. Synthesis
3.1.1. 3-(4-Nitrophenyl)-N-phenylacrylamide (NEA1)
3.1.2. N-(4-Chlorophenyl)-3-(4-nitrophenyl)acrylamide (NEA2)
3.1.3. N-(4-Fluorophenyl)-3-(4-nitrophenyl)acrylamide (NEA3)
3.1.4. N-Cyclohexyl-3-(4-nitrophenyl)acrylamide (NEA4)
3.1.5. 3-(4-Nitrophenyl)-N-(O-tolyl)acrylamide (NEA5)
3.2. Enzyme Inhibition Studies
3.3. Enzyme Inhibition and Kinetic Studies
3.4. Inhibitor-Reversibility Analysis
3.5. Computational Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Morphy:, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 2005, 48, 6523–6543. [Google Scholar] [CrossRef]
- Geldenhuys, W.J.; Youdim, M.B.H.; Carroll, R.T.; Van der Schyf, C.J. The emergence of designed multiple ligands for neurodegenerative disorders. Prog. Neurobiol. 2011, 94, 347–359. [Google Scholar] [CrossRef]
- Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today 2004, 9, 641–651. [Google Scholar] [CrossRef]
- Rodríguez-Soacha, D.A.; Scheiner, M.; Decker, M. Multi-target-directed-ligands acting as enzyme inhibitors and receptor ligands. Eur. J. Med. Chem. 2019, 180, 690–706. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Gupta, V.P.; Kumar, V.A. Perspective on monoamine oxidase enzyme as drug target: Challenges and opportunities. Curr. Drug Targets 2017, 18, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Mathew, B.; Mathew, G.E.; Suresh, J.; Ucar, G.; Sasidharan, R.; Anbazhagan, S.; Vilapurathu, J.K.; Jayaprakash, V. Monoamine oxidase inhibitors: Perspective design for the treatment of depression and neurological disorders. Curr. Enzyme Inhib. 2016, 12, 115–122. [Google Scholar] [CrossRef]
- Tripathi, A.C.; Upadhyay, S.; Paliwal, S.; Saraf, S.K. Privileged scaffolds as MAO inhibitors: Retrospect and prospects. Eur. J. Med. Chem. 2018, 145, 445–497. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, S.; Hoda, N.A. Comprehensive review of monoamine oxidase inhibitors as anti-Alzheimer’s disease agents: A review. Eur. J. Med. Chem. 2020, 206, 112787. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.K.P.; Ayyannan, S.R. Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: An overview and update. Med. Res. Rev. 2019, 39, 1603–1706. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, P.; Mathew, B.; Secci, D.; Carradori, S. Chalcones: Unearthing their therapeutic possibility as monoamine oxidase B inhibitors. Eur. J. Med. Chem. 2020, 205, 112650. [Google Scholar] [CrossRef] [PubMed]
- Koyiparambath, V.P.; Prayaga Rajappan, K.; Rangarajan, T.M.; Al-Sehemi, A.G.; Pannipara, M.; Bhaskar, V.; Nair, A.S.; Sudevan, S.T.; Kumar, S.; Mathew, B. Deciphering the detailed structure-activity relationship of coumarins as Monoamine oxidase enzyme inhibitors-An updated review. Chem. Biol. Drug Des. 2021. [Google Scholar] [CrossRef]
- Patil, P.O.; Bari, S.B.; Firke, S.D.; Deshmukh, P.K.; Donda, S.T.; Patil, D.A. A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer’s disease. Bioorg. Med. Chem. 2013, 21, 2434–2450. [Google Scholar] [CrossRef]
- Mathew, B.; Mathew, G.E.; Petzer, J.P.; Petzer, A. Structural exploration of synthetic chromones as selective MAO-B inhibitors: A Mini Review. Comb. Chem. High Throughput Screen. 2017, 20, 522–532. [Google Scholar] [CrossRef]
- Secci, D.; Carradori, S.; Bolasco, A.; Bizzarri, B.; D’Ascenzio, M.; Maccioni, E. Discovery and optimization of pyrazoline derivatives as promising monoamine oxidase inhibitors. Curr. Top. Med. Chem. 2012, 12, 2240–2257. [Google Scholar] [CrossRef]
- Rehuman, N.A.; Al-Sehemi, A.G.; Parambi, D.G.T.; Rangarajan, T.M.; Nicolotti, O.; Kim, H.; Mathew, B. Current progress in quinazoline derivatives as acetylcholinesterase and monoamine oxidase inhibitors. ChemistrySelect 2021, 6, 7162. [Google Scholar] [CrossRef]
- Helguera, A.M.; Perez-Machado, G.; Cordeiro, M.N.; Borges, F. Discovery of MAO-B inhibitors—Present status and future directions part I: Oxygen heterocycles and analogs. Mini Rev. Med. Chem. 2012, 12, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Carradori, S.; Silvestri, R. New frontiers in selective human MAO-B inhibitors. J. Med. Chem. 2015, 58, 6717–6732. [Google Scholar] [CrossRef] [PubMed]
- Mathew, B. Privileged pharmacophore of FDA approved drugs in combination with chalcone framework: A new hope for Alzheimer’s treatment. Comb. Chem. High Throughput Screen. 2020, 23, 842–846. [Google Scholar] [CrossRef]
- Mellado, M.; González, C.; Mella, J.; Aguilar, L.F.; Viña, D.; Uriarte, E.; Cuellar, M.; Matos, M.J. Combined 3D-QSAR and docking analysis for the design and synthesis of chalcones as potent and selective monoamine oxidase B inhibitors. Bioorg. Chem. 2021, 108, 104689. [Google Scholar] [CrossRef]
- Rodríguez-Enríquez, F.; Viña, D.; Uriarte, E.; Laguna, R.; Matos, M.J. 7-Amidocoumarins as multitarget agents against neurodegenerative diseases: Substitution pattern modulation. Chem. Med. Chem. 2021, 16, 179–186. [Google Scholar] [CrossRef]
- Sellitepe, H.E.; Oh, J.M.; Doğan, İ.S.; Yildirim, S.; Aksel, A.B.; Jeong, G.S.; Khames, A.; Abdelgawad, M.A.; Gambacorta, N.; Nicolotti, O.; et al. Synthesis of N′-(4-/3-/2-/Non-substituted benzylidene)-4-[(4-methylphenyl)sulfonyloxy] benzohydrazides and evaluation of their inhibitory activities against monoamine oxidases and β-secretase. Appl. Sci. 2021, 11, 5830. [Google Scholar] [CrossRef]
- Legoabe, L.; Kruger, J.; Petzer, A.; Bergh, J.J.; Petzer, J.P. Monoamine oxidase inhibition by selected anilide derivatives. Eur. J. Med. Chem. 2011, 46, 5162–5174. [Google Scholar] [CrossRef] [PubMed]
- Maliyakkal, N.; Eom, B.H.; Heo, J.H.; Abdullah Almoyad, M.A.; Parambi, D.G.T.; Gambacorta, N.; Nicolotti, O.; Beeran, A.A.; Kim, H.; Mathew, B. A new potent and selective monoamine oxidase-B inhibitor with extended conjugation in a chalcone Framework: 1-[4-(Morpholin-4-yl)phenyl]-5-phenylpenta-2,4-dien-1-one. Chem. Med. Chem. 2020, 15, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Carradori, S.; Secci, D.; Petzer, J.P. MAO inhibitors and their wider applications: A patent review. Expert Opin. Ther. Pat. 2018, 28, 211–226. [Google Scholar] [CrossRef]
- Kavully, F.S.; Oh, J.M.; Dev, S.; Kaipakasseri, S.; Palakkathondi, A.; Vengamthodi, A.; Azeez, R.F.; Tondo, A.R.; Nicolotti, O.; Kim, H.; et al. Design of enamides as new selective monoamine oxidase-B inhibitors. J. Pharm. Pharmacol. 2020, 72, 916–926. [Google Scholar] [CrossRef]
- Olender, D.; Żwawiak, J.; Zaprutko, L. Multidirectional efficacy of biologically active nitro compounds included in medicines. Pharmaceuticals 2018, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Nepali, K.; Lee, H.Y.; Liou, J.P. Nitro-group-containing drugs. J. Med. Chem. 2019, 62, 2851–2893. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Osswald, H.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem. Soc. Rev. 2014, 43, 6765–6813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moussa-Pacha, N.M.; Abdin, S.M.; Omar, H.A.; Alniss, H.; Al-Tel, T.H. BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease. Med. Res. Rev. 2020, 40, 339–384. [Google Scholar] [CrossRef] [PubMed]
- Pardin, C.; Keillor, J.W.; Lubell, W.D. Cinnamoyl Inhibitors of Transglutaminase. U.S. Patent 9,162,991, 20 November 2015. [Google Scholar]
- Schultz, H.W.; Wiese, G.A. The synthesis of some derivatives of cinnamic acid and their antifungal action. J. Am. Pharm. Assoc. 1959, 48, 750–752. [Google Scholar] [CrossRef]
- Park, J.H.; Whang, W.K. Bioassay-guided isolation of anti-Alzheimer active components from the aerial parts of Hedyotis diffusa and simultaneous analysis for marker compounds. Molecules 2020, 25, 5867. [Google Scholar] [CrossRef] [PubMed]
- Youn, K.; Yoon, J.H.; Lee, N.; Lim, G.; Lee, J.; Sang, S.; Ho, C.T.; Jun, M. Nutrients. Discovery of sulforaphane as a potent BACE1 inhibitor based on kinetics and computational studies. Nutrients 2020, 12, 3026. [Google Scholar] [CrossRef] [PubMed]
- Wagle, A.; Seong, S.H.; Zhao, B.T.; Woo, M.H.; Jung, H.A.; Choi, J.S. Comparative study of selective in vitro and in silico BACE1 inhibitory potential of glycyrrhizin together with its metabolites, 18alpha- and 18beta-glycyrrhetinic acid, isolated from Hizikia fusiformis. Arch. Pharm. Res. 2018, 41, 409–418. [Google Scholar] [CrossRef]
- Vishal, P.K.; Oh, J.M.; Khames, A.; Abdelgawad, M.A.; Nair, A.S.; Nath, L.R.; Gambacorta, N.; Ciriaco, F.; Nicolotti, O.; Kim, H.; et al. Trimethoxylated halogenated chalcones as dual inhibitors of MAO-B and BACE1 for the treatment of neurodegenerative disorders. Pharmaceutics 2021, 13, 850. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, P.; Kalaiselvan, V.; Kumar, R.; Kumar, S. Ajmalicine and reserpine: Indole alkaloids as multi-target directed ligands towards factors implicated in Alzheimer’s disease. Molecules 2020, 25, 1609. [Google Scholar] [CrossRef] [Green Version]
- Di, L.; Kerns, E.H.; Fan, K.; McConnell, O.J.; Carter, G.T. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem. 2003, 38, 223–232. [Google Scholar] [CrossRef]
- Mathew, B.; Baek, S.C.; Grace Thomas Parambi, D.; Lee, J.P.; Joy, M.; Annie Rilda, P.R.; Randev, R.V.; Nithyamol, P.; Vijayan, V.; Inasu, S.T.; et al. Selected aryl thiosemicarbazones as a new class of multi-targeted monoamine oxidase inhibitors. Med. Chem. Comm. 2018, 9, 1871–1881. [Google Scholar] [CrossRef]
- Lee, J.P.; Kang, M.G.; Lee, J.Y.; Oh, J.M.; Baek, S.C.; Leem, H.H.; Park, D.; Cho, M.L.; Kim, H. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. Bioorg. Chem. 2019, 89, 103043. [Google Scholar] [CrossRef]
- Heo, J.H.; Eom, B.H.; Ryu, H.W.; Kang, M.G.; Park, J.E.; Kim, D.Y.; Kim, J.H.; Park, D.; Oh, S.R.; Kim, H. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of khellactone coumarin derivatives isolated from Peucedanum japonicum Thurnberg. Sci Rep. 2020, 10, 21695. [Google Scholar] [CrossRef]
- Jeong, G.S.; Kang, M.G.; Han, S.A.; Noh, J.I.; Park, J.E.; Nam, S.J.; Park, D.; Yee, S.T.; Kim, H. Selective inhibition of human monoamine oxidase B by 5-hydroxy-2-methyl-chroman-4-one isolated from an endogenous lichen fungus Daldinia fissa. J. Fungi 2021, 7, 84. [Google Scholar] [CrossRef]
- Mathew, B.; Oh, J.M.; Baty, R.S.; Batiha, G.E.; Parambi, D.G.T.; Gambacorta, N.; Nicolotti, O.; Kim, H. Piperazine-substituted chalcones: A new class of MAO-B, AChE, and BACE1 inhibitors for the treatment of neurological disorders. Environ. Sci. Pollut. Res. 2021, 28, 38855–38866. [Google Scholar] [CrossRef]
- Nair, A.S.; Oh, J.-M.; Koyiparambath, V.P.; Kumar, S.; Sudevan, S.T.; Soremekun, O.; Soliman, M.E.; Khames, A.; Abdelgawad, M.A.; Pappachen, L.K.; et al. Development of halogenated pyrazolines as selective monoamine oxidase-B Inhibitors: Deciphering via molecular dynamics approach. Molecules 2021, 26, 3264. [Google Scholar] [CrossRef]
- Xu, Y.; Li, M.; Greenblatt, H.; Chen, W.; Paz, A.; Dym, O.; Peleg, Y.; Chen, T.; Shen, X.; He, J.; et al. Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations. Acta Crystallogr. Sect. D Biol. Crystallogr. 2012, 68, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Binda, C.; Wang, J.; Pisani, L.; Caccia, C.; Carotti, A.; Salvati, P.; Edmondson, D.E.; Mattevi, A. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: Safinamide and coumarin analogs. J. Med. Chem. 2007, 50, 5848–5852. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger Release 2020-4: Protein Preparation Wizard; Prime, Schrödinger, LLC.: New York, NY, USA, 2020.
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger Release 2020-4: LigPrep; Schrödinger, LLC.: New York, NY, USA, 2020.
- Sherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A.; Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. 2006, 49, 534–553. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
- Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [Google Scholar] [CrossRef]
Compounds | % Residual Activity (at 10 µM) | IC50 (µM) | SI b | ||||
---|---|---|---|---|---|---|---|
MAO-A | MAO-B | BACE1 | MAO-A | MAO-B | BACE1 | ||
NEA1 | 91.9 ± 5.9 | 3.88 ± 0.6 | 34.9 ± 0.5 | >40 | 0.016 ± 0.001 | 8.21 ± 0.03 | >2500.0 |
NEA2 | 95.0 ± 0.5 | 35.8 ± 6.2 | 88.1 ± 0.3 | >40 | 5.28 ± 0.09 | >7.58 | |
NEA3 | 61.9 ± 0.4 | 3.04 ± 0.5 | 34.4 ± 0.2 | 15.2 ± 0.6 | 0.0092 ± 0.0003 | 8.02 ± 0.13 | >1652.2 |
NEA4 | 85.6 ± 1.7 | 9.52 ± 3.5 | 61.2 ± 3.0 | >40 | 0.074 ± 0.020 | >540.5 | |
NEA5 | 83.5 ± 1.3 | 8.67 ± 2.3 | 44.0 ± 0.2 | >40 | 0.038 ± 0.003 | 17.70 ± 1.70 | >1052.6 |
Toloxatone | 1.08 ± 0.03 | - | - | ||||
Lazabemide | - | 0.11 ± 0.02 | - | ||||
Clorgyline | 0.007 ± 0.001 | - | - | ||||
Pargyline | - | 0.14 ± 0.01 | - | ||||
Quercetin | - | - | 13.40 ± 0.04 |
Compounds | Bibliography [34] Pe (×10−6 cm/s) | Experimental Pe (×10−6 cm/s) | Prediction |
---|---|---|---|
NEA1 | 14.44 ± 0.35 | CNS+ | |
NEA2 | 13.46 ± 0.26 | CNS+ | |
NEA3 | 16.43 ± 0.17 | CNS+ | |
NEA4 | 15.54 ± 0.62 | CNS+ | |
NEA5 | 15.53 ± 0.44 | CNS+ | |
Progesterone | 9.3 | 9.12 ± 0.21 | CNS+ |
Verapamil | 16.0 | 16.33 ± 0.44 | CNS+ |
Piroxicam | 2.5 | 2.37 ± 0.33 | CNS± |
Lomefloxacin | 1.1 | 1.31 ± 0.51 | CNS− |
Dopamine | 0.2 | 0.26 ± 0.04 | CNS− |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkidath, A.; Oh, J.M.; Dev, S.; Amin, E.; Rasheed, S.P.; Vengamthodi, A.; Gambacorta, N.; Khames, A.; Abdelgawad, M.A.; George, G.; et al. Selected Class of Enamides Bearing Nitro Functionality as Dual-Acting with Highly Selective Monoamine Oxidase-B and BACE1 Inhibitors. Molecules 2021, 26, 6004. https://doi.org/10.3390/molecules26196004
Venkidath A, Oh JM, Dev S, Amin E, Rasheed SP, Vengamthodi A, Gambacorta N, Khames A, Abdelgawad MA, George G, et al. Selected Class of Enamides Bearing Nitro Functionality as Dual-Acting with Highly Selective Monoamine Oxidase-B and BACE1 Inhibitors. Molecules. 2021; 26(19):6004. https://doi.org/10.3390/molecules26196004
Chicago/Turabian StyleVenkidath, Anusree, Jong Min Oh, Sanal Dev, Elham Amin, Shebina P. Rasheed, Ajeesh Vengamthodi, Nicola Gambacorta, Ahmed Khames, Mohamed A. Abdelgawad, Ginson George, and et al. 2021. "Selected Class of Enamides Bearing Nitro Functionality as Dual-Acting with Highly Selective Monoamine Oxidase-B and BACE1 Inhibitors" Molecules 26, no. 19: 6004. https://doi.org/10.3390/molecules26196004
APA StyleVenkidath, A., Oh, J. M., Dev, S., Amin, E., Rasheed, S. P., Vengamthodi, A., Gambacorta, N., Khames, A., Abdelgawad, M. A., George, G., Nicolotti, O., Kim, H., & Mathew, B. (2021). Selected Class of Enamides Bearing Nitro Functionality as Dual-Acting with Highly Selective Monoamine Oxidase-B and BACE1 Inhibitors. Molecules, 26(19), 6004. https://doi.org/10.3390/molecules26196004