New Deposit of Mordenite–Clinoptilolite in the Eastern Region of Cuba: Uses as Pozzolans
Abstract
:1. Introduction
2. Geological Setting
3. Results and Discussion
3.1. X-ray Diffraction (XRD)
3.2. Scanning Electron Microscopy (SEM)
3.3. X-ray Fluorescence (XRF)
3.4. Results of the Chemical Analysis to Determine the Pozzolanic Quality of the Samples Investigated
3.5. Results of the Eight-Day Pozzolanicity Analysis to Determine the Pozzolanic Reactivity of the Samples
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. X-ray Diffraction (XRD)
4.2.2. Scanning Electron Microscopy (SEM)
4.2.3. X-ray Fluorescence (XRF)
4.2.4. Chemical Analysis to Determine the Quality of Zeolites as Pozzolans (CAQ)
4.2.5. Pozzolanicity Analysis (PA)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Alexiev, B.; Brito, A.; Coutín, D.P. Report on the Occurrence of Zeolitic Rocks and the Possibility of their Industrial Utilization; Instituto de Geología y Paleontología, Centro Nacional de Información Geológica: La Habana, Cuba, 1971. [Google Scholar]
- Coutín, D.; Brito, A. Características de la Zeolitización en Rocas Sedimentarias de Origen Volcánico en Cuba Oriental; Instituto de Geología y Paleontología, Academia de Ciencias de Cuba: La Habana, Cuba, 1975. [Google Scholar]
- Pentelényi, L.; Garcés, E. Informe Final Sobre los Resultados del Levantamiento Geológico Complejo y Búsquedas Acompañantes a Escala 1: En el Polígono CAME-IV, Holguín, 1983–1988; Oficina Nacional de Recursos Minerales, Ministerio de Industria Básica: La Habana, Cuba, 1988. [Google Scholar]
- González, E.M.; Reyes, L.A.; Cruz, F.; Pupo, R.; Méndez, D. Characteristics of the weathered tuffs of the Western region of Cuba). In Proceedings of the ZEOLITES´91, 3rd International Conference on Natural Zeolites, Centro de Convenciones, Havana, Cuba, 9–12 April 1991; pp. 49–52. [Google Scholar]
- Orozco, G.; Rizo, R. Natural zeolites deposits from Cuba. Acta Geológica Hispánica 1998, 33, 335–349. [Google Scholar]
- Costafreda, J.L.; Martín, D.A.; Costafreda, J.L., Jr.; Prado, R.; Tobón, J.L.; Gargiulo, M.F.; Rosell-Lam, M.; Magalhaes, C.A.; Morante, F.E.; Novo, R.; et al. Las Zeolitas Naturales de Iberoamérica; Fundación Gómez Pardo: Madrid, Spain, 2018; ISBN 978-84-09-00125-5. [Google Scholar]
- Polat, E.; Karaca, M.; Demir, H.; Naci, A. Use of natural zeolite (clinoptilolite) in agriculture. J. Fruit Ornam. Plant Res. 2004, 12, 183–189. [Google Scholar]
- Papaioannou, D.; Katsoulos, P.D.; Panousis, N.; Karatzias, H. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases. Microporous Mesoporous Mater. 2005, 84, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Mertens, G.; Snellings, R.; Van Balen, K.; Bicer-Simsir, B.; Verlooy, P.; Elsen, J. Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem. Concr. Res. 2009, 39, 233–240. [Google Scholar] [CrossRef]
- Rodríguez-Fuentes, G.; Rodríguez-Iznaga, I. Characterization of zeolite mineral for the development of nanostructured materials. Rev. Cuba. Física 2009, 26, 55–60. [Google Scholar]
- Rosell-Lam, M.; Villar-Cociña, E.; Frías, M. Study on the pozzolanic properties of a natural Cuban zeolitic rock by conductometric method: Kinetic parameters. Constr. Build. Mater. 2011, 25, 644–650. [Google Scholar] [CrossRef]
- Selvam, T.; Schwieger, W.; Dathe, W. Natural Cuban zeolites for medical use and their histamine binding capacity. Clay Miner. 2014, 49, 501–512. [Google Scholar] [CrossRef]
- Enamorado-Horrutiner, Y.; Villanueva-Tagle, M.E.; Behar, M.; Rodríguez-Fuentes, G.; Ferraz, J.; Pomares-Alfonso, M.S. Cuban zeolite for lead sorption: Application for water decontamination and metal quantification in water using nondestructive techniques. Int. J. Environ. Sci. Technol. 2016, 13, 1245–1256. [Google Scholar] [CrossRef] [Green Version]
- Zvereva, I.; Kremnev, R.; Sirotov, V.; Rodríguez-Iznaga, I.; Hernández, M.A.; Petranovskii, V. Thermal analysis and porosimetry of natural zeolites from Mexican and Cuban deposits. Appl. Solid State Chem 2017, 1, 35–41. [Google Scholar] [CrossRef]
- Buenaño, X.; Canoira, L.; Martín, D.; Costafreda, J.L. Zeolitic tuffs for acid mine drainage (AMD) treatment in Ecuador: Breakthrough curves for Mn2+, Cd2+, Cr3+, Zn2+ and Al3+. Environ. Sci. Pollut. Res. 2017, 24, 6794–6806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, S.; Canoira, L.; Martín, D.A.; Costafreda, J.L.; Del Barrio, S. Cation exchange tests of natural zeolites with rare earth elements. In Proceedings of the XI Iberian Congress of Geochemistry, Linares, Spain, 26 September 2017. [Google Scholar]
- Torres, A.A.; Sanchez, Y.L.; Dathe, W. Detoxsan® aste formulation containing zeolites for the treatment of mycosis and intertrigo carried out under climatic conditions of Cuba. J. Clin. Exp. Dermatol. Res. 2019, 10, 1000485. [Google Scholar] [CrossRef]
- Rocha, L.C.C.; Zuquette, L.V. Evaluation of zeolite as a potential reactive medium in a permeable reactive barrier (PRB): Batch and column studies. Geosciences 2020, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Cerri, G.; Farina, M.; Brundu, A.; Gavini, E.; Salis, A.; Dathe, W. Antibacterial activity of Zn-loaded Cuban zeolite against Helicobacter pylori in comparison to its Na-loaded and unmodified counterparts. Environ. Geochem. Health 2021, 43, 2037–2048. [Google Scholar] [CrossRef] [PubMed]
- U.S. Geological Survey. Mineral Commodity Summaries 2020: USGS Sciencie for a Changing World; U.S. Department of the Interior: Reston, VA, USA, 2020; p. 200. [CrossRef] [Green Version]
- Kozák, M.; Rózsa, P. Analysis of ore bearing volcanic arc magmatites in East Cuba. Acta GGM Debrecina Geol. Geomorphol. Phys. Geogr. Ser. 2007, 2, 59–66. [Google Scholar]
- Jakus, P. Formaciones vulcanógeno-sedimentarias y sedimentarias de Cuba oriental. In Contribución a la Geología de Cuba Oriental; Cient.-Téc., Ministerio de Cultura: Havana, Cuba, 1983; pp. 17–98. [Google Scholar]
- Iturralde, M.A. Overview of the Geology of Cuba. Cuban Academy of Sciences. Acta Geol. Sin. 2017, 91, 2. [Google Scholar]
- Costafreda, J.L. Geología, Caracterización y Aplicaciones de las Rocas Zeolíticas del Complejo Volcánico de Cabo de Gata (Almería). Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2008; p. 515. [Google Scholar]
- Standard UNE-EN 196-2:2014. Métodos de Ensayo de Cementos, Parte 2: Análisis Químico de Dementos; AENOR: Madrid, Spain, 2014. [Google Scholar]
- Standard ASTM C 618-89. Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete; American Society for Testing and Materials: West Conshohocken, PA, USA, 1989. [Google Scholar]
- Standard UNE-EN 196-5:2011. Métodos de Ensayo de Cementos, Parte 5: Ensayo de Puzolanicidad Para Los Cementos Puzolánicos; AENOR: Madrid, Spain, 2011. [Google Scholar]
- Machiels, L.; Morante, F.; Snellings, R.; Calvo, B.; Canoira, L.; Paredes, C.; Elsen, J. Zeolite mineralogy of the Cayo formation in Guayaquil, Ecuador. Appl. Clay Sci. 2008, 42, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Costafreda, J.L.; Costafreda, J.L., Jr.; Martín, D.A.; Calvo, B.; Parra, J.L. Pozzolanic properties of the natural zeolites of some Latin American deposits. In Proceedings of the 13th International Congress on Energy and Mineral Resources (CIERM 2013), Santander, Spain, 3–5 October 2013; ISBN 978-84-936086-6-8. [Google Scholar]
- Presa, L.; Costafreda, J.L.; Martín, D.A.; Díaz, I. Natural mordenite from Spain as pozzolana. Molecules 2020, 25, 1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirzahosseini, M.; Riding, K.A. Effect of curing temperature and glass type on the pozzolanic reactivity of glass powder. Cem. Concr. Res. 2014, 58, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Muthengia, J.; Wangui, R.; Karanja, J.; Mwiti, J. Effect of sulphate and chloride ingress on selected Cements mortar prims immersed in seawater and leather industry effluent. Adv. Civil. Eng. 2019, 2019, 16. [Google Scholar] [CrossRef]
- Abdullah, A.; Jaafar, M.S.; Taufiq-Yap, Y.H.; Alhozaimy, A.; Al-Negheimish, A.; Noorzaei, J. The effect of various chemical activators on pozzolanic reactivity: A review. Sci. Res. Essays 2012, 7, 719–729. [Google Scholar] [CrossRef]
- Google Earth. Available online: https://earth.google.com/web/search/Holgu%c3%adn,+Cuba/ (accessed on 4 January 2021).
Sample | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | LOI * | Si/Al |
---|---|---|---|---|---|---|---|---|---|
ZPH-1 | 64.72 | 12.75 | 1.77 | 4.09 | 0.25 | 2.13 | 0.22 | 12.11 | 4.5 |
ZPH-2 | 64.57 | 12.57 | 1.32 | 2.42 | 0.74 | 1.65 | 1.33 | 14.15 | 5 |
ZPH-3 | 64.94 | 13.25 | 1.83 | 2.34 | 0.63 | 2.33 | 0.68 | 12.32 | 4.3 |
ZPH-4 | 64.20 | 11.30 | 1.40 | 2.17 | 0.49 | 1.77 | 1.34 | 14.53 | 5 |
ZPH-5 | 65.02 | 13.17 | 1.79 | 1.95 | 0.63 | 2.19 | 0.51 | 12.67 | 4.3 |
% | ZPH-1 | ZPH-2 | ZPH-3 | ZPH-4 | ZPH-5 | Maximum Allowed Content (%) |
---|---|---|---|---|---|---|
Total SiO2 | 64.89 | 64.08 | 64.63 | 64.33 | 64.98 | |
MgO | 0.79 | 1.21 | 0.76 | 0.55 | 0.71 | <5 |
Total CaO | 3.69 | 2.29 | 2.16 | 2.13 | 2.03 | - |
Fe2O3 | 1.69 | 1.34 | 1.70 | 1.37 | 1.62 | - |
Al2O3 | 12.91 | 12.55 | 12.99 | 11.21 | 13.0 | <16 |
Reactive SiO2 | 60.28 | 61.02 | 61.20 | 60.75 | 61.13 | >25 |
SO3 | 0.04 | 0.05 | 0.03 | 0.03 | 0.02 | <4 |
Reactive CaO | 1.23 | 1.14 | 1.08 | 1.06 | 1.01 | - |
I.R. | 4.7 | 3.90 | 3.43 | 4.0 | 4.0 | <5 |
SiO2/(CaO + MgO) | 14.50 | 18.30 | 22.13 | 24.0 | 23.71 | >3.5 |
SiO2 + Al2O3 + Fe2O3 | 79.49 | 77.97 | 79.32 | 76.91 | 79.6 | >70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costafreda, J.L.; Martín, D.A. New Deposit of Mordenite–Clinoptilolite in the Eastern Region of Cuba: Uses as Pozzolans. Molecules 2021, 26, 4676. https://doi.org/10.3390/molecules26154676
Costafreda JL, Martín DA. New Deposit of Mordenite–Clinoptilolite in the Eastern Region of Cuba: Uses as Pozzolans. Molecules. 2021; 26(15):4676. https://doi.org/10.3390/molecules26154676
Chicago/Turabian StyleCostafreda, Jorge Luis, and Domingo Alfonso Martín. 2021. "New Deposit of Mordenite–Clinoptilolite in the Eastern Region of Cuba: Uses as Pozzolans" Molecules 26, no. 15: 4676. https://doi.org/10.3390/molecules26154676
APA StyleCostafreda, J. L., & Martín, D. A. (2021). New Deposit of Mordenite–Clinoptilolite in the Eastern Region of Cuba: Uses as Pozzolans. Molecules, 26(15), 4676. https://doi.org/10.3390/molecules26154676