Operando Raman Shift Replaces Current in Electrochemical Analysis of Li-ion Batteries: A Comparative Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrochemical Measurements on -
2.2. Raman Measurements on -
2.3. Raman Spectroelectrochemical Measurements. Comparison of Electrical vs. Laser Readout
3. Materials and Methods
3.1. Synthesis and Characterization of
3.2. Butler–Volmer Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nyholm, L. LI-ION BATTERIES Lighter and safer. Nat. Energy 2020, 5, 739. [Google Scholar] [CrossRef]
- Khan, N.; Dilshad, S.; Khalid, R.; Kalair, A.R.; Abas, N. Review of energy storage and transportation of energy. Energy Storage 2019, 1, e49. [Google Scholar] [CrossRef]
- Zuo, W.; Li, R.; Zhou, C.; Li, Y.; Xia, J.; Liu, J. Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Adv. Sci. 2017, 4, 1600539. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Jung, W.Y. Analogical understanding of the Ragone plot and a new categorization of energy devices. Energy Procedia 2016, 88, 526. [Google Scholar] [CrossRef] [Green Version]
- Shang, T.; Wen, Y.; Xiao, D.; Gu, L.; Hu, Y.S.; Li, H. Atomic-Scale Monitoring of Electrode Materials in Lithium-Ion Batteries using In Situ Transmission Electron Microscopy. Adv. Energy Mater. 2017, 7, 1700709. [Google Scholar] [CrossRef] [Green Version]
- Balos, V.; Imoto, S.; Netz, R.R.; Bonn, M.; Bonthuis, D.J.; Nagata, Y.; Hunger, J. Macroscopic conductivity of aqueous electrolyte solutions scales with ultrafast microscopic ion motions. Nat. Commun. 2020, 11, 1611. [Google Scholar] [CrossRef]
- Chouchane, M.; Rucci, A.; Lombardo, T.; Ngandjong, A.C.; Franco, A.A. Lithium ion battery electrodes predicted from manufacturing simulations: Assessing the impact of the carbon-binder spatial location on the electrochemical performance. J. Power Sources 2019, 444, 227285. [Google Scholar] [CrossRef]
- Cadiou, F.; Etiemble, A.; Douillard, T.; Willot, F.; Valentin, O.; Badot, J.C.; Lestriez, B.; Maire, E. Numerical Prediction of Multiscale Electronic Conductivity of Lithium-Ion Battery Positive Electrodes. J. Electrochem. Soc. 2019, 166, A1692–A1703. [Google Scholar] [CrossRef]
- Lin, X.M.; Wu, D.Y.; Gao, P.; Chen, Z.; Ruben, M.; Fichtner, M. Monitoring the Electrochemical Energy Storage Processes of an Organic Full Rechargeable Battery via Operando Raman Spectroscopy: A Mechanistic Study. Chem. Mater. 2019, 31, 3239. [Google Scholar] [CrossRef]
- Zhou, Y.; Doerrer, C.; Kasemchainan, J.; Bruce, P.G.; Pasta, M.; Hardwick, L.J. Observation of Interfacial Degradation of Li6PS5Cl against Lithium Metal and LiCoO2 via In Situ Electrochemical Raman Microscopy. Batter. Supercaps 2020, 3, 647. [Google Scholar] [CrossRef]
- Vizintin, A.; Bitenc, J.; Kopač Lautar, A.; Pirnat, K.; Grdadolnik, J.; Stare, J.; Randon-Vitanova, A.; Dominko, R. Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy. Nat. Commun. 2018, 9, 661. [Google Scholar] [CrossRef]
- Liu, D.; Shadike, Z.; Lin, R.; Qian, K.; Li, H.; Li, K.; Wang, S.; Yu, Q.; Liu, M.; Ganapathy, S.; et al. Biphasic P2/O3-Na2/3Li0.18Mn0.8Fe0.2O2: A structural investigation†. Adv. Mater. 2019, 31, 1806620. [Google Scholar] [CrossRef] [PubMed]
- Jehnichen, P.; Korte, C. Operando Raman Spectroscopy Measurements of a High-Voltage Cathode Material for Lithium-Ion Batteries. Anal. Chem. 2019, 91, 8054. [Google Scholar] [CrossRef] [PubMed]
- Guhl, C.; Kehne, P.; Ma, Q.; Tietz, F.; Alff, L.; Komissinskiy, P.; Jaegermann, W.; Hausbrand, R. In-operando photoelectron spectroscopy for batteries: Set-up using pristine thin film cathode and first results on NaxCoO2. Rev. Sci. Instruments 2018, 89, 073104. [Google Scholar] [CrossRef] [Green Version]
- Aquilanti, G.; Giorgetti, M.; Dominko, R.; Stievano, L.; Aron, I.; Novello, N.; Olivi, L. Operando characterization of batteries using x-ray absorption spectroscopy: Advances at the beamline XAFS at synchrotron Elettra. J. Phys. D: Appl. Phys. 2017, 50, 074001. [Google Scholar] [CrossRef]
- Flores, E.; Novak, P.; Berg, E.J. In situ and Operando Raman Spectroscopy of Layered Transition Metal Oxides for Li-ion Battery Cathodes. Front. Energy Res. 2018, 6, 82. [Google Scholar] [CrossRef]
- Ignaszak, A.; Patterson, N.; Radtke, M.; Elsegood, M.R.J.; Frese, J.W.A.; Lipman, J.L.Z.F.; Yamato, T.; Sanz, S.; Brechin, E.K.; Prior, T.J.; et al. Vanadyl sulfates: Molecular structure, magnetism and electrochemical activity. Dalton Trans. 2018, 47, 15983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Osorio, D.A.; Jaimes, R.; Vazquez-Arenas, J.; Lara, R.H.; Alvarez-Ramirez, J. The Kinetic Parameters of the Oxygen Evolution Reaction (OER) Calculated on Inactive Anodes via EIS Transfer Functions: ·OH Formation. J. Electrochem. Soc. 2017, 164, 3321. [Google Scholar] [CrossRef]
- Kaim, W.; Fiedler, J. Spectroelectrochemistry: The best of two worlds. Chem. Soc. Rev. 2009, 38, 3373. [Google Scholar] [CrossRef]
- Shan, X.; Patel, U.; Wang, S.; Iglesias, R.; Tao, N. Imaging local electrochemical current via surface plasmon resonance. Science 2010, 327, 1363. [Google Scholar] [CrossRef] [Green Version]
- Burba, C.M.; Frech, R. Modified Coin Cells for In situ Raman Spectroelectrochemical Measurements of LixV2O5 for Lithium Rechargeable Batteries. Appl. Spectrosc. 2006, 60, 490. [Google Scholar] [CrossRef] [PubMed]
- Bazant, M.Z. Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics. Accounts Chem. Res. 2013, 46, 1144. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, P.; Hu, Z.; Jensen, L. High-resolution tip-enhanced Raman scattering probes sub-molecular density changes. Nat. Commun. 2019, 10, 2567. [Google Scholar] [CrossRef] [Green Version]
- Vicidomini, G.; Bianchini, P.; Diaspro, A. STED super-resolved microscopy. Nat. Methods 2018, 15, 173. [Google Scholar] [CrossRef] [PubMed]
- Centrone, A. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit. Annu. Rev. Anal. Chem. 2015, 8, 101. [Google Scholar] [CrossRef] [Green Version]
- Agar, E.; Dennison, C.R.; Knehr, K.W.; Kumbur, E.C. Identification of performance limiting electrode using asymmetric cell configuration in vanadium redox flow batteries. J. Power Sources 2013, 225, 89. [Google Scholar] [CrossRef]
- Baddour-Hadjean, R.; Raekelboom, E.; Pereira-Ramos, J.P. New Structural Characterization of the LixV2O5 System Provided by Raman Spectroscopy. Chem. Mater. 2006, 18, 3548. [Google Scholar] [CrossRef]
- Popović, Z.V.; Gajić, R.; Konstantinović, M.J.; Provoost, R.; Moshchalkov, V.V.; Vasil’ev, A.N.; Isobe, M.; Ueda, Y. Infrared and Raman spectra of LiV2O5 single crystals. Phys. Rev. B 2000, 61, 11454. [Google Scholar] [CrossRef] [Green Version]
- Navone, C.; Baddour-Hadjean, R.; Pereira-Ramos, J.P.; Salot, R. Raman Microspectrometry Study of Electrochemical Lithium Intercalation into Sputtered Crystalline V2O5 Thin Films. J. Electrochem. Soc. 2005, 152, 1790. [Google Scholar] [CrossRef]
- Akande, A.A.; Machatine, A.G.J.; Masina, B.; Chimowa, G.; Matsoso, B.; Roro, K.; Duvenhage, M.M.; Swart, H.; Bandyopadhyay, J.; Ray, S.S.; et al. Blue- and red-shifts of V2O5 phonons in NH3 environment by in situ Raman spectroscopy. J. Phys. D Appl. Phys. 2017, 51, 015106. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Kim, H.S.; Stair, P.C.; Rugmini, S.; Jackson, S.D. On the Structure of Vanadium Oxide Supported n Aluminas: UV and Visible Raman Spectroscopy, UV-Visible Diffuse Reflectance Spectroscopy, and Temperature-Programmed Reduction Studies. J. Phys. Chem. B 2005, 109, 2793. [Google Scholar] [CrossRef] [PubMed]
- Baddour-Hadjean, R.; Marzouk, A.; Pereira-Ramos, J.P. Structural modifications of LixV2O5 in a composite cathode (0 ≤ x < 2) investigated by Raman microspectrometry. J. Raman Spectrosc. 2012, 43, 153. [Google Scholar] [CrossRef]
- Sole, C.; Drewett, N.E.; Hardwick, L.J. Insitu Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discuss. 2014, 172, 223. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; He, Z.; Song, Y.; Fu, X.; Rommel, M.; Luo, X.; Hartmaier, A.; Zhang, J.; Fang, F. Topic Review: Application of Raman Spectroscopy Characterization in Micro/Nano–Machining. Micromachines 2018, 9, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.; Gerasopoulos, K.; Talin, A.A.; Ghodssi, R. In situ characterization of charge rate dependent stress and structure changes in V2O5 cathode prepared by atomic layer deposition. J. Power Sources 2017, 340, 89. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.Y.; Li, J.F.; Ren, B.; Tian, Z.Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 2008, 37, 1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramana, C.V.; Smith, R.J.; Hussain, O.M.; Massot, M.; Julien, C.M. Surface analysis of pulsed laser-deposited V2O5 thin films and their lithium intercalated products studied by Raman spectroscopy. Surf. Interface Anal. 2005, 37, 406. [Google Scholar] [CrossRef]
- Christensen, C.K.; Sørensen, D.R.; Hvam, J.; Ravnsbæk, D.B. Order–disorder transition in nano-rutile TiO2 anodes: A high capacity low-volume change Li-ion battery material. Chem. Mater. 2019, 31, 512. [Google Scholar] [CrossRef]
Raman Mode | Chemical Bond | ||
---|---|---|---|
V=O(1) | 0.88 | 0.12 | |
V-O(2) | 0.90 | 0.10 | |
V-O | 0.92 | 0.08 | |
e | V-O(3) | 0.80 | 0.20 |
V-O(4) | 0.87 | 0.13 | |
0.87 | 0.13 | ||
E-chem | 0.84 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radtke, M.; Hess, C. Operando Raman Shift Replaces Current in Electrochemical Analysis of Li-ion Batteries: A Comparative Study. Molecules 2021, 26, 4667. https://doi.org/10.3390/molecules26154667
Radtke M, Hess C. Operando Raman Shift Replaces Current in Electrochemical Analysis of Li-ion Batteries: A Comparative Study. Molecules. 2021; 26(15):4667. https://doi.org/10.3390/molecules26154667
Chicago/Turabian StyleRadtke, Mariusz, and Christian Hess. 2021. "Operando Raman Shift Replaces Current in Electrochemical Analysis of Li-ion Batteries: A Comparative Study" Molecules 26, no. 15: 4667. https://doi.org/10.3390/molecules26154667
APA StyleRadtke, M., & Hess, C. (2021). Operando Raman Shift Replaces Current in Electrochemical Analysis of Li-ion Batteries: A Comparative Study. Molecules, 26(15), 4667. https://doi.org/10.3390/molecules26154667