Using Extra Virgin Olive Oil to Cook Vegetables Enhances Polyphenol and Carotenoid Extractability: A Study Applying the sofrito Technique
Abstract
:1. Introduction
2. Results
2.1. Identification and Quantification of Phenolic Compounds in the Ingredients
2.2. Identification and Quantification of Carotenoids in the Ingredients
2.3. Identification and Quantification of Phenolic Compounds in the Sofrito Water, Oil and Insoluble Fractions
2.4. Identification and Quantification of Carotenoids in the Sofrito Water, Oil and Insoluble Fractions
3. Discussion
3.1. Incorporation of Phenolic Compounds in Extra Virgin Olive Oil (EVOO) during the sofrito Process
3.2. Incorporation of Carotenoids in Extra Virgin Olive Oil (EVOO) during the sofrito Process
4. Materials and Methods
4.1. Chemicals and Standards
4.2. Material
4.3. Home-Cooking sofrito Process
4.4. Isolation of Oil, Water and Insoluble Fractions
4.5. Extraction and Analysis of Polyphenols
4.5.1. Polyphenol Extraction
4.5.2. Polyphenol Analysis by UPLC-ESI-QqQ-MS/MS
4.6. Extraction and Analysis of Carotenoids
4.6.1. Carotenoid Extraction
4.6.2. Carotenoid Analysis by HPLC-DAD and HPLC-APCI-QqQ-MS/MS
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoffman, R.; Gerber, M. Food Processing and the Mediterranean Diet. Nutrients 2015, 7, 7925–7964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E. Benefits of the Mediterranean Diet: Insights From the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Murador, D.; Braqa, A.R.; Da Cunha, D.; de Rosso, V. Alterations in phenolic compound levels and antioxidant activity in response to cooking technique effects: A meta-analytic investigation. Crit. Rev. Food Sci. Nutr. 2018, 58, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Murador, D.C.; da Cunha, D.T.; de Rosso, V.V. Effects of cooking techniques on vegetable pigments: A meta-analytic approach to carotenoid and anthocyanin levels. Food Res. Int. 2014, 65, 177–183. [Google Scholar] [CrossRef]
- De Alvarenga, J.F.R.; Lozano-Castellón, J.; Martínez-Huélamo, M.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Cooking practice and the matrix effect on the health properties of mediterranean diet: A study in tomato sauce. ACS Symp. Ser. 2018, 1286, 305–314. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; De Alvarenga, J.F.R.; Estruch, R.; Lamuela-Raventos, R.M. Bioactive compounds present in the Mediterranean sofrito. Food Chem. 2013, 141, 3366–3372. [Google Scholar] [CrossRef]
- Rodriguez-Rodriguez, R.; Jiménez-Altayó, F.; Alsina, L.; Onetti, Y.; Rinaldi de Alvarenga, J.F.; Claro, C.; Ogalla, E.; Casals, N.; Lamuela-Raventos, R.M. Mediterranean tomato-based sofrito protects against vascular alterations in obese Zucker rats by preserving NO bioavailability. Mol. Nutr. Food Res. 2017, 61, 1601010. [Google Scholar] [CrossRef]
- Sandoval, V.; Rodríguez-Rodríguez, R.; Martínez-Garza, Ú.; Rosell-Cardona, C.; Lamuela-Raventós, R.M.; Marrero, P.F.; Haro, D.; Relat, J. Mediterranean Tomato-Based Sofrito Sauce Improves Fibroblast Growth Factor 21 (FGF21) Signaling in White Adipose Tissue of Obese ZUCKER Rats. Mol. Nutr. Food Res. 2018, 21, 1700606. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Arós, F.; Gómez-Gracia, E.; et al. A 14-Item Mediterranean Diet Assessment Tool and Obesity Indexes among High-Risk Subjects: The PREDIMED Trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef]
- Schro, H.; Corella, D.; Salas-salvado, J.; Lamuela-ravento, R.; Ros, E.; Salaverrı, I.; Vinyoles, E.; Go, E. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, J.; Giraldi, L.; Arzani, D.; Pastorino, R.; Biondi, A.; Persiani, R.; Boccia, S.; Leoncini, E. Adherence to Mediterranean diet and risk of prostate cancer. Eur. J. Cancer Prev. 2017, 26, 491–496. [Google Scholar] [CrossRef]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, E.; de Castro, A.; Romero, C.; Brenes, M. Comparison of the Concentrations of Phenolic Compounds in Olive Oils and Other Plant Oils: Correlation with Antimicrobial Activity. J. Agric. Food Chem. 2006, 54, 4954–4961. [Google Scholar] [CrossRef]
- Li, Q.; Li, T.; Liu, C.; Chen, J.; Zhang, R.; Zhang, Z.; Dai, T.; McClements, D.J. Potential physicochemical basis of Mediterranean diet effect: Ability of emulsified olive oil to increase carotenoid bioaccessibility in raw and cooked tomatoes. Food Res. Int. 2016, 89, 320–329. [Google Scholar] [CrossRef]
- Lemmens, L.; Colle, I.; Van Buggenhout, S.; Palmero, P.; Van Loey, A.; Hendrickx, M. Carotenoid bioaccessibility in fruit- and vegetable-based food products as affected by product (micro)structural characteristics and the presence of lipids: A review. Trends Food Sci. Technol. 2014, 38, 125–135. [Google Scholar] [CrossRef]
- Mutsokoti, L.; Panozzo, A.; Van Loey, A.; Hendrickx, M. Carotenoid transfer to oil during thermal processing of low fat carrot and tomato particle based suspensions. Food Res. Int. 2016, 86, 64–73. [Google Scholar] [CrossRef] [Green Version]
- De Alvarenga, J.F.R.; Tran, C.; Hurtado-Barroso, S.; Martinez-Huélamo, M.; Illan, M.; Lamuela-Raventos, R.M. Home cooking and ingredient synergism improve lycopene isomer production in Sofrito. Food Res. Int. 2017, 99, 851–861. [Google Scholar] [CrossRef]
- Bohm, V.; Puspitasari-Nienaber, N.L.; Ferruzzi, M.G.; Schwartz, S.J. Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin. J. Agric. Food Chem. 2002, 50, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallverdú-Queralt, A.; Regueiro, J.; Rinaldi De Alvarenga, J.F.; Torrado, X.; Lamuela-Raventos, R.M. Home cooking and phenolics: Effect of thermal treatment and addition of extra virgin olive oil on the phenolic profile of tomato sauces. J. Agric. Food Chem. 2014, 62, 3314–3320. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Huélamo, M.; Tulipani, S.; Estruch, R.; Escribano, E.; Illán, M.; Corella, D.; Lamuela-Raventós, R.M. The tomato sauce making process affects the bioaccessibility and bioavailability of tomato phenolics: A pharmacokinetic study. Food Chem. 2015, 173, 864–872. [Google Scholar] [CrossRef]
- Martínez-Huélamo, M.; Vallverdú-Queralt, A.; Di Lecce, G.; Valderas-Martínez, P.; Tulipani, S.; Jáuregui, O.; Escribano-Ferrer, E.; Estruch, R.; Illan, M.; Lamuela-Raventós, R.M. Bioavailability of tomato polyphenols is enhanced by processing and fat addition: Evidence from a randomized feeding trial. Mol. Nutr. Food Res. 2016, 60, 1578–1589. [Google Scholar] [CrossRef] [PubMed]
- Rohn, S.; Buchner, N.; Driemel, G.; Rauser, M.; Kroh, L.W. Thermal Degradation of Onion Quercetin Glucosides under Roasting Conditions. J. Agric. Food Chem. 2007, 55, 1568–1573. [Google Scholar] [CrossRef] [PubMed]
- Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Anaya, J.D.P.; Samaniego-Sánchez, C.; Castañeda-Saucedo, M.C.; Villalón-Mir, M.; De La Serrana, H.L.G. Phenols and the antioxidant capacity of Mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques. Food Chem. 2015, 188, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Pancorbo, A.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Lercker, G.; Fernández-Gutiérrez, A. Evaluation of the influence oh thermal oxidation on the phenolic composition and on the antioxidant activity of extra-virgen olive oils. J. Agric. Food Chem. 2007, 55, 4771–4780. [Google Scholar] [CrossRef]
- Tulipani, S.; Martinez Huelamo, M.; Rotches Ribalta, M.; Estruch, R.; Ferrer, E.E.; Andres-Lacueva, C.; Illan, M.; Lamuela-Raventós, R.M. Oil matrix effects on plasma exposure and urinary excretion of phenolic compounds from tomato sauces: Evidence from a human pilot study. Food Chem. 2012, 130, 581–590. [Google Scholar] [CrossRef]
- Tomas, M.; Beekwilder, J.; Hall, R.D.; Sagdic, O.; Boyacioglu, D.; Capanoglu, E. Industrial processing versus home processing of tomato sauce: Effects on phenolics, flavonoids and in vitro bioaccessibility of antioxidants. Food Chem. 2017, 220, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Ban, C.; Park, S.J.; Lim, S.; Choi, S.J.; Choi, Y.J. Improving Flavonoid Bioaccessibility using an Edible Oil-Based Lipid Nanoparticle for Oral Delivery. J. Agric. Food Chem. 2015, 63, 5266–5272. [Google Scholar] [CrossRef]
- Britton, G. SERIAL Structure function. FASEB J. 1995, 9, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Colle, I.J.P.; Lemmens, L.; Tolesa, G.N.; Van Buggenhout, S.; De Vleeschouwer, K.; Van Loey, A.M.; Hendrickx, M.E. Lycopene Degradation and Isomerization Kinetics during Thermal Processing of an Olive Oil/Tomato Emulsion. J. Agric. Food Chem. 2010, 58, 12784–12789. [Google Scholar] [CrossRef] [PubMed]
- Colle, I.J.P.; Lemmens, L.; Van Buggenhout, S.; Van Loey, A.M.; Hendrickx, M.E. Modeling Lycopene Degradation and Isomerization in the Presence of Lipids. Food Bioprocess Technol. 2013, 6, 909–918. [Google Scholar] [CrossRef]
- Honda, M.; Horiuchi, I.; Hiramatsu, H.; Inoue, Y.; Kitamura, C.; Fukaya, T.; Takehara, M. Vegetable oil-mediated thermal isomerization of (all-E)-lycopene: Facile and efficient production of Z -isomers. Eur. J. Lipid Sci. Technol. 2016, 118, 1588–1592. [Google Scholar] [CrossRef]
- Lambelet, P.; Richelle, M.; Bortlik, K.; Franceschi, F.; Giori, A.M. Improving the stability of lycopene Z-isomers in isomerised tomato extracts. Food Chem. 2009, 112, 156–161. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Regueiro, J.; de Alvarenga, J.; Torrado, X.; Lamuela-Raventos, R. Carotenoid Profile of Tomato Sauces: Effect of Cooking Time and Content of Extra Virgin Olive Oil. Int. J. Mol. Sci. 2015, 16, 9588–9599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cossignani, L.; Chiodelli, G.; Ghisoni, S.; Blasi, F.; Lucini, L.; Rocchetti, G.; Montesano, D.; Simonetti, M.S.; Baccolo, G. Changes in extra-virgin olive oil added with Lycium barbarum L. carotenoids during frying: Chemical analyses and metabolomic approach. Food Res. Int. 2017, 105, 507–516. [Google Scholar] [CrossRef]
- Fielding, J.M.; Rowley, K.G.; Cooper, P.; O’Dea, K. Increases in plasma lycopene concentration after consumption of tomatoes cooked with olive oil. Asia Pac. J. Clin. Nutr. 2005, 14, 131–136. [Google Scholar]
- Brown, M.J.; Ferruzzi, M.G.; Nguyen, M.L.; Cooper, D.A.; Eldridge, A.L.; Schwartz, S.J.; White, W.S. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am. J. Clin. Nutr. 2004, 80, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Palmero, P.; Panozzo, A.; Simatupang, D.; Hendrickx, M.; Van Loey, A. Lycopene and β-carotene transfer to oil and micellar phases during in vitro digestion of tomato and red carrot based-fractions. Food Res. Int. 2014, 64, 831–838. [Google Scholar] [CrossRef]
- Honda, M.; Kudo, T.; Kuwa, T.; Higashiura, T.; Fukaya, T.; Inoue, Y.; Kitamura, C.; Takehara, M. Isolation and spectral characterization of thermally generated multi- Z -isomers of lycopene and the theoretically preferred pathway to di-Z-isomers. Biosci. Biotechnol. Biochem. 2017, 81, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Deng, Z.; Liu, R.; Loewen, S.; Tsao, R. Ultra-performance liquid chromatographic separation of geometric isomers of carotenoids and antioxidant activities of 20 tomato cultivars and breeding lines. Food Chem. 2012, 132, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Chen, B.H. Determination of carotenoids in tomato juice by liquid chromatography. J. Chromatogr. A 2003, 1012, 103–109. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S.; Kadiroğlu, P.; Kola, O.; Kesen, S.; Uçar, B.; Çetiner, B. Bioactive compounds and antioxidant potential in tomato pastes as affected by hot and cold break process. Food Chem. 2017, 220, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Becker, E.M.; Ntouma, G.; Skibsted, L.H. Synergism and antagonism between quercetin and other chain-breaking antioxidants in lipid systems of increasing structural organisation. Food Chem. 2007, 103, 1288–1296. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Martínez-Huélamo, M.; Jáuregui, O.; Andres-Lacueva, C.; Lamuela-Raventos, R.M. Phenolic Profile and Hydrophilic Antioxidant Capacity as Chemotaxonomic Markers of Tomato Varieties. J. Agric. Food Chem. 2011, 59, 3994–4001. [Google Scholar] [CrossRef]
- Palmero, P.; Lemmens, L.; Ribas-Agustí, A.; Sosa, C.; Met, K.; De Dieu Umutoni, J.; Hendrickx, M.; Van Loey, A. Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems. Food Chem. 2013, 141, 2036–2043. [Google Scholar] [CrossRef]
- Capriotti, A.L.; Cavaliere, C.; Crescenzi, C.; Foglia, P.; Nescatelli, R.; Samperi, R.; Laganà, A. Comparison of extraction methods for the identification and quantification of polyphenols in virgin olive oil by ultra-HPLC-QToF mass spectrometry. Food Chem. 2014, 158, 392–400. [Google Scholar] [CrossRef]
- Di Lecce, G.; Martínez-Huélamo, M.; Tulipani, S.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Setup of a UHPLC-QqQ-MS method for the analysis of phenolic compounds in cherry tomatoes, tomato sauce, and tomato juice. J. Agric. Food Chem. 2013, 61, 8373–8380. [Google Scholar] [CrossRef]
- Suárez, M.; Macià, A.; Romero, M.-P.; Motilva, M.-J. Improved liquid chromatography tandem mass spectrometry method for the determination of phenolic compounds in virgin olive oil. J. Chromatogr. A 2008, 1214, 90–99. [Google Scholar] [CrossRef]
- Hrvolová, B.; Martínez-Huélamo, M.; Colmán-Martínez, M.; Hurtado-Barroso, S.; Lamuela-Raventós, R.; Kalina, J. Development of an Advanced HPLC–MS/MS Method for the Determination of Carotenoids and Fat-Soluble Vitamins in Human Plasma. Int. J. Mol. Sci. 2016, 17, 1719. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Compound | rt | MRM (m/z) | DP (V) | FP (V) | EP (V) | CE (V) | T | O | G | E |
---|---|---|---|---|---|---|---|---|---|---|
Tomato Method A | ||||||||||
caffeic acid-O-hexoside I | 0.33 | 341→179 | −40 | −170 | −10 | −20 | 4.7 ± 0.2 | 0.30 ± 0.03 | 0.36 ± 0.02 | n.d. |
caffeic acid-O-hexoside II | 0.51 | 341→179 | −40 | −170 | −10 | −20 | n.d. | n.d. | n.d. | n.d. |
chlorogenic acid * | 0.53 | 353→191 | −50 | −180 | −10 | −20 | 4.4 ± 0.4 | n.d. | n.d. | n.d. |
protocatechuic * | 0.54 | 153→109 | −40 | −150 | −10 | −20 | 0.0014 ± 0.0001 | n.d. | n.d. | n.d. |
coumaric acic-O-hexoside | 0.55 | 325→163 | −40 | −150 | −10 | −25 | 1.58 ± 0.09 | n.d. | n.d. | n.d. |
ferulic acid-O-hexoside | 0.59 | 355→193 | −40 | −170 | −10 | −25 | 4.5 ± 0.4 | n.d. | n.d. | n.d. |
caffeic acid * | 0.69 | 179→135 | −40 | −170 | −10 | −20 | 1.36 ± 0.03 | n.d. | 0.8 ± 0.1 | n.d. |
Rutin * | 0.74 | 609→300 | −60 | −230 | −10 | −50 | 2.94 ± 0.05 | n.d. | n.d. | n.d. |
ethyl gallate * (IS) | 1.01 | 197→169 | −60 | −200 | −10 | −25 | - | - | - | - |
naringenin-7-O-glucoside * | 1.39 | 433→271 | −50 | −280 | −10 | −30 | 0.076 ± 0.009 | n.d. | n.d. | n.d. |
dicaffeoylquinic acid | 1.41 | 515→353 | −50 | −180 | −10 | −20 | 0.61 ± 0.02 | n.d. | n.d. | n.d. |
Quercetin * | 2.08 | 301→151 | −60 | −210 | −10 | −30 | 0.236 ± 0.002 | 34 ± 1 | n.d. | n.d. |
naringenin * | 2.65 | 271→151 | −50 | −190 | −10 | −30 | 1.9 ± 0.2 | n.d. | n.d. | n.d. |
Olive Oil Method B | ||||||||||
1-acetoxypinoresinol | - | 451→325 | −60 | −180 | −8 | −25 | n.d. | n.d. | n.d. | n.d. |
dihydroxyoleuropein aglycone (DHOA) | - | 409→180 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | n.d. |
dihydroxyphenylacetic acid | - | 167→123 | −40 | −170 | −10 | −10 | n.d. | n.d. | n.d. | n.d. |
hydroxytyrsol acetate. (3,4-DHPEA-AC II) | - | 195→153 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | n.d. |
p-coumaroyl-6-oleoside | - | 535→427 | v30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | n.d. |
tyrosol | - | 137→106 | −25 | −90 | −10 | −20 | n.d. | n.d. | n.d. | n.d. |
hydroxytyrosol-O-glucoside | 1.01 | 315→153 | −40 | −250 | −10 | −20 | n.d. | n.d. | n.d. | 0.038 ± 0.004 |
Hydroxytyrosol * | 1.13 | 153→123 | −40 | −250 | −10 | −20 | n.d. | n.d. | n.d. | 14.3 ± 0.8 |
p-coumaric acid * | 1.57 | 163→119 | −40 | −150 | −10 | −25 | 0.108 ± 0.007 | 5.9 ± 0.1 | 0.057 ± 0.008 | 0.200 ± 0.006 |
hydroxycarboxymethyl elenolic acid I (HCM-EA I) | 1.65 | 199→155 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | n.d. |
vanillic acid * | 2.56 | 167→123 | −30 | −200 | −10 | −30 | n.d. | n.d. | n.d. | n.d. |
m-coumaric acid * | 3.26 | 163→119 | −40 | −150 | −10 | −25 | 0.71 ± 0.02 | 0.014 ± 0.001 | n.d. | n.d. |
ethyl gallate * (IS) | 4.62 | 197→169 | −60 | −200 | −10 | −25 | - | - | - | - |
o-coumaric acid * | 4.75 | 163→119 | −40 | −150 | −10 | −25 | 1.9 ± 0.1 | 0.012 ± 0.002 | n.d | n.d |
ferulic acid * | 5.15 | 193→134 | −40 | −170 | −10 | −20 | 1.85 ± 0.08 | 0.62 ± 0.08 | 7.2 ± 0.3 | 0.0358 ± 0.0004 |
hydroxytyrsol acetate. (3,4-DHPEA-AC) | 5.69 | 195→180 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | n.d. |
hydroxyelenolic acid | 6.02 | 257→137 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | 1.17 ± 0.2 |
elenolic acid * | 6.31 | 241→127 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | 7.1 ± 0.5 |
verbascoside * | 6.4 | 623→161 | −90 | −210 | −10 | −50 | n.d. | n.d. | n.d. | n.d. |
isolariciresinol * | 6.44 | 359→344 | −60 | −100 | −13 | −30 | n.d. | n.d. | n.d. | n.d. |
lactone | 7.16 | 321→185 | −40 | −250 | −10 | −20 | n.d. | n.d. | n.d. | 0.68 ± 0.06 |
secoisolariciresinol | 7.24 | 361→165 | −60 | −50 | −6 | −35 | n.d. | n.d. | n.d. | |
hydroxycarboxymethyl elenolic acid II (HCM-EA II) | 7.3 | 199→155 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | n.d. |
hydroxydecarboxymethyl oleuropein aglycone (HDCM-OA) | 7.32 | 335→199 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | 6.6 ± 0.6 |
lariciresinol * | 7.45 | 359→329 | −40 | −100 | v4 | −15 | n.d. | n.d. | n.d. | n.d. |
hydroxy oleuropein aglycone I (HOA I) | 7.6 | 393→257 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | 3.41 ± 0.04 |
oleuropein * | 7.68 | 539→275 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | 5.46 ± 0.08 |
oleuropein aglycone (3,4-DHPEA-EA) II | 7.91 | 377→307 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | n.d. |
luteolin * | 8.15 | 285→133 | −100 | −340 | −10 | −50 | n.d. | n.d. | n.d. | 0.89 ± 0.06 |
decarboxylmethyl oleuropein aglycone (3,4-DHPEA-EDA) | 8.4 | 319→181 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | 0.114 ± 0.005 |
pinoresinol * | 8.58 | 357→151 | −60 | −180 | −8 | −25 | n.d. | n.d. | n.d. | 0.089 ± 0.001 |
oleuropein derivative II | 8.64 | 377→307 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | 7.8 ± 0.2 |
hydroxy oleuropein aglycone II (HOA II) | 8.8 | 393→257 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | n.d. |
oleuropein derivative III | 8.92 | 377→307 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | n.d. |
oleocanthal (4-HPEA-EDA) | 9.0 | 303→165 | −25 | −90 | −7 | −15 | n.d. | n.d. | n.d. | n.d. |
ligstroside aglycon I | 9.01 | 361→291 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | 39 ± 1 |
apigenin * | 9.11 | 269→117 | −70 | −200 | −10 | −50 | n.d. | n.d. | n.d. | 0.36 ± 0.03 |
oleuropein derivative I | 9.14 | 377→241 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | 5.46 ± 0.08 |
ligstroside aglycon II | 10.0 | 361→291 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | 30.9 ± 0.6 |
oleuropein aglycone (3,4-DHPEA-EA) | 10.0 | 377→307 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | n.d. |
oleuropein derivative IV | 10.3 | 377→307 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | n.d. |
ligstroside aglycon III | 11.2 | 361→291 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | 17.3 ± 0.6 |
methyl oleuropein aglycone (methyl 3,4-DHPEA-EA) | 11.2 | 391→255 | −30 | −140 | −10 | −30 | n.d. | n.d. | n.d. | 0.045 ± 0.001 |
Peak | Compound | rt (min) | λmax (nm) | %III/II | %Ab/II | [M + H]+ (m/z) | MS2 ion products (m/z) |
---|---|---|---|---|---|---|---|
1 | all-E-lutein * | 10.51 | (420), 445, 476 | 40 | 14 | 551 [M + H-18] | 429 [M − 122] |
2 | n.i. | 11.12 | 445, 472 | - | - | ||
3 | n.i. | 11.93 | (330), (347), (416), 440, 470 | 41 | 21 | - | - |
4 | n.i. | 12.69 | (330), (345), (422), 440, 468 | 30 | 15 | - | - |
5 | n.i. | 14.31 | 434, 456 | - | - | ||
6 | n.i. | 15.20 | 430, 452, 485 | 38 | 4 | - | - |
7 | Apo-10-β-carotenal | 15.58 | 448 | - | n.d. | ||
8 | Apo-8-β-carotenal * | 15.99 | 460 | 417 | 325 [M − 92] | ||
9 | all-E-α-carotene * | 16.39 | 425, 445,475 | 537 | 444 [M − 92] | ||
10 | Z-phytofluene | 16.43 | 332, 349, 368 | 72 | 543 | 406 [M + H − 137] | |
11 | phytofluene | 16.79 | 332, 349, 368 | 90 | 543 | 406 [M + H − 137] | |
12 | all-E-ζ-carotene | 17.31 | 385, 401, 420 | 104 | 541 | 472 [M + H − 69] | |
13 | Z-β-carotene | 17.05 | 418, 437, 461 | 13 | 444 [M − 92]; 413 [ M − 123] | ||
14 | 13-Z-β-carotene | 17.91 | (335), (347), 448, 470 | 28 | 32 | 537 | 444 [M − 92]; 413 [ M − 123] |
15 | all-E-β-carotene * | 18.95 | (425), 453, 478 | 28 | 537 | 444 [M − 92]; 413 [ M − 123] | |
16 | 9-Z-β-carotene * | 19.71 | (350), 426, 453, 480 | 28 | 28 | 537 | 444 [M − 92]; 413 [ M − 123] |
17 | n.i. | 20.37 | (350), 426, 453, 480 | 20 | 537 | 444 [M − 92]; 413 [ M − 123] | |
18 | n.i. | 21.34 | (350), 455, 485 | n.d. | |||
19 | 9,13-Z-lycopene | 22.17 | (348), (362), 437, 460, 488 | 47 | 28 | 537 | 444 [M − 92]; 413 [ M − 123] |
20 | 15-Z-lycopene | 23.11 | (348), (362), 438, 461, 490 | 48 | 69 | 537 | 444 [M − 92]; 413 [ M − 123] |
21 | all-E-γ-carotene | 23.41 | (364), 438, 461, 491 | 58 | 537 | 444 [M − 92] | |
22 | 13-Z-lycopene | 23.89 | (348), (362), 440, 466, 495 | 49 | 40 | 537 | 444 [M − 92]; 413 [ M − 123] |
23 | 9,5-di-Z-lycopene | 24.57 | (348), (362), 438, 460, 489 | 54 | 22 | 537 | 444 [M − 92]; 413 [ M − 123] |
24 | 9-Z-lycopene | 26.88 | (348), (362), 441, 467, 497 | 70 | 17 | 537 | 444 [M − 92]; 413 [ M − 123] |
25 | 7-Z-lycopene | 27.23 | (348), (363), 441, 467, 497 | 70 | 17 | 537 | 444 [M − 92]; 413 [ M − 123] |
26 | all-E-lycopene * | 31.29 | 447, 472, 503 | 74 | 0 | 537 | 444 [M − 92]; 413 [ M − 123] |
27 | 5-Z-lycopene | 31.89 | (365), 446, 472, 503 | 74 | 5 | 537 | 444 [M − 92]; 413 [ M − 123] |
Compound | μg/g of Ingredient or Fraction A | μg/g of sofrito B | ||||
---|---|---|---|---|---|---|
EVOO | Oil Fraction | Sofrito | Water | Oil | Insoluble | |
Polyphenols | ||||||
apigenin | 0.36 ± 0.03 | 0.16 ± 0.02 *** | 1.64 a ±0.007 | 0.008 c ± 0.002 | 0.028 b ± 0.006 | 1.5 a ± 0.1 |
elenolic acid | 22 ± 2 | 0.083 ± 0.06 *** | 0.110 b ± 0.004 | 0.010 c ± 0.002 | 0.014 c ± 0.002 | 1.49 a ± 0.08 |
ferulic acid | 0.0358 ± 0.00004 | 0.55 ± 0.06 *** | 0.64 b ± 0.6 | 0.007 c ± 0.002 | 0.10 c ± 0.02 | 0.75 a ± 0.09 |
ligstroside I | 39 ± 1 | 1.8 ± 0.3 *** | 0.109 c ± 0.004 | 0.007 c ± 0.001 | 0.31 b ± 0.07 | 0.6 a ± 0.1 |
luteolin | 0.89 ± 0.06 | 0.13 ± 0.01 ** | 0.169 b ± 0.007 | 0.013 c ± 0.004 | 0.022 c ± 0.002 | 2.9 a ± 0.4 |
m-coumaric | n.d. | <LoQ | <LoQ | 0.018 *** ± 0.004 | <LoQ | 0.40 *** ± 0.02 |
o-coumaric | n.d. | 0.08 ± 0.01 | <LoQ | 0.020 b ± 0.004 | 0.015 b ± 0.003 | 0.54 a ± 0.06 |
p-coumaric | 0.200 ± 0.006 | 0.08 ± 0.01 ** | 0.12 a ± 0.02 | 0.0019 b ± 0.0004 | 0.015 b ± 0.003 | 0.16 a ± 0.02 |
oleuropein | 5.46 ± 0.08 | 1.14 ± 0.08 *** | 0.111 b ± 0.004 | 0.026 b ± 0.008 | 0.20 b ± 0.03 | 2.5 a ± 0.2 |
pinoresinol | 0.089 ± 0.001 | 0.09 ± 0.01 | 0.35 *** ± 0.20 | <LoQ | 0.016 *** ± 0.003 | <LoQ |
caffeic acid | n.d. | 0.032 ± 0.001 | 1.8 a ± 0.2 | 0.006 c ± 0.002 | 0.0055 c ± 0.0003 | 0.21 b ± 0.01 |
caffeic acid-O-hexoside | n.d. | 0.0183 ± 0.0007 | 2.6 a ± 0.3 | 0.0023 c ± 0.0005 | 0.0032 c ± 0.0002 | 0.16 b ± 0.02 |
chlorogenic acid | n.d. | 0.0012 ± 0.0003 | 5.4 a ± 0.6 | 0.0025 b ± 0.0009 | <LoQ | 0.064 b ± 0.008 |
dicalfeoylquinic acid | n.d. | n.d. | 0.35 a ± 0.01 | 0.0018 c ± 0.0004 | n.d. | 0.077 b ± 0.002 |
ferulic acid-O-hexoside | n.d. | n.d. | 6 a ± 2 | 0.05 c ± 0.02 | n.d. | 1.2 b ± 0.2 |
naringenin | n.d. | 1.7 ± 0.03 | 2.8 b ± 0.1 | 0.021 c ± 0.006 | 0.29 c ± 0.06 | 3.4 a ± 0.6 |
naringenin-7-O-glucoside | n.d. | n.d. | 0.025 b ± 0.003 | 0.010 b ± 0.003 | n.d. | 0.60 a ± 0.06 |
protocatechuic acid | n.d. | 0.009 ± 0.001 | n.d. | 0.003 b ± 0.001 | 0.0016 b ± 0.0002 | 0.06 a ± 0.02 |
quercetin | n.d. | 0.04 ± 0.02 | 5 b ± 1 | 0.03 c ± 0.01 | 0.007 c ± 0.003 | 10 a ± 3 |
rutin | n.d. | n.d. | 2.6 a ± 0.1 | 0.023 c ± 0.006 | n.d. | 0.62 b ± 0.08 |
Carotenoids | ||||||
all-E-lutein | <LoQ | 4.2 ± 0.2 | n.d. | n.d. | 0.71 ± 0.2 | n.d. |
Apo-8-β-carotenal | n.d. | 2.34 ± 0.01 | n.d. | n.d. | 0.40 ± 0.03 | n.d. |
all-E-α-carotene | n.d. | 2.14 ± 0.03 | 3.6 a ± 0.1 | 0.020 d ± 0.005 | 0.37 c ± 0.03 | 1.61 b ± 0.06 |
13-Z-β-carotene | n.d. | 3.1 ± 0.2 | <LoQ | 0.022 c ± 0.005 | 0.53 b ± 0.08 | 1.98 a ± 0.08 |
all-E-β-carotene | <LoQ | 8.0 ± 0.8 | 7.3 a ± 0.5 | 0.029 c ± 0.007 | 1.4 b ± 0.2 | 6.2 a ± 0.6 |
9-Z-β-carotene | n.d. | 6.5 ± 0.4 | 3.4 b ± 0.2 | 0.023 d ± 0.06 | 1.1 c ± 0.2 | 6.4 a ± 0.6 |
9,13-Z-lycopene | n.d. | 2.15 ± 0.06 | n.d. | n.d. | 0.37 ± 0.04 | n.d. |
15-Z-lycopene | n.d. | 2.6 ± 0.3 | <LoQ | n.d. | 0.45 *** ± 0.08 | 2.9 *** ± 0.2 |
13-Z-lycopene | n.d. | 8 ± 1 | 14.6 a ± 0.7 | 0.035 d ± 0.008 | 1.4 c ± 0.4 | 7.1 b ± 0.6 |
9,5-Z-lycopene | n.d. | 4.1 ± 0.5 | n.d. | n.d. | 0.7 ± 0.2 | n.d. |
9-Z-lycopene | n.d. | 40 ± 4 | 25 a ± 2 | 0.040 c ± 0.009 | 7 b ± 1 | 9.1 b ± 0.7 |
all-E-lycopene | n.d. | 20 ± 2 | 46.8 a ± 0.7 | 0.038 d ± 0.009 | 3.4 c ± 0.7 | 9.6 b ± 0.6 |
5-Z-lycopene | n.d. | 36 ± 3 | 42 a ± 2 | 0.004 d ± 0.01 | 6 c ± 1 | 9 b ± 1 |
Total carotenoids | - | 139.13 | 142.7 | 0.221 | 23.83 | 53.89 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinaldi de Alvarenga, J.F.; Quifer-Rada, P.; Francetto Juliano, F.; Hurtado-Barroso, S.; Illan, M.; Torrado-Prat, X.; Lamuela-Raventós, R.M. Using Extra Virgin Olive Oil to Cook Vegetables Enhances Polyphenol and Carotenoid Extractability: A Study Applying the sofrito Technique. Molecules 2019, 24, 1555. https://doi.org/10.3390/molecules24081555
Rinaldi de Alvarenga JF, Quifer-Rada P, Francetto Juliano F, Hurtado-Barroso S, Illan M, Torrado-Prat X, Lamuela-Raventós RM. Using Extra Virgin Olive Oil to Cook Vegetables Enhances Polyphenol and Carotenoid Extractability: A Study Applying the sofrito Technique. Molecules. 2019; 24(8):1555. https://doi.org/10.3390/molecules24081555
Chicago/Turabian StyleRinaldi de Alvarenga, José Fernando, Paola Quifer-Rada, Fernanda Francetto Juliano, Sara Hurtado-Barroso, Montserrat Illan, Xavier Torrado-Prat, and Rosa Maria Lamuela-Raventós. 2019. "Using Extra Virgin Olive Oil to Cook Vegetables Enhances Polyphenol and Carotenoid Extractability: A Study Applying the sofrito Technique" Molecules 24, no. 8: 1555. https://doi.org/10.3390/molecules24081555