SERS Studies of Adsorption on Gold Surfaces of Mononucleotides with Attached Hexanethiol Moiety: Comparison with Selected Single-Stranded Thiolated DNA Fragments
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorption of Different Thiolated Mononucleotides
2.2. Adsorption of Thiolated Single Stranded DNA Chains
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shelley, E.J.; Ryan, D.; Johnson, S.R.; Couillard, M.; Fitzmaurice, D.; Nellist, P.D.; Chen, Y.; Palmer, R.E.; Preece, J.A. Dialkyl Sulfides: Novel Passivating Agents for Gold Nanoparticles. Langmuir 2002, 18, 1791–1795. [Google Scholar] [CrossRef]
- Hegner, M.; Wagner, P.; Semenza, G. Immobilizing DNA on gold via thiol modification for atomic force microscopy imaging in buffer solutions. FEBS Lett. 1993, 336, 452–456. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhang, H.; Dever, B.; Li, X.-F.; Le, X.C. Thermal Stability of DNA Functionalized Gold Nanoparticles. Bioconjug. Chem. 2013, 24, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Nimse, S.; Song, K.; Sonawane, M.; Sayyed, D.; Kim, T. Immobilization Techniques for Microarray: Challenges and Applications. Sensors (Basel, Switzerland) 2014, 14, 22208–22229. [Google Scholar] [CrossRef] [Green Version]
- Herne, T.M.; Tarlov, M.J. Characterization of DNA Probes Immobilized on Gold Surfaces. J. Am. Chem. Soc. 1997, 119, 8916–8920. [Google Scholar] [CrossRef]
- He, Y.; Su, S.; Xu, T.; Zhong, Y.; Zapien, J.A.; Li, J.; Fan, C.; Lee, S.-T. Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 2011, 6, 122–130. [Google Scholar] [CrossRef]
- Kang, T.; Yoo, S.M.; Yoon, I.; Lee, S.Y.; Kim, B. Patterned Multiplex Pathogen DNA Detection by Au Particle-on-Wire SERS Sensor. Nano Lett. 2010, 10, 1189–1193. [Google Scholar] [CrossRef] [Green Version]
- Zengin, A.; Tamer, U.; Caykara, T. SERS detection of hepatitis B virus DNA in a temperature-responsive sandwich-hybridization assay. J. Raman Spectrosc. 2017, 48, 668–672. [Google Scholar] [CrossRef]
- Fu, X.; Cheng, Z.; Yu, J.; Choo, P.; Chen, L.; Choo, J. A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens. Bioelectron. 2016, 78, 530–537. [Google Scholar] [CrossRef]
- Wang, X.; Choi, N.; Cheng, Z.; Ko, J.; Chen, L.; Choo, J. Simultaneous Detection of Dual Nucleic Acids Using a SERS-Based Lateral Flow Assay Biosensor. Anal. Chem. 2017, 89, 1163–1169. [Google Scholar] [CrossRef]
- Cao, Y.C.; Jin, R.; Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297, 1536–1540. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Garrido-Maestu, A.; Guerreiro, J.R.L.; Carvalho, S.; Abalde-Cela, S.; Prado, M.; Diéguez, L. Amplification-free SERS analysis of DNA mutation in cancer cells with single-base sensitivity. Nanoscale 2019, 11, 7781–7789. [Google Scholar] [CrossRef] [PubMed]
- Wabuyele, M.B.; Vo-Dinh, T. Detection of Human Immunodeficiency Virus Type 1 DNA Sequence Using Plasmonics Nanoprobes. Anal. Chem. 2005, 77, 7810–7815. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-N.; Vo-Dinh, T. Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology 2009, 20, 065101. [Google Scholar] [CrossRef] [PubMed]
- Ngo, H.T.; Wang, H.-N.; Fales, A.M.; Nicholson, B.P.; Woods, C.W.; Vo-Dinh, T. DNA bioassay-on-chip using SERS detection for dengue diagnosis. Analyst 2014, 139, 5655–5659. [Google Scholar] [CrossRef]
- Ki, J.; Kim, J.; Han, S.; Jang, E.; Lee, T.; Wi, J.-S.; Lee, T.G.; Na, W.; Song, D.; Haam, S. Optimal DNA structure of reverse-hairpin beacons for label-free and positive surface enhanced Raman scattering assays. Opt. Mater. Express OME 2017, 7, 2352–2360. [Google Scholar] [CrossRef]
- Crawford, B.M.; Wang, H.-N.; Fales, A.M.; Bowie, M.L.; Seewaldt, V.L.; Vo-Dinh, T. SERS-based inverse molecular sentinel (iMS) nanoprobes for multiplexed detection of microRNA cancer biomarkers in biological samples. In Proceedings of the Plasmonics in Biology and Medicine XIV. Int. Soc. Optics Photonics 2017, 10080, 1008008. [Google Scholar]
- Yu, J.; Jeon, J.; Choi, N.; Lee, J.O.; Kim, Y.-P.; Choo, J. SERS-based genetic assay for amplification-free detection of prostate cancer specific PCA3 mimic DNA. Sensors Actuators B Chem. 2017, 251, 302–309. [Google Scholar] [CrossRef]
- Vohra, P.; Ngo, H.T.; Lee, W.T.; Vo-Dinh, T. Squamous cell carcinoma DNA detection using ultrabright SERS nanorattles and magnetic beads for head and neck cancer molecular diagnostics. Anal. Methods 2017, 9, 5550–5556. [Google Scholar] [CrossRef]
- Graham, D.; Stevenson, R.; Thompson, D.; Barrett, L.; Dalton, C.; Faulds, K. Combining functionalised nanoparticles and SERS for the detection of DNA relating to disease. Faraday Discussions 2011, 149, 291–299. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Krajczewski, J.; Kowalik, A.; Weyher, J.L.; Dzięcielewski, I.; Chłopek, M.; Góźdź, S.; Nowicka, A.M.; Kudelski, A. New strategy for the gene mutation identification using surface enhanced Raman spectroscopy (SERS). Biosensors Bioelectron. 2019, 132, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.; van den Tweel, T.J.J.; de Mul, F.F.M.; Greve, J. Surface-enhanced Raman spectroscopy of DNA bases. J. Raman Spectrosc. 1986, 17, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Krajczewski, J.; Kołątaj, K.; Kudelski, A. Plasmonic nanoparticles in chemical analysis. RSC Adv. 2017, 7, 17559–17576. [Google Scholar] [CrossRef] [Green Version]
- Bryant, M.A.; Pemberton, J.E. Surface Raman scattering of self-assembled monolayers formed from 1-alkanethiols: Behavior of films at gold and comparison to films at silver. J. Am. Chem. Soc. 1991, 113, 8284–8293. [Google Scholar] [CrossRef]
- Kudelski, A. Structures of monolayers formed from different HS—(CH2)2—X thiols on gold, silver and copper: Comparitive studies by surface-enhanced Raman scattering. J. Raman Spectrosc. 2003, 34, 853–862. [Google Scholar] [CrossRef]
- Jang, N.H. The Coordination Chemistry of DNA Nucleosides on Gold Nanoparticles as a Probe by SERS. Bullet. Korean Chem. Soc. 2002, 23, 1790–1800. [Google Scholar] [Green Version]
- Otto, A. On the contribution of charge transfer excitations to SERS. J. Electron Spectr. Related Phenomena 1983, 29, 329–342. [Google Scholar] [CrossRef]
- Camafeita, L.E.; Sánchez-Cortés, S.; García-Ramos, J.V. SERS of cytosine and its methylated derivatives on gold sols. J. Raman Spectrosc. 1995, 26, 149–154. [Google Scholar] [CrossRef]
- Cho, K.-H.; Choo, J.; Joo, S.-W. Tautomerism of thymine on gold and silver nanoparticle surfaces: Surface-enhanced Raman scattering and density functional theory calculation study. J. Molecular Struct. 2005, 738, 9–14. [Google Scholar] [CrossRef]
- Kundu, J.; Neumann, O.; Janesko, B.G.; Zhang, D.; Lal, S.; Barhoumi, A.; Scuseria, G.E.; Halas, N.J. Adenine− and Adenosine Monophosphate (AMP)−Gold Binding Interactions Studied by Surface-Enhanced Raman and Infrared Spectroscopies. J. Phys. Chem. C 2009, 113, 14390–14397. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
A-SH | Adenine | C-SH | Cytosine | G-SH | Guanine | T-SH | Thymine | Assignments [22,26,28,29,30] |
---|---|---|---|---|---|---|---|---|
1637 | 1644 | 1699 | 1650 | C=O stretching | ||||
1603 | 1594 | nanoparticles | ||||||
1552 | 1550 | 1576 | ring stretching (Py) | |||||
1504 | 1511 | NH2 deformation | ||||||
1486 | C=N stretching (Im) | |||||||
1467 | 1455 | 1458 | 1452 | C=N stretching (Py) | ||||
1417 | 1423 | C–C stretching | ||||||
1400 | 1399 | C–N stretching (Py) | ||||||
1376 | 1376 | C6–N1 stretching (Py) | ||||||
1339 | 1337 | 1351 | 1346 | C–N stretching (Py) | ||||
1317 | 1270 | 1281 | 1311 | 1312 | 1265 | C–N stretching (Im) | ||
1241 | 1222 | C5–C6 stretching | ||||||
1222 | ring-CH3 stretching | |||||||
1194 | 1197 | 1178 | 1180 | NH2 rocking | ||||
1147 | NH2 rocking | |||||||
1105 | 1105 | 1102 | 1100 | 1104 | nanoparticles | |||
1051 | 1055 | 1054 | 1054 | C–C stretching | ||||
1041 | NH2 rocking | |||||||
1030 | 1029 | N-sugar stretching | ||||||
1002 | 1002 | 997 | N–H wagging | |||||
963 | 968 | 961 | NH2 rocking | |||||
870 | 870 | 860 | 874 | 872 | 872 | nanoparticles | ||
736 | 737 | 796 | 800 | 789 | 748 | ring breathing (Py) | ||
684 | 671 | 666 | ring breathing (Im) | |||||
628 | 600 | ring deformation (Py) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyrak, E.; Jaworska, A.; Kudelski, A. SERS Studies of Adsorption on Gold Surfaces of Mononucleotides with Attached Hexanethiol Moiety: Comparison with Selected Single-Stranded Thiolated DNA Fragments. Molecules 2019, 24, 3921. https://doi.org/10.3390/molecules24213921
Pyrak E, Jaworska A, Kudelski A. SERS Studies of Adsorption on Gold Surfaces of Mononucleotides with Attached Hexanethiol Moiety: Comparison with Selected Single-Stranded Thiolated DNA Fragments. Molecules. 2019; 24(21):3921. https://doi.org/10.3390/molecules24213921
Chicago/Turabian StylePyrak, Edyta, Aleksandra Jaworska, and Andrzej Kudelski. 2019. "SERS Studies of Adsorption on Gold Surfaces of Mononucleotides with Attached Hexanethiol Moiety: Comparison with Selected Single-Stranded Thiolated DNA Fragments" Molecules 24, no. 21: 3921. https://doi.org/10.3390/molecules24213921
APA StylePyrak, E., Jaworska, A., & Kudelski, A. (2019). SERS Studies of Adsorption on Gold Surfaces of Mononucleotides with Attached Hexanethiol Moiety: Comparison with Selected Single-Stranded Thiolated DNA Fragments. Molecules, 24(21), 3921. https://doi.org/10.3390/molecules24213921