Symmetrical Heterocyclic Cage Skeleton: Synthesis, Urease Inhibition Activity, Kinetic Mechanistic Insight, and Molecular Docking Analyses
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Schiff Base Ligands 1 and 2
2.2. Ligand-Metals Complexation
2.3. Optical Analysis
2.4. Ligand Safety Profiles
2.5. Bio-Evaluation
Urease Inhibition Activity
2.6. Mechanism Underlying Inhibitory Effect of Compounds 3a, 4a, 3b, and 4b
2.7. Structural Assessment of Jack Bean Urease
2.8. Docking Shows Binding Energy and Conformation
3. Materials and Methods
3.1. Substrate and Reagents
3.2. Instrumentations
3.3. Synthesis of 4-amino-3-(4-methoxyphenyl)-1H-1,2,4-triazol-5(4H)-one (1 and 2)
3.4. Synthesis of Schiff Base Derivative 3, 4 and Their Metal Complexes
3.5. General Procedure for Spectroscopic Measurement
3.6. General Procedure for MTT Assay
3.7. General Procedure for Urease Inhibition Assay
3.8. Computational Methodology
Retrieval of Jack Bean Urease
3.9. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Habala, L.; Varényi, S.; Bilková, A.; Herich, P.; Valentová, J.; Kožíšek, J.; Devínsky, F. Antimicrobial Activity and Urease Inhibition of Schiff Bases Derived from Isoniazid and Fluorinated Benzaldehydes and of Their Copper(II) Complexes. Molecules 2016, 21, 1742. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.T.S.; Švajdlenka, E.; Berchová-Bímová, K. Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-Enzymatic Properties against Urease by an ESI-MS Based Assay. Molecules 2017, 22, 722. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.T.S.; Švajdlenka, E. Biological Evaluation and Molecular Docking of Protocatechuic Acid from Hibiscus sabdariffa L. as a Potent Urease Inhibitor by an ESI-MS Based Method. Molecules 2017, 22, 1696. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.P.; Chen, Y.H.; Chen, Z.J.; Qin, J.; Qian, S.S.; Zhu, H.L. Synthesis, Crystal Structures, Molecular Docking, and urease Inhibitory Activities of Transition-Metal Complexes with a 1,2,4-Triazolecarboxylic Acid Derived Ligand. Eur. J. Inorg. Chem. 2015, 2015, 2076–2084. [Google Scholar] [CrossRef]
- You, Z.; Liu, M.; Wang, C.; Sheng, G.; Zhao, X.; Qua, D.; Niu, F. Inhibition studies of Helicobacter pylori urease with Schiff base copper(II) complexes. RSC Adv. 2016, 6, 16679–16690. [Google Scholar] [CrossRef]
- You, Z.; Yu, H.; Zheng, B.; Zhang, C.; Lv, C.; Li, K.; Pan, L. Syntheses, structures, and inhibition studies of Jack bean urease by copper(II) complexes derived from a tridentate hydrazone ligand. Inorg. Chim. Acta 2018, 469, 44–50. [Google Scholar] [CrossRef]
- You, Z.L.; Ni, L.L.; Shi, D.H.; Bai, S. Synthesis, structures, and urease inhibitory activities of three copper(II) and zinc(II) complexes with 2-{[2-(2-hydroxyethylamino)ethylimino]methyl}-4-nitrophenol. Eur. J. Med. Chem. 2010, 45, 3196–3199. [Google Scholar] [CrossRef] [PubMed]
- Ikram, M.; Rehman, S.; Faridoon; Baker, R.J.; Rehman, H.U.; Khan, A.; Choudhary, M.I.; Rehman, S.U. Synthesis and distinct urease enzyme inhibitory activities of metal complexes of Schiff-base ligands: Kinetic and thermodynamic parameters evaluation from TG-DTA analysis. Thermochim. Acta 2013, 555, 72–80. [Google Scholar] [CrossRef]
- Du, N.; Chen, M.; Liu, Z.; Sheng, L.; Xu, H.; Chen, S. Kinetics and mechanism of jack bean urease inhibition by Hg2+. Chem. Cent. J. 2012, 6, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Benini, S.; Rypniewski, W.R.; Wilson, K.S.; Mangani, S.; Ciurli, S. Molecular Details of urease Inhibition by Boric Acid: Insights into the Catalytic Mechanism. J. Am. Chem. Soc. 2004, 126, 3714–3715. [Google Scholar] [CrossRef]
- Habal, L.; Roller, A.; Matušk, M.; Valentová, J.; Rompel, A.; Devínsky, F. Complexes of N-hydroxyethyl-N-benzimidazolylmethylethylenediaminediacetic acid with copper(II) and cobalt(II): Preparation, crystal structure and urease inhibitory activity. Inorg. Chim. Acta 2014, 421, 423–426. [Google Scholar] [CrossRef]
- Dong, X.; Li, Y.; Li, Z.; Cui, Y.; Zhu, H. Synthesis, structures and urease inhibition studies of copper(II) and nickel(II) complexes with bidentate N,O-donor Schiff base ligands. J. Inorg. Biochem. 2012, 108, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Gul, S.; Sultana, N.; Arayne, M.S.; Shamim, S.; Akhtar, M.; Khan, A. Sparfloxacin-Metal Complexes as urease Inhibitors: Their Synthesis, Characterization, Antimicrobial, and Antienzymatic Evaluation. J. Chem. 2013, 1–12. [Google Scholar] [CrossRef]
- Fátima, A.D.; Pereira, C.P.; Olímpio, C.R.S.D.G.; Oliveira, B.G.F.O.; Franco, L.L.F.; Silva, P.H.C. Schiff bases and their metal complexes as urease inhibitors—A brief review. J. Adv. Res. 2018. [Google Scholar] [CrossRef]
- Cui, Y.; Dong, X.; Li, Y.; Li, Z.; Chen, W. Synthesis, structures and urease inhibition studies of Schiff base metal complexes derived from 3,5-dibromosalicylaldehyde. Eur. J. Med. Chem. 2012, 58, 323–331. [Google Scholar] [CrossRef]
- Ashraf, Z.; Rafiq, M.; Seo, S.Y.; Babar, M.M.; Zaidi, N.S.S. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorg. Med. Chem. 2015, 23, 5870–5880. [Google Scholar] [CrossRef]
- Abbasi, M.A.; Raza, H.; Siddiqui, S.Z.; Shah, S.A.; Hassan, M.; Seo, S.Y. Synthesis of novel N-(1,3-thiazol-2-yl)benzamide clubbed oxadiazole scaffolds: Urease inhibition, Lipinski rule and molecular docking analyses. Bioorg Chem. 2018, 83, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.; Ur-Rehman, S.; Channar, P.A.; Larik, F.A.; Abbas, Q.; Hassan, M.; Raza, H.; Seo, S.Y. Jack Bean urease Inhibitors, and Antioxidant Activity Based on Palmitic acid Derived 1-acyl-3- Arylthioureas: Synthesis, Kinetic Mechanism and Molecular Docking Studies. Drug Res. 2017, 67, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Channar, P.A.; Saeed, A.; Albericio, F.; Larik, F.A.; Abbas, Q.; Hassan, M.; Raza, H.; Seo, S.Y. Sulfonamide-Linked Ciprofloxacin, Sulfadiazine and Amantadine Derivatives as a Novel Class of Inhibitors of Jack Bean urease; Synthesis, Kinetic Mechanism and Molecular Docking. Molecules 2017, 16, 1352. [Google Scholar] [CrossRef]
- Abbasi, M.A.; Hassan, M.; Aziz-Ur-Rehman Siddiqui, S.Z.; Raza, H.; Shah, S.A.A.; Seo, S.Y. Synthesis, in vitro and in silico studies of novel potent urease inhibitors: N-[4-({5-[(3-Un/substituted-anilino-3-oxopropyl)sulfanyl]-1,3,4-oxadiazol-2-yl}methyl)-1,3-thiazol-2-yl]benzamides. Bioorg. Med. Chem. 2018, 30, 3791–3804. [Google Scholar] [CrossRef]
- Saleem, M.; Khang, C.H.; Kim, M.; Lee, K.H. Chromo/Fluorogenic Detection of Co(2+), Hg(2+) and Cu(2+) by the Simple Schiff Base Sensor. J. Fluoresc. 2016, 26, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Muhammad Saleem, Muhammad Rafiq, Muhammad Hanif, Organic material based fluorescent sensor for Hg2+: A brief review on recent development. J. Fluoresc. 2017, 27, 31–58. [CrossRef]
- Saleem, M.; Lee, L.P.; Lee, K.H. Photoluminescent Sensor for Acetylcholinesterase Inhibitor Determination. J. Mater. Chem. B 2014, 2, 6802–6808. [Google Scholar] [CrossRef]
- Saleem, M.; Kang, S.K.; Lee, K.H. Microwave assisted synthesis of a novel optical chemosensor for selective Fe3+ detection. J. Lumin. 2015, 162, 14–24. [Google Scholar] [CrossRef]
- Saleem, M.; Abdullah, R.; Ali, A.; Park, B.J.; Choi, E.H.; Hong, I.S.; Lee, K.H. Facile synthesis, cytotoxicity and bioimaging of Fe3+ selective fluorescent chemosensor. Bioorg. Med. Chem. 2014, 22, 2045–2051. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-Hypochlorite Reaction for Determination of Ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Mojzych, M.; Tarasiuk, P.; Mojzych, K.K.; Rafiq, M.; Seo, S.-Y.; Nicewicz, M.; Fornal, E. Synthesis of chiral pyrazolo[4,3-e][1,2,4]triazine sulfonamides with tyrosinase and urease inhibitory activity. J. Enzyme Inhib. Med. Chem. 2017, 32, 99–105. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.B.; Arendall, W.B.; 3rd Headd, J.J.; Keedy, D.A.; Immormino, R.M. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef]
- Lovell, S.C.; Davis, I.W.; Arendall, W.B., III; de Bakker, P.I.; Word, J.M. Structure validation by Calpha geometry: Phi, psi and Cbeta deviation. Proteins 2003, 50, 437–450. [Google Scholar] [CrossRef]
- Willard, L.; Ranjan, A.; Zhang, H.; Monzavi, H.; Boyko, R.F. VADAR: A web server for quantitative evaluation of protein structure quality. Nucleic Acids Res. 2003, 31, 3316–3319. [Google Scholar] [CrossRef] [PubMed]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [PubMed]
- Rafiq, M.; Saleem, M.; Jabeen, F.; Hanif, M.; Seo, Su.; Kang, S.K.; Lee, K.H. Facile synthesis, biological evaluation and molecular docking studies of novel substituted azole derivatives. J. Mol. Struct. 2017, 1138, 177–191. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
S. No. | Compounds | -N-H | C-H | C=N | C=C | C=S | C=O | C-O-C |
---|---|---|---|---|---|---|---|---|
1 | ligand (3) | 3519–3738 | 3138–2949 | 1638–1620 | 1511–1400 | -- | 1680 | 1176 |
2 | 3a (ligand+Cu2+) | 3491–3370 | 3190–2901 | 1610, 1584 | 1521–1411 | -- | 1640 | 1171 |
3 | 3b (ligand+Ni2+) | 3481–3401 | 3200–2911 | 1612, 1588 | 1505–1431 | -- | 1638 | 1176 |
4 | 3c (ligand+Pd2+) | 3499–3378 | 3205–2933 | 1620, 1591 | 1505–1430 | -- | 1638 | 1170 |
5 | 3d (ligand+Co2+) | 3501–3391 | 3178–2918 | 1620, 1588 | 1508–1428 | -- | 1640 | 1170 |
6 | 3e (ligand+Fe2+) | 3511–3381 | 3186–2913 | 1618, 1601 | 1515–1429 | -- | 1638 | 1168 |
7 | 3f (ligand+Zn2+) | 3508–3402 | 3191–2939 | 1622, 1601 | 1511–1401 | -- | 1638 | 1180 |
8 | ligand (4) | 3523–3390 | 3196–2950 | 1628, 1610 | 1504–1424 | 1272 | -- | 1176 |
9 | 4a (ligand+Cu2+) | 3505–3401 | 3190–2940 | 1618, 1602 | 1511–1438 | 1231 | -- | 1188 |
10 | 4b (ligand+Ni2+) | 3511–3370 | 3188–2911 | 1609, 1608 | 1521–1411 | 1241 | -- | 1178 |
11 | 4c (ligand+Pd2+) | 3500–3388 | 3201–2933 | 1622, 1599 | 1518–1421 | 1238 | -- | 1178 |
12 | 4d (ligand+Co2+) | 3511–3401 | 3174–2919 | 1613, 1584 | 1515–1409 | 1232 | -- | 1187 |
13 | 4e (ligand+Fe2+) | 3508–3391 | 3181–2909 | 1617, 1602 | 1511–1434 | 1240 | -- | 1188 |
14 | 4f (ligand+Zn2+) | 3508–3400 | 3199–2919 | 1611, 1602 | 1505–1419 | 1236 | -- | 1175 |
S. No. | Compounds | Appearance | m.p. °C | λabs (nm) a | ε 105 (M−1cm−1) b |
---|---|---|---|---|---|
1 | ligand (3) | yellow powder | 211–213 | 240, 304 | 6.4, 3.8 |
2 | 3a (ligand+Cu2+) | dark yellow | 232–240 | 240, 361 | 6.4, 3.41 |
3 | 3b (ligand+Ni2+) | purple | 241–243 | 240, 350 | 6.31, 3.84 |
4 | 3c (ligand+Pd2+) | barn red | 240–242 | 241, 331 | 6.54, 3.58 |
5 | 3d (ligand+Co2+) | light green | 238–240 | 246, 333 | 6.11, 3.61 |
6 | 3e (ligand+Fe2+) | chocolate | 243–245 | 240, 340 | 6.76, 3.58 |
7 | 3f (ligand+Zn2+) | sage | 230–232 | 240, 324 | 6.39, 3.38 |
8 | ligand (4) | light yellow | 183–185 | 247, 292 | 5.04, 2.7 |
9 | 4a (ligand+Cu2+) | dark yellow | 236–238 | 247, 321 | 5.11, 2.78 |
10 | 4b (ligand+Ni2+) | purple | 235–237 | 247, 311 | 5.21, 2.38 |
11 | 4c (ligand+Pd2+) | chili | 244–246 | 247, 333 | 5.21, 2.81 |
12 | 4d (ligand+Co2+) | dark green | 233–235 | 247, 338 | 5.08, 2.11 |
13 | 4e (ligand+Fe2+) | chocolate | 239–241 | 247, 302 | 5.18, 2.02 |
14 | 4f (ligand+Zn2+) | sage | 229–231 | 247, 333 | 5.18, 3.34 |
Compounds Code | Urease Inhibition IC50 (µM) |
---|---|
3 | 18.92 ± 1.81 |
3a | 0.94 ± 0.13 |
3b | 3.71 ± 0.61 |
3c | 7.64 ± 1.21 |
3d | 28.93 ± 3.11 |
3e | 37.46 ± 4.23 |
3f | 45.78 ± 5.24 |
4 | 29.33 ± 3.32 |
4a | 1.20 ± 0.52 |
4b | 3.93 ± 0.45 |
4c | 12.87 ± 2.11 |
4d | 23.72 ± 3.33 |
4e | 58.83 ± 7.31 |
4f | 39.89 ± 6.93 |
Thio-Urea | 20.7 ± 0.45 |
Compounds | Dose (µM) | 1/Vmax (ΔA/Sec) | Km (µM) | Inhibition Type | Ki (µM) | Kiʹ (µM) |
---|---|---|---|---|---|---|
3a | 0.0 | 12 | 2.5 | Non-competitive | 0.6 | --- |
0.25 | 20 | 2.5 | ||||
0.50 | 30 | 2.5 | ||||
1.0 | 35 | 2.5 | ||||
2.0 | 44 | 2.5 | ||||
4a | 0.0 | 8 | 0.47 | Non-competitive | 2.1 | --- |
0.75 | 12 | 0.47 | ||||
1.5 | 18 | 0.47 | ||||
3.0 | 22 | 0.47 | ||||
6.0 | 35 | 0.47 | ||||
3b | 0.0 | 50 | 7.14 | Mixed-inhibition | 1.2 | 3.0 |
0.25 | 60 | 10 | ||||
0.5 | 65 | 12.5 | ||||
1.0 | 70 | 14.2 | ||||
2.0 | 80 | 16.6 | ||||
4b | 0.0 | 55 | 0.41 | Non-competitive | 2.4 | --- |
1.0 | 65 | 0.41 | ||||
2.0 | 100 | 0.41 | ||||
4.0 | 130 | 0.41 | ||||
6.0 | 180 | 0.41 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanif, M.; Kanwal, F.; Rafiq, M.; Hassan, M.; Mustaqeem, M.; Seo, S.-Y.; Zhang, Y.; Lu, C.; Chen, T.; Saleem, M. Symmetrical Heterocyclic Cage Skeleton: Synthesis, Urease Inhibition Activity, Kinetic Mechanistic Insight, and Molecular Docking Analyses. Molecules 2019, 24, 312. https://doi.org/10.3390/molecules24020312
Hanif M, Kanwal F, Rafiq M, Hassan M, Mustaqeem M, Seo S-Y, Zhang Y, Lu C, Chen T, Saleem M. Symmetrical Heterocyclic Cage Skeleton: Synthesis, Urease Inhibition Activity, Kinetic Mechanistic Insight, and Molecular Docking Analyses. Molecules. 2019; 24(2):312. https://doi.org/10.3390/molecules24020312
Chicago/Turabian StyleHanif, Muhammad, Fariha Kanwal, Muhammad Rafiq, Mubashir Hassan, Muhammad Mustaqeem, Sung-Yum Seo, Yunlong Zhang, Changrui Lu, Ting Chen, and Muhammad Saleem. 2019. "Symmetrical Heterocyclic Cage Skeleton: Synthesis, Urease Inhibition Activity, Kinetic Mechanistic Insight, and Molecular Docking Analyses" Molecules 24, no. 2: 312. https://doi.org/10.3390/molecules24020312
APA StyleHanif, M., Kanwal, F., Rafiq, M., Hassan, M., Mustaqeem, M., Seo, S.-Y., Zhang, Y., Lu, C., Chen, T., & Saleem, M. (2019). Symmetrical Heterocyclic Cage Skeleton: Synthesis, Urease Inhibition Activity, Kinetic Mechanistic Insight, and Molecular Docking Analyses. Molecules, 24(2), 312. https://doi.org/10.3390/molecules24020312