The Properties and Tortilla Making of Corn Flour from Enzymatic Wet-Milling
Abstract
:1. Introduction
2. Results and Discussion
2.1. Properties Analysis of Corn Flours
2.1.1. Proximate Composition Analysis
2.1.2. Morphological Properties
2.1.3. Granule Size
2.1.4. Crystalline Texture
2.1.5. Pasting Properties
2.1.6. Rheological Properties
2.2. Properties Analysis of Tortillas
2.2.1. Micro-structure Analysis
2.2.2. Dynamic Rheological Properties of the Tortillas
2.2.3. Hardness of Tortillas
2.2.4. Sensory Evaluation of Tortillas
3. Materials and Methods
3.1. Materials
3.2. Preparation
3.2.1. Corn Flour Preparation
3.2.2. Tortilla Preparation
3.3. Properties Analysis of Corn Flour
3.3.1. Proximate Analysis
3.3.2. Scanning Electron Microscopy (SEM)
3.3.3. Particle Size
3.3.4. Light Microscopy (LM)
3.3.5. X-ray Diffraction (XRD)
3.3.6. Thermal Properties
3.3.7. Pasting Properties
3.3.8. Rheological Properties
Steady Shear
Frequency Sweep
3.4. Properties Analysis of Tortilla
3.4.1. Scanning Electron Microscopy (SEM)
3.4.2. Hardness of Tortillas
3.4.3. Dynamic Rheological Properties (Frequency Sweep)
3.4.4. Sensory Evaluation of Tortillas
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Platt-Lucero, L.C.; Ramirez-Wong, B.; Torres-Chávez, P.I.; López-Cervantes, D.I.; Sánchez-Machado, C.; Reyes-Moreno, C.; Milán-Carrillo, J.; Morales-Rosas, I. Improving textural characteristics of tortillas by adding gums during extrusion to obtain nixtamalized corn flour. J. Texture Stud. 2010, 41, 736–755. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, A.K.; Rangel-Hernández, J.; Morales-Sánchez, E.; Loarca-Piña, G.; Gaytán-Martínez, M. Changes on the phytochemicals profile of instant corn flours obtained by traditional nixtamalization and ohmic heating process. Food Chem. 2019, 276, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Salazar, R.; Arámbula-Villa, G.; Luna-Bárcenas, G.; Figueroa-Cárdenas, J.D.; Azuara, E.; Vázquez-Landaverde, P.A. Effect of added calcium hydroxide during corn nixtamalization on acrylamide content in tortilla chips. LWT Food Sci. Technol. 2014, 56, 87–92. [Google Scholar] [CrossRef]
- Santos, E.M.; Quintanar-Guzman, A.; Solorza-Feria, J.; Sanchez-Ortega, I.; Rodriguez, J.A.; Wang, Y.J. Thermal and rheological properties of masa from nixtamalized corn subjected to a sequential protein extraction. J. Cereal Sci. 2014, 60, 490–496. [Google Scholar] [CrossRef]
- Villada, J.A.; Sánchez-Sinencio, F.; Zelaya-ángel, O.; Gutiérrez-Cortez, E.; Rodríguez-García, M.E. Study of the morphological, structural, thermal, and pasting corn transformation during the traditional nixtamalization process: From corn to tortilla. J. Food Eng. 2017, 212, 242–251. [Google Scholar] [CrossRef]
- Mondragón, M.; Mendoza-Martínez, A.M.; Bello-Pérez, L.A.; Peña, J.L. Viscoelastic behavior of nixtamalized maize starch gels. Carbohyd. Polym. 2006, 65, 314–320. [Google Scholar] [CrossRef]
- Contreras-Jiménez, B.; Morales-Sánchez, E.; Reyes-Vega, M.L.; Gaytán-Martínez, M. Functional properties of extruded corn flour obtained at low temperature. CyTA-J. Food. 2014, 12, 263–270. [Google Scholar] [CrossRef]
- Robles-Ozuna, L.E.; Ochoa-Martínez, L.A.; Morales-Castro, J.; Gallegos-Infante, J.A.; Quintero-Ramos, A.; Madera-Santana, T.J. Effect of nixtamalization conditions ultrasound assisted on some physicochemical, structural and quality characteristics in maize used for pozole. CyTA-J. Food 2016, 14, 324–332. [Google Scholar] [CrossRef]
- Wolf, M.J.; Buzan, C.L.; MacMasters, M.M.; Rist, C.E. Structure of mature corn kernel. II. Microscopic structure of pericarp, seed coat, and hilar layer of dent corn. Cereal Chem. 1952, 29, 334–348. [Google Scholar]
- Caransa, A.; Simell, M.; Lehmussaari, A.; Vaara, M.; Vaara, T. A novel enzyme application for corn wet milling. Starch 1988, 40, 409–411. [Google Scholar] [CrossRef]
- Johnston, D.B.; Singh, V. Use of proteases to reduce steep time and SO2 requirements in a corn wet-milling process. Cereal Chem. 2001, 78, 405–411. [Google Scholar] [CrossRef]
- Johnston, D.B.; Singh, V. Enzymatic milling product yield comparison with reduced levels of bromelain and varying levels of sulfur dioxide. Cereal Chem. 2005, 82, 523–527. [Google Scholar] [CrossRef]
- Ramírez, E.C.; Johnston, D.B.; Mcaloon, A.J.; Singh, V. Enzymatic corn wet milling: Engineering process and cost model. Biotechnol. Biofuels 2009, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Alviola, J.N.; Waniska, R.D.; Rooney, L.W. Role of gluten in flour tortilla staling. Cereal Chem. 2008, 85, 295–300. [Google Scholar] [CrossRef]
- Gurkin, S. Hydrocolloids-Ingredients that add flexibility to tortilla processing. Cereal Foods World 2002, 47, 41–43. [Google Scholar]
- Xue, J.; Ngadi, M. Rheological properties of batter systems containing different combinations of flours and hydrocolloids. J. Sci. Food Agric. 2007, 87, 1292–1300. [Google Scholar] [CrossRef]
- Román-Brito, J.A.; Agama-Acevedo, E.; Méndez-Montealvo, G.; Bello-erez, L.A. Textural Studies of Stored Corn Tortillas with Added Xanthan Gum. Cereal Chem. 2007, 84, 502–505. [Google Scholar] [CrossRef]
- Tester, R.F.; Yousuf, R.; Kettlitz, B.; Röper, H. Use of commercial protease preparations to reduce protein and lipid content of maize starch. Food Chem. 2007, 105, 926–931. [Google Scholar] [CrossRef]
- Khatoon, S.; Sreerama, Y.N.; Raghavendra, D.; Bhattacharya, S.; Bhat, K.K. Properties of enzyme modified corn, rice and tapioca starches. Food Res. Int. 2009, 42, 1426–1433. [Google Scholar] [CrossRef]
- Liu, K.S. Effects of particle size distribution, compositional and color properties of ground corn on quality of distillers dried grains with solubles (DDGS). Bioresour. Technol. 2009, 100, 4433–4440. [Google Scholar] [CrossRef]
- Wang, R.J. Study on Corn Flour by Wet Milling and Its Properties. Master’s Thesis, Henan University of Technology, Zhengzhou, China, May 2016. [Google Scholar]
- Dhital, S.; Shrestha, A.K.; Flanagan, B.M.; Hasjim, J.; Gidley, M.J. Cryo-milling of starch granules leads to differential effects on molecular size and conformation. Carbohydr. Polym. 2011, 84, 1133–1140. [Google Scholar] [CrossRef]
- Liu, T.Y.; Ma, Y.; Yu, S.F.; Shi, J.; Xue, S. The effect of ball milling treatment on structure and porosity of maize starch granule. Innov. Food Sci. Emerg. 2011, 12, 586–593. [Google Scholar] [CrossRef]
- Li, E.; Dhital, S.; Hasjim, J. Effects of grain milling on starch structures and flour/starch properties. Starch-Stärke 2014, 66, 15–27. [Google Scholar] [CrossRef]
- Syahariza, Z.A.; Li, E.; Hasjim, J. Extraction and dissolution of starch from rice and sorghum grains for accurate structural analysis. Carbohyd. Polym. 2010, 82, 14–20. [Google Scholar] [CrossRef]
- Altay, F.; Gunasekaran, S. Influence of Drying Temperature, Water Content, and Heating Rate on Gelatinization of Corn Starches. J. Agric. Food Chem. 2006, 54, 4235–4245. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Singh, N. Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chem. 2005, 91, 403–411. [Google Scholar] [CrossRef]
- Singh, V.; Johnston, D.B. Pasting Properties and Surface Characteristics of Starch Obtained from an Enzymatic Corn Wet-Milling Process. Cereal Chem. 2002, 79, 523–527. [Google Scholar] [CrossRef]
- Blazek, J.; Copeland, L. Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohydr. Polym. 2008, 71, 380–387. [Google Scholar] [CrossRef]
- Chew-Guevara, A.A.; Pérez-Carrillo, E.; Serna-Saldívar, S.R.O.; Rosa-Millán, J.D.L. Effect of decortication and protease treatment on physicochemical and functional characteristics of red sorghum (Sorghum bicolor) and yellow maize (Zea maize) starches. Starch-Stärke 2015, 67, 1–8. [Google Scholar]
- Debet, M.R.; Gidley, M.J. Three classes of starch granule swelling: Influence of surface proteins and lipids. Carbohydr. Polym. 2006, 64, 452–465. [Google Scholar] [CrossRef]
- Han, X.Z.; Hamaker, B.R. Location of starch granule associated proteins revealed by confocal laser scanning microscopy. J. Cereal Sci. 2002, 35, 109–116. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, L.; Mccarthy, O.J. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocoll. 2007, 21, 1–22. [Google Scholar] [CrossRef]
- Tan, Y.; Corke, H. Factor analysis of physiochemical properties of 63 rice varieties. J. Sci. Food Agric. 2002, 82, 745–752. [Google Scholar] [CrossRef]
- Luis, C.G.; Joaquin, P.P.; David, B.A.; Arturo, C.R.; Javier, S.F. Chemical, rheological and mechanical evaluation of maize dough and tortillas in blends with cassava and malanga flour. J. Food Sci. Technol. 2015, 52, 4387–4395. [Google Scholar]
- Xie, J.H.; Liu, Y.W.; Zhang, E.J.; Ding, S.H.; Sun, C.F.; Wu, Z.S.; Zhang, Y.; Hu, R.L. Research on the characteristics of nixtamalized corn cake. Cereal Feed Ind. 2018, 2, 16–20. [Google Scholar]
- Renzetti, S.; Arendt, E.K. Effects of oxidase and protease treatments on the breadmaking functionality of a range of gluten-free flours. Eur. Food Res. Technol. 2009, 229, 307–317. [Google Scholar] [CrossRef]
- Cunin, C.; Handschin, S.; Walther, P.; Escher, F. Structural changes of starch during cooking of durum wheat pasta. LWT-Food Sci. Technol. 1995, 28, 323–328. [Google Scholar] [CrossRef]
- Soulef, B.; Ana, S.; Zidoune, M.N.; Teresa, S. Gluten-free biscuits based on composite rice–chickpea flour and xanthan gum. Food Sci. Technol. Int. 2018, 24, 607–616. [Google Scholar]
- Chaiya, B.; Pongsawatmanit, R.; Prinyawiwatkul, W. Optimisation of wheat flour-based sponge cake formulation containing tapioca starch and xanthan gum. Int. J. Food Sci. Technol. 2015, 50, 532–540. [Google Scholar] [CrossRef]
- Lazaridou, A.; Duta, D.; Papageorgiou, M.; Belc, N.; Biliaderis, C.G. Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. J. Food Eng. 2007, 79, 1033–1047. [Google Scholar] [CrossRef]
- Sabanis, D.; Tzia, C. Effect of hydrocolloids on selected properties of gluten-free dough and bread. Food Sci. Technol. Int. 2011, 17, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Achayuthakan, P.; Suphantharika, M. Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum. Carbohydr. Polym. 2007, 71, 9–17. [Google Scholar] [CrossRef]
- Larrosa, V.; Lorenzo, G.; Zaritzky, N.; Califano, A. Dynamic rheological analysis of gluten-free pasta as affected by composition and cooking time. J. Food Eng. 2015, 160, 11–18. [Google Scholar] [CrossRef]
- Rendón-Villalobos, R.; Ortíz-Sánchez, A.; Solorza-Feria, J.; Trujillo-Hernández, C.A. Formulation, physicochemical, nutritional and sensorial evaluation of corn tortillas supplemented with chía seed (Salvia hispanica L.). Czech J. Food Sci. 2012, 30, 118–125. [Google Scholar] [CrossRef]
- Chaisawang, M.; Suphantharika, M. Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum. Food Hydrocoll. 2006, 20, 641–649. [Google Scholar] [CrossRef]
- Wang, B.; Wang, L.J.; Li, D.; Zhou, Y.G.; Özkan, N. Shear-thickening properties of waxy maize starch dispersions. J. Food Eng. 2011, 107, 415–423. [Google Scholar] [CrossRef]
- Dokić, L.; Dapčević, T.; Krstonošić, V.; Dokić, P.; Hadnađev, M. Rheological characterization of corn starch isolated by alkali method. Food Hydrocoll. 2010, 24, 172–177. [Google Scholar] [CrossRef]
- Lorenzo, G.; Zaritzky, N.; Califano, A. Optimization of non-fermented gluten-free dough composition based on rheological behavior for industrial production of “empanadas” and pie-crusts. J. Cereal Sci. 2008, 48, 224–231. [Google Scholar] [CrossRef]
- Guzmán, A.Q.; Flores, M.E.J.; Feria, J.S.; Montealvo, M.G.M.; Wang, Y.J. Rheological and thermal properties of masa as related to changes in corn protein during nixtamalization. J. Cereal Sci. 2011, 53, 139–147. [Google Scholar] [CrossRef]
- Xian, N.; Hu, G.H. Effects of xanthan gum and corn flour on the quality of sponge cake using response surface methodology. Czech. J. Food Sci. 2018, 36, 349–356. [Google Scholar]
Sample Availability: Samples of the corn flour from dry-milling, wet-milling and enzymatic wet-milling are available from the authors. |
Parameters | DCF | WCF | ECF |
---|---|---|---|
Starch content (%) | 75.04 ± 0.75 b | 82.68 ± 0.67 a | 82.77 ± 0.06 a |
Protein content (%) | 6.93 ± 0.01 a | 4.79 ± 0.01 b | 4.29 ± 0.07 b |
Fat content (%) | 3.11 ± 0.01 a | 2.59 ± 0.01 b | 2.04 ± 0.01 c |
Moisture content (%) | 11.22 ± 0.07 a | 7.85 ± 0.03 c | 8.05 ± 0.10 b |
Other (%) | 3.70 ± 0.05 a | 2.09 ± 0.06 c | 2.85 ± 0.10 b |
Mean granule size (μm) | 43.68 ± 0.67 a | 18.92 ± 0.10 b | 16.74 ± 0.07 c |
d (10%) (μm) | 16.51 ± 0.46 a | 13.97 ± 0.11 b | 11.74 ± 0.11 c |
d (50%) (μm) | 37.91 ± 0.74 a | 18.41 ± 0.11 b | 16.74 ± 0.11 c |
d (90%) (μm) | 141.71 ± 0.42 a | 26.56 ± 1.08 b | 24.43 ± 0.41 c |
Crystallinity (%) | 27.18 c | 30.40 b | 32.43 a |
Samples | PV (cP) | TV (cP) | BV (cP) | FV (cP) | SV (cP) | Ptemp (°C) |
---|---|---|---|---|---|---|
DCF | 1328 ± 4 c | 626 ± 6 c | 702 ± 2 b | 2715 ± 28 b | 2089 ± 22 a | 80.45 ± 0.40 a |
WCF | 2964 ± 3 b | 1099 ± 23 b | 1866 ± 26 a | 3157 ± 48 a | 2058 ± 25 a | 78.23 ± 0.03 b |
ECF | 2997 ± 4 a | 1204 ± 12 a | 1793 ± 16 a | 3300 ± 12 a | 2096 ± 24 a | 79.45 ± 0.15 a |
Samples | To (°C) | Tp (°C) | Tc (°C) | ∆H (J/g) |
---|---|---|---|---|
DCF | 69.99 ± 0.17 a | 75.36 ± 0.01 a | 79.32 ± 0.47 a | 6.59 ± 0.14 c |
WCF | 68.36 ± 0.07 b | 72.75 ± 0.05 b | 78.33 ± 0.04 a | 12.63 ± 0.02 b |
ECF | 68.54 ± 0.31 b | 72.89 ± 0.09 b | 78.41 ± 0.25 a | 13.43 ± 0.00 a |
Samples | τ0 (Pa) | K (Pa·s) | n | R2 |
---|---|---|---|---|
DCF paste | 2.4254 ± 0.1830 c | 2.0536 ± 0.2307 b | 0.5019 ± 0.0195 b | 0.9944 ± 0.0008 a |
WCF paste | 11.9076 ± 0.4290 b | 3.6578 ± 0.4430 a | 0.5793 ± 0.0053 a | 0.9797 ± 0.0117 a |
ECF paste | 13.0624 ± 0.0024 a | 4.0435 ± 0.0199 a | 0.5766 ± 0.0038 a | 0.9942 ± 0.0039 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Yuan, T.; Wang, R.; Liu, Y.; Fang, G. The Properties and Tortilla Making of Corn Flour from Enzymatic Wet-Milling. Molecules 2019, 24, 2137. https://doi.org/10.3390/molecules24112137
Liu J, Yuan T, Wang R, Liu Y, Fang G. The Properties and Tortilla Making of Corn Flour from Enzymatic Wet-Milling. Molecules. 2019; 24(11):2137. https://doi.org/10.3390/molecules24112137
Chicago/Turabian StyleLiu, Jie, Tiantian Yuan, Ruijuan Wang, Yawei Liu, and Guihong Fang. 2019. "The Properties and Tortilla Making of Corn Flour from Enzymatic Wet-Milling" Molecules 24, no. 11: 2137. https://doi.org/10.3390/molecules24112137
APA StyleLiu, J., Yuan, T., Wang, R., Liu, Y., & Fang, G. (2019). The Properties and Tortilla Making of Corn Flour from Enzymatic Wet-Milling. Molecules, 24(11), 2137. https://doi.org/10.3390/molecules24112137