Molecular Characterization of Carotenoid Biosynthetic Genes and Carotenoid Accumulation in Lycium chinense
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sequence Analyses of Carotenoid Biosynthetic Genes from L. chinense
L. chinense (Accession no.) | Length(amino acids) | Orthologous genes(Accession No.) | Identity(%) |
---|---|---|---|
LcPSY | 353 | Nicotiana tabacum PSY2 (JX101474) | 93 |
Capsicum annuum PSY1 (EU753855) | 94 | ||
Solanum lycopersicum PSY1 (EF650010) | 91 | ||
LcPDS | 333 | Nicotiana benthamiana PDS (DQ469932) | 96 |
Capsicum annuum PDS1(X68058) | 96 | ||
Solanum lycopersicum PDS (NM_001247166) | 95 | ||
LcZDS | 223 | Capsicum annuum ZDS(X89897) | 95 |
Lycopersicon esculentum ZDS (DQ412572) | 95 | ||
Solanum lycopersicum ZDS (NM_001247454) | 94 | ||
LcLCYB | 261 | Solanum lycopersicum LCYB (XM_004249173) | 94 |
Capsicum annuum LCYB (GU085272) | 91 | ||
Solanum lycopersicum LCYB1 (NM_001247297) | 90 | ||
LcLCYE | 312 | Nicotiana tabacum LCYE (HQ993098) | 96 |
Solanum lycopersicum LCYE (EU533951) | 96 | ||
Cucurbita moschata LCYE (JN559396) | 80 | ||
LcCHXB | 304 | Nicotiana tabacum CHXB (JQ410446) | 86 |
Solanum lycopersicum CHXB (NM_001247419) | 89 | ||
Ipomoea nil CHXB (B499058) | 77 | ||
LcCHXE | 165 | Actinidia chinensis CHXE (FJ797305) | 88 |
Vitis vinifera CHXE (XM_002264979) | 88 | ||
Cucumis sativus CHXE (XM_004156280) | 85 | ||
LcZEP | 178 | Solanum lycopersicum ZEP (EU004202) | 92 |
Lycopersicon esculentum ZEP (Z83835) | 92 | ||
Nicotiana plumbaginifolia ZEP (X95732) | 89 | ||
LcCCD1 | 407 | Solanum lycopersicum CCD1 (GU120077) | 95 |
Petunia x hybrida CCD1 (AY576003) | 94 | ||
Coffea Arabica CCD1 (DQ157170) | 85 | ||
LcNCED | 142 | Nicotiana tabacum NCED3 (JX101472) | 77 |
Solanum tuberosum NCED1 (AY662342) | 76 | ||
Solanum ochranthum NCED1 (HM156335) | 77 |
2.2. Expression Levels of Carotenoid Biosynthetic Genes in Different Organs of L. Chinense
2.3. Analysis of Carotenoid Content in Different Organs of L. Chinense
Carotenoids | Roots | Stems | Leaves | Flowers | Green fruits | Red fruits |
---|---|---|---|---|---|---|
α-Carotene | N.D. | 0.46 ± 0.01 | 4.76 ± 0.31 | 0.75 ± 0.04 | N.D. | N.D. |
Lutein | 0.91 ± 0.18 | 43.49 ± 1.58 | 1017.66 ± 84.97 | 120.21 ± 10.28 | 52.89 ± 10.33 | 168.17 ± 27.68 |
β-Carotene | 0.49 ± 0.09 | 18.66 ± 1.70 | 758.79 ± 19.09 | 77.73 ± 3.99 | 40.14 ± 8.14 | 16.74 ± 4.34 |
9- cis β-Carotene | 0.02 ± 0.01 | 1.64 ± 0.06 | 64.84 ± 5.78 | 6.07 ± 0.76 | 2.47 ± 0.56 | 11.91 ± 5.88 |
13- cis β-Carotene | 0.19 ± 0.01 | 2.20 ± 0.18 | 88.79 ± 7.08 | 8.94 ± 0.58 | 5.85 ± 0.71 | 3.42 ± 0.49 |
β-Cryptoxanthin | N.D. | N.D. | 13.47 ± 0.42 | 0.59 ± 0.04 | N.D. | 73.49 ± 2.69 |
Zeaxanthin | 0.28 ± 0.13 | 1.17 ± 0.11 | 35.98 ± 3.73 | 8.65 ± 0.85 | 4.14 ± 0.55 | 646.16 ± 19.55 |
Neoxanthin | N.D. | 0.31 ± 0.04 | 16.44 ± 2.77 | 5.17 ± 0.53 | 1.54 ± 0.62 | 3.27 ± 0.58 |
Total | 1.89 ± 0.32 | 67.94 ± 2.71 | 2000.73 ± 91.94 | 228.12 ± 16.93 | 107.04 ± 19.82 | 923.15 ± 18.46 |
2.4. Relationship between the Transcription Levels of Carotenoid Biosynthetic Genes and Carotenoid Accumulation in L. chinense
3. Experimental Section
3.1. Plant Materials
3.2. RNA Isolation and cDNA Synthesis
3.3. Sequence Analysis
3.4. Quantitative Real-Time RT_PCR
3.5. Carotenoid Extraction and Analysis
Gene | Forward (5′ to 3′) | Reverse (5′ to 3′) |
---|---|---|
LcPSY | AGCAAATCCAGAGAGCAAGAAAGTT | GTAGTCATTGGCTTCAATTTCATCG |
LcPDS | CCCCAATAGAGGGGTTTTATTTAGC | CTGTAAAATAGCTTGCGCACAGAGT |
LcZDS | CCTTACATGCCTCTACCAAATGATG | ATACAAGGATTGCCCAATTTTCACT |
LcLCYB | GGATTGGCGAGATTCTCATCTTAAT | CTTAAACGAGCCACCATTCTTTCTT |
LcLCYE | ACAGCTGGATATTGAGGGAATAAGG | CTCATGTCATTTGGTGCAATGATAA |
LcCHXB | ACATGTTCGTTCACGATGGTTTAGT | CTCTTCAAGTCCTCCTACGTCTTCC |
LcCHXE | TCTTTGGAAAAAGCACATGAAGAAG | TCTTATTAGGACAGGTGGATGTGGA |
LcZEP | ATGATGATGCTTTAGAGCGTGCTAC | AGACCCAATAGTGCAAGAGATACCC |
LcCCD1 | GATCTTAAAGGGCTGTTTGGTCTGT | CGTATTAGCTGTGCCATTTCCATAG |
LcNCED | TCCACCTATTCTCCATTTCCCTAAA | GGAGGATTTATTTTCTTGCTTTGGA |
LcActin | ACCACTTGTTTGTGACAATGGAACT | TCAATTGGGTATTTCAAGGTCAAGA |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cunningham, F.X.; Gantt, E. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 557–583. [Google Scholar] [CrossRef]
- Britton, G. Overview on Carotenoid Biosynthesis. In Carotenoids; Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Birkhauser: Basel, Switzerland, 1998; Volume 3, pp. 13–147. [Google Scholar]
- Ledford, H.K.; Niyogi, K.K. Singlet oxygen and photooxidative stress management in plants and algae. Plant Cell Environ. 2005, 28, 1037–1045. [Google Scholar] [CrossRef]
- Havaux, M. Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci. 1998, 3, 147–151. [Google Scholar] [CrossRef]
- Auldridge, M.E.; McCarty, D.R.; Klee, H.J. Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr. Opin. Plant Biol. 2006, 9, 315–321. [Google Scholar] [CrossRef]
- Paiva, S.A.; Russell, R.M. Beta-carotene and other carotenoids as antioxidants. J. Am. Coll. Nutr. 1999, 18, 426–433. [Google Scholar] [CrossRef]
- Mayne, S.T. Beta-carotene, carotenoids, and disease prevention in humans. FASEB J. 1996, 10, 690–701. [Google Scholar]
- Giovannucci, E. Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. J. Natl. Cancer Inst. 1999, 91, 317–331. [Google Scholar] [CrossRef]
- Schwartz, S.H.; Tan, B.C.; Gage, D.A.; Zeevaart, J.A.; McCarty, D.R. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 1997, 276, 1872–1874. [Google Scholar] [CrossRef]
- Xiao, P.G.; Xing, S.T.; Wang, L.W. Immunological aspects of Chinese medicinal plants as antiageing drugs. J. Ethnopharmacol. 1993, 38, 159–165. [Google Scholar] [CrossRef]
- Chin, Y.W.; Lim, S.W.; Kim, S.H.; Shin, D.Y.; Suh, Y.G.; Kim, Y.B.; Kim, Y.C.; Kim, J.W. Hepatoprotective pyrrole derivatives of Lycium chinense fruits. Bioorg. Med. Chem. Lett. 2003, 13, 79–81. [Google Scholar] [CrossRef]
- Pottérat, O. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med. 2010, 76, 7–19. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Yang, J.J.; Ho, Y.H.; Lin, C.C. Difference in the effects of radioprotection between aerial and root parts of Lycium chinense. J. Ethnopharmacol. 1999, 64, 101–108. [Google Scholar] [CrossRef]
- Yamada, P.; Nemoto, M.; Shigemori, H.; Yokota, S.; Isoda, H. solation of 5-(hydroxymethyl)furfuralfrom Lycium chinense and its inhibitory effect on the chemical mediator release by basophilic cells. Planta Med. 2011, 77, 434–440. [Google Scholar] [CrossRef]
- Shin, Y.G.; Cho, K.H.; Kim, J.M.; Park, M.K.; Park, J.H. Determination of betaine in Lycium chinense fruits by liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. A 1999, 857, 331–335. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, G.; Wang, Q. Studies on the chemical constituents in the roots of Lycium chinense mill. Zhongguo Zhongyao Zazhi 1996, 21, 675–676. [Google Scholar]
- Kim, H.P.; Kim, S.Y.; Lee, E.J.; Kim, Y.C.; Kim, Y.C. Zeaxanthin dipalmitate from Lycium chinense has hepatoprotective activity. Res. Commun. Mol. Pathol. Pharmacol. 1997, 97, 301–314. [Google Scholar]
- Kim, H.P.; Lee, E.J.; Kim, Y.C.; Kim, J.; Kim, H.K.; Park, J.H.; Kim, S.Y.; Kim, Y.C. Zeaxanthin dipalmitate from Lycium chinense fruit reduces experimentally induced hepatic fibrosis in rats. Biol. Pharm. Bull. 2002, 25, 390–392. [Google Scholar] [CrossRef]
- Zhao, S.; Tuan, P.A.; Li, X.; Kim, Y.B.; Kim, H.; Park, C.G.; Yang, J.; Li, C.H.; Park, S.U. Identification of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation by transcriptome analysis of Lycium chinense. BMC Genomics 2013, 14, 802. [Google Scholar] [CrossRef]
- Toledo-Ortiz, G.; Huq, E.; Rodríguez-Concepción, M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc. Natl. Acad. Sci. USA 2010, 107, 11626–11631. [Google Scholar] [CrossRef]
- Tuan, P.A.; Kim, J.K.; Park, N.I.; Lee, S.Y.; Park, S.U. Carotenoid content and expression of phytoene synthase and phytoene desaturase genes in bitter melon (Momordica charantia). Food Chem. 2011, 126, 1686–1692. [Google Scholar] [CrossRef]
- Matthews, P.D.; Luo, R.; Wurtzel, E.T. Maize phytoene desaturase and ζ-carotene desaturase catalyse a poly-Z desaturation pathway: Implications for genetic engineering of carotenoid content among cereal crops. J. Exp. Bot. 2003, 54, 2215–2230. [Google Scholar] [CrossRef]
- Giorio, G.; Stigliani, A.L.; D’Ambrosio, C. Phytoene synthase genes in tomato (Solanum lycopersicum L.)—New data on the structures, the deduced amino acid sequences and the expression patterns. FEBS J. 2007, 275, 527–535. [Google Scholar]
- Clotault, J.; Peltier, D.; Berruyer, R.; Thomas, M.; Briard, M.; Geoffriau, E. Expression of carotenoid biosynthesis genes during carrot root development. J. Exp. Bot. 2008, 59, 3563–3573. [Google Scholar] [CrossRef]
- Galpaz, N.; Ronen, G.; Khalfa, Z.; Zamir, D.; Hirschberg, J. A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 2006, 18, 1947–1960. [Google Scholar] [CrossRef]
- Seo, M.; Koshiba, T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 2002, 7, 41–48. [Google Scholar]
- Krinsky, N.I.; Landrum, J.T.; Bone, R.A. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr. 2003, 23, 171–201. [Google Scholar] [CrossRef]
- Botella-Pavía, P.; Rodríguez-Concepción, M. Carotenoid biotechnology in plants for nutritionally improved foods. Physiol. Plant. 2006, 126, 369–381. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Kim, J.K.; Ha, S.H.; Park, S.Y.; Lee, S.M.; Kim, H.J.; Lim, S.H.; Suh, S.C.; Kim, D.H.; Cho, H.S. Determination of lipophilic compounds in genetically modified rice using gas chromatography-time-of-flight-mass spectrometry. J. Food Compos. Anal. 2012, 25, 31–38. [Google Scholar] [CrossRef]
- Park, S.Y.; Choi, S.R.; Lim, S.H.; Yeo, Y.; Kweon, S.J.; Bae, Y.S.; Kim, K.W.; Im, K.H.; Ahn, S.K.; Ha, S.H.; et al. Identification and quantification of carotenoids in paprika fruits and cabbage, kale, and lettuce leaves. J. Korean Soc. Appl. Biol. Chem. 2014. [Google Scholar] [CrossRef]
- Sample Availability: Not available.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhao, S.; Tuan, P.A.; Kim, J.K.; Park, W.T.; Kim, Y.B.; Arasu, M.V.; Al-Dhabi, N.A.; Yang, J.; Li, C.H.; Park, S.U. Molecular Characterization of Carotenoid Biosynthetic Genes and Carotenoid Accumulation in Lycium chinense. Molecules 2014, 19, 11250-11262. https://doi.org/10.3390/molecules190811250
Zhao S, Tuan PA, Kim JK, Park WT, Kim YB, Arasu MV, Al-Dhabi NA, Yang J, Li CH, Park SU. Molecular Characterization of Carotenoid Biosynthetic Genes and Carotenoid Accumulation in Lycium chinense. Molecules. 2014; 19(8):11250-11262. https://doi.org/10.3390/molecules190811250
Chicago/Turabian StyleZhao, Shicheng, Pham Anh Tuan, Jae Kwang Kim, Woo Tae Park, Yeon Bok Kim, Mariadhas Valan Arasu, Naif Abdullah Al-Dhabi, Jingli Yang, Cheng Hao Li, and Sang Un Park. 2014. "Molecular Characterization of Carotenoid Biosynthetic Genes and Carotenoid Accumulation in Lycium chinense" Molecules 19, no. 8: 11250-11262. https://doi.org/10.3390/molecules190811250
APA StyleZhao, S., Tuan, P. A., Kim, J. K., Park, W. T., Kim, Y. B., Arasu, M. V., Al-Dhabi, N. A., Yang, J., Li, C. H., & Park, S. U. (2014). Molecular Characterization of Carotenoid Biosynthetic Genes and Carotenoid Accumulation in Lycium chinense. Molecules, 19(8), 11250-11262. https://doi.org/10.3390/molecules190811250