Characteristics, Composition and Oxidative Stability of Lannea microcarpa Seed and Seed Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Composition of Seeds
Components | Contents |
---|---|
Moisture (%) | 3.24 ± 0.56 |
Proteins | 21.14 ± 0.25 |
Lipids | 64.90 ± 1.27 |
Carbohydrates | 10.85 ± 1.56 |
Ash | 3.11 ± 0.22 |
2.2. The Physicochemical Properties of Seed Oil
Physicochemical properties | Value |
---|---|
Refractive index (25 °C) | 1.473 ± 001 |
Melting point (°C) | 22.60 ± 0.75 |
Saponification value (mg of KOH/g of oil) | 194.23 ± 0.80 |
Iodine value (g of I2/100 g of oil) | 61.33 ± 0.25 |
Acid value (mg of KOH/g of oil) | 1.21 ± 0.01 |
Peroxide value (meq of O2/kg of oil) | 1.48 ± 0.11 |
Oxidative stability index (h) | 43.20 ± 2.00 |
2.3. Fatty Acid Composition
Fatty acid | Values |
---|---|
Palmitic acid 16:0 | 34.45 ± 0.35 |
Heptadecanoic acid 17:0 | 0.20 ± 0.00 |
Stearic acid 18:0 | 8.35 ± 0.21 |
Oleic acid 18:1 n – 9 | 43.45 ± 0.21 |
Oleic acid 18:1 Trans | 0.6 ± 0.05 |
Linoleic acid 18:2 n – 6 | 11.20 ± 0.13 |
Linolenic 18:3 n – 3 | 0.35 ± 0.07 |
Eicosanoic acid 20:0 | 0.9 ± 0.03 |
Eicosenoic acid 20:1 n – 9 | 0.3 ± 0.01 |
Behenic acid 22:0 | 0.2 ± 0.01 |
SFA | 44.10 |
MUFA | 44.35 |
PUFA | 11.55 |
2.4. Triacylglycerol (TAG) Profile
Triglyceride | ECN | Values |
---|---|---|
POP | 48 | 16.47 ± 0.09 |
POS | 50 | 6.51 ± 0.01 |
SOS | 52 | 1.51 ± 0.02 |
PLP | 46 | 10.85 ± 0.07 |
POO | 48 | 21.23 ± 0.53 |
SOO | 50 | 3.7 ± 0.14 |
LLO | 44 | 2.50 ± 0.03 |
PLL | 46 | 5.13 ± 0.32 |
PLnO | 44 | 1.51 ± 0.02 |
LOO | 46 | 9.30 ± 0.00 |
PLO | 46 | 12.03 ± 0.25 |
OOO | 48 | 6.24 ± 0.34 |
SLO | 48 | 3.02 ± 0.03 |
2.5. Phenolic Compound Contents
Components | Values |
---|---|
Total polyphenol (mg GAE g−1 DW) | 1.39 ± 0.05 |
α-tocopherol (ppm) | 89.40 ± 0.57 |
β-tocopherol (ppm) | 0.00 ± 0.00 |
γ-tocopherol (ppm) | 437.23 ±1.73 |
δ-tocopherol (ppm) | 51.93 ± 0.11 |
Total tocopherol (ppm) | 578.56 ± 2.19 |
3. Experimental Section
3.1. Plant Material
3.2. Seed Analysis
3.3. Physicochemical Analysis of the Oil
3.4. Fatty Acid Analysis
3.5. Triglyceride Composition Analysis
3.6. Determination of Total Polyphenol Content (TPC)
3.7. Tocopherol Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Ajavi, I.A. Comparative study of the chemical composition and mineral element content of Artocarpus heterophyllus and Treculia africana seed and seed oils. Bioresour. Technol. 2008, 99, 5125–5129. [Google Scholar] [CrossRef]
- Marquet, M.; Jansen, P.C.M. Lannea microcarpa Engl. and K. Krause. In Prota 3: Dyes and Tannins/Colorants et Tanins; Jansen, P.C.M., Cardon, D., Eds.; Prota: Wageningen, The Netherlands, 2005. [Google Scholar]
- Picerno, P.; Mencherini, T.; Loggia, R.D.; Meloni, M.; Sanogo, R.; Aquino, R.P. An extract of Lannea microcarpa: composition, activity and evaluation of cutaneous irritation in cell cultures and reconstituted human epidermis. J. Pharm. Pharmacol. 2006, 58, 981–988. [Google Scholar] [CrossRef]
- Lamien-Meda, A.; Lamien, C.E.; Compaoré, M.M.Y.; Meda, R.N.T.; Kiendrebeogo, M.; Zeba, B.; Millogo, J.F.; Nacoulma, O.G. Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules 2008, 13, 581–594. [Google Scholar] [CrossRef]
- Glew, R.H.; VanderJagt, D.J.; Lockett, C.; Grivetti, L.E.; Smith, G.C.; Pastuszyn, A.J.; Millson, M. Amino acid, fatty acid, and mineral composition of 24 indigenous plants of Burkina Faso. J. Food Comp. Anal. 1997, 10, 205–217. [Google Scholar] [CrossRef]
- Nehdi, I.A.; Sbihi, H.; Tan, C.P.; Zarrouk, H.; Khalil, M.I.; Al-Resayes, S.I. Characteristics, composition and thermal stability of Acacia senegal (L.) Willd. seed oil. Ind. Crops Prod. 2012, 36, 54–58. [Google Scholar] [CrossRef]
- Pearson, D. The Chemical Analysis of Foods, 8th ed.; Churchill Livingstone: Edinburgh, UK, 1981. [Google Scholar]
- O’Brien, R.D. Fats and Oils: Formulations and Processing for Application, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 197–260. [Google Scholar]
- Ojeh, O. Effects of refining on the physical and chemical properties of cashew kernel oil. Int. J. Food Sci. Technol. 1981, 16, 513–517. [Google Scholar] [CrossRef]
- Wagner, K.-H.; Elmadf, I. Effects of tocopherols and their mixtures on the oxidative stability of olive oil and linseed oil under heating. Eur. J. Lipid Sci. Technol. 2000, 102, 624–629. [Google Scholar] [CrossRef]
- Vermaak, I.; Kamatou, G.P.P.; Komane-Mofokeng, B.; Viljoen, A.M.; Beckett, K. African seed oils of commercial importance-Cosmetic applications. S. Afr. J. Bot. 2011, 77, 920–933. [Google Scholar] [CrossRef]
- Larrucea, E.; Arellano, A.; Santoyo, S.; Ygartua, P. Combined effects of oleic acid and propylene glycol on the percutaneous penetration of tenoxicam and its retention in the skin. Eur. J. Pharm. Biopharm. 2001, 52, 113–119. [Google Scholar] [CrossRef]
- Kim, M.J.; Doh, H.J.; Choi, M.K.; Chung, S.J.; Shim, C.K.; Kim, D.D.; Kim, J.S.; Yong, C.S.; Choi, H.G. Skin permeation enhancement of diclofenac by fatty acids. Drug Del. 2008, 15, 373–379. [Google Scholar] [CrossRef]
- Lautenschläger, H. Essential fatty acids—cosmetic from inside and outside. Beauty Forum 2003, 4, 54–56. [Google Scholar]
- Beltrán, G.; Ruano, M.T.; Jiménez, A.; Uceda, M.; Aguilera, M.P. Evaluation of virgin olive oil bitterness by total phenol content analysis. Eur. J. Lipid Sci. Technol. 2007, 108, 193–197. [Google Scholar]
- Fedeli, E.; Cortesi, N. Qualità, provenienza e tecnologia degli oli di oliva vergini. Riv. Ital. Sostanze. Gr. 1993, 70, 419–426. [Google Scholar]
- Mariod, A.; Matthaus, B.; Eichner, K. Fatty acid, tocopherol and sterol composition as well as oxidative stability of three unusual Sudanese oils. J. Food Lipids 2004, 11, 179–189. [Google Scholar] [CrossRef]
- Gutierrez, F.; Arnaud, T.; Garrido, A. Contribution of polyphenols to the oxidative stability of virgin olive oil. J. Sci. Food Agric. 2001, 81, 1463–1470. [Google Scholar] [CrossRef]
- Huang, S.-W.; Frankel, E.N.; German, J.B. Antioxidant activity of α- and γ-tocopherols in bulk oils and in oil-in-water emulsions. J. Agric. Food Chem. 1994, 42, 2108–2114. [Google Scholar] [CrossRef]
- Baldioli, M.; Srvili, M.; Perretti, G.; Montedoro, G.F. Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. J. Am. Oil Chem. Soc. 1996, 73, 1589–1593. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Washington, DC, USA, 1999. [Google Scholar]
- Al-Hooti, S.; Sidhu, J.S.; Qabazard, H. Chemical composition of seeds date fruit cultivars of United Arab Emirates. J. Food Sci. Technol. 1988, 35, 44–46. [Google Scholar]
- American Oil Chemists’ Society (AOCS). Official Methods and Recommended Practices of the American Oil Chemists’ Society, 4th ed.; AOCS Press: Champaign, IL, USA, 1990. [Google Scholar]
- International Union of Pure and Applied Chemistry (IUPAC). Standards Methods for Analysis of Oils, Fats and Derivatives, 6th ed.; Pergamon Press: Oxford, UK, 1979. [Google Scholar]
- Shukla, V.K.S.; Nielsen, W.S.; Batsberg, W. A simple and direct procedure for the evaluation of triglyceride composition of cocoa butters by high performance liquid chromatography-a comparison with the existing TLC-GC method. Eur. J. Lipid Sci. Tech. 1983, 85, 274–278. [Google Scholar]
- Gharibzahedi, S.M.T.; Mousavi, S.M.; Hamedi, M.; Rezaei, K.; Khodaiyan, F. Evaluation of physicochemical properties and antioxidant activities of Persian walnut oil obtained by several extraction methods. Ind. Crops Prod. 2013, 45, 133–140. [Google Scholar] [CrossRef]
- Shukla, V.K.S.; Jensen, O.H. Fatty acid composition and tocopherol content of amazonian palm oils. J. Food Lipids 1996, 3, 149–154. [Google Scholar] [CrossRef]
- QualiTree (research-based tree oil production in West Africa). Available online: http://www.qualitree.neri.dk/ (accessed on 13 November 2013).
- Sample Availability: Samples of the seed oil of Lannea microcarpa are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bazongo, P.; Bassolé, I.H.N.; Nielsen, S.; Hilou, A.; Dicko, M.H.; Shukla, V.K.S. Characteristics, Composition and Oxidative Stability of Lannea microcarpa Seed and Seed Oil. Molecules 2014, 19, 2684-2693. https://doi.org/10.3390/molecules19022684
Bazongo P, Bassolé IHN, Nielsen S, Hilou A, Dicko MH, Shukla VKS. Characteristics, Composition and Oxidative Stability of Lannea microcarpa Seed and Seed Oil. Molecules. 2014; 19(2):2684-2693. https://doi.org/10.3390/molecules19022684
Chicago/Turabian StyleBazongo, Patrice, Imaël Henri Nestor Bassolé, Søren Nielsen, Adama Hilou, Mamoudou Hama Dicko, and Vijai K. S. Shukla. 2014. "Characteristics, Composition and Oxidative Stability of Lannea microcarpa Seed and Seed Oil" Molecules 19, no. 2: 2684-2693. https://doi.org/10.3390/molecules19022684
APA StyleBazongo, P., Bassolé, I. H. N., Nielsen, S., Hilou, A., Dicko, M. H., & Shukla, V. K. S. (2014). Characteristics, Composition and Oxidative Stability of Lannea microcarpa Seed and Seed Oil. Molecules, 19(2), 2684-2693. https://doi.org/10.3390/molecules19022684