Endotoxin Molecule Lipopolysaccharide-Induced Zebrafish Inflammation Model: A Novel Screening Method for Anti-Inflammatory Drugs
Abstract
:1. Introduction
2. Results and Discussion
2.1. LPS Causes Abnormalities in Zebrafish Larvae
Normal | Necrotic yolk | Cyrtosis | Swollen pericardial sac | Hemorrhagic pericardium | Death | |
---|---|---|---|---|---|---|
Negative control | 100 | / | / | / | / | / |
Yolk injection | / | 22.0 ± 0.9 | 30.7 ± 0.2 | 4.6 ± 0.5 | 12.6 ± 0.5 | 34.0 ± 1.5 |
2.2. Comparision of Immersion and Injection for Inflammatory Responses
2.2.1. Inflammatory Macrophage Migration (NR Staining)
2.2.2. Neutrophil Migration for Inflammatory Responses (SB Staining)
Group | Occurrence Rate a (%) | ||
---|---|---|---|
NR Staining | SB Staining | ||
Normal control | 0 | 0 | |
Immersion | 0 | 0 | |
Negative control | 5.6 ± 0.3 | 3.3 ± 0.6 | |
Yolk injection | 96.6 ± 0.6 | 95.5 ± 0.9 |
2.2.3. Tracking the Neutrophil Inflammatory Response using the MPO: GFP Line
2.2.4. Survival Rates
2.3. Stage for LPS Injection
2.4. Effect of LPS Injection Dose on Inflammation
Group | Grand Total | Death Count |
---|---|---|
0.500 mg/mL LPS | 96 | 93 |
0.425 mg/mL LPS | 95 | 86 |
0.361 mg/mL LPS | 96 | 76 |
0.307 mg/mL LPS | 98 | 57 |
0.261 mg/mL LPS | 97 | 29 |
0.222 mg/mL LPS | 99 | 11 |
a Negative controls | 100 | 0 |
2.5. Effect of Injection time for the Genes Expressions of Inflammation Cytokines
2.6. Effectiveness of CA on Reducing LPS-Induced Acute Inflammation in Zebrafish
2.6.1. Macrophage Recruitment is Reduced by CA Treatment
2.6.2. The Reduction of CA Treatment on Neutrophil Recruitment
2.6.3. Survival Analysis of CA-Treated Larvae
2.7. Discussion
3. Experimental
3.1. Chemicals and Reagents
3.2. Zebrafish Embryo and Larvae Maintenance
3.3. Routes of Delivery: Exposure by Immersion or Microinjection
3.4. Neutral Red Staining
3.5. Sudan Black Staining
3.6. Timing of LPS Injection
3.7. LPS Injection Doses
3.8. Quantitative Real-Time PCR
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bates, J.M.; Akerlund, J.; Mittge, E.; Guillemin, K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2007, 13, 371–382. [Google Scholar]
- Beutler, B.; Rietschel, E.T. Innate immune sensing and its roots: The story of endotoxin. Nat. Rev. 2003, 3, 169–176. [Google Scholar] [CrossRef]
- Kasper, D.L.; Harrison, T.R. Harrison’s Principles of Internal Medicine; McGraw-Hill Professional: New York, NY, USA, 2005; Volume 60. [Google Scholar]
- Novoa, B.; Figueras, A. Zebrafish: Model for the study of inflammation and the innate immune response to infectious diseases. Adv. Exp. Med. Biol. 2012, 946, 253–275. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zhang, R.; Li, J.; Zhang, L.Z.; Ding, G.F.; Luo, P.; He, S.Q.; Dong, Y.; Jiang, W.W.; Lu, Y.L.; et al. Antimalarial artesunate protects sepsis model mice against heat-killed Escherichia coli challenge by decreasing TLR4, TLR9 mRNA expressions and transcription factor NF-κB activation. Int. Immunopharmacol. 2008, 8, 379–389. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, J.; Yu, X.; Tao, W.; Jiang, F.; Yin, Z.; Liu, C. Protective effects of chlorogenic acid on acute hepatotoxicity induced by lipopolysaccharide in mice. Inflamm. Res. 2010, 59, 871–877. [Google Scholar] [CrossRef]
- Shi, H.; Dong, L.; Dang, X.; Liu, Y.; Jiang, J.; Wang, Y.; Lu, X.; Guo, X. Effect of chlorogenic acid on LPS-induced proinflammatory signaling in hepatic stellate cells. Inflamm. Res. 2013, 62, 581–587. [Google Scholar] [CrossRef]
- Kim, T.H.; Yoon, S.J.; Lee, S.M. Genipin attenuates sepsis by inhibiting Toll-like receptor signaling. Mol. Med. 2012, 18, 455–465. [Google Scholar] [CrossRef]
- Yuan, H.M.; Wan, J.Y.; Li, L.J.; Ge, P.; Li, H.Z.; Zhang, L. Therapeutic benefits of the group B3 vitamin nicotinamide in mice with lethal endotoxemia and polymicrobial sepsis. Pharmacol. Res. 2012, 3, 328–337. [Google Scholar]
- Valadão, C.A.A.; Peiró, J.R.; Santana, A.E.; Bechara, G.H. Evaluation of peritoneal fluid in horses with experimental endotoxemia. J. Equine Vet. Sci. 1995, 3, 124–128. [Google Scholar]
- Maehr, T.; Costa, M.M.; Vecino, J.L.; Wadsworth, S.; Martin, S.A.; Wang, T.; Secombes, C.J. Transforming growth factor-β1b: A second TGF-β1 paralogue in the rainbow trout (Oncorhynchus mykiss) that has a lower constitutive expression but is more responsive to immune stimulation. Fish Shellfish Immunol. 2013, 34, 420–432. [Google Scholar] [CrossRef]
- Tao, C.M.; Chen, S.J.; Tou, M.Y.; Wu, C.C. Effect of propofol on vascular reactivity in thoracic aortas from rats with endotoxemia. J. Chin. Med. Assoc. 2012, 6, 262–268. [Google Scholar]
- Carsten, J.K.; Bernd, K.; Nick, B.; Friedrich, H.; Karsten, J.; Michael, S.; Christian, P.; Uwe, K.; Volker, S. Effect of zinc pretreatment on pulmonary endothelial cells in vitro and pulmonary function in a porcine model of endotoxemia. J. Surg. Res. 2005, 2, 251–256. [Google Scholar]
- Novoa, B.; Bowman, T.V.; Zon, L.; Figueras, A. LPS response and tolerance in the zebrafish (Danio rerio). Fish Shellfish Immunol. 2009, 26, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Berger, J.; Currie, P.D. Zebrafish models flex their muscles to shed light on muscular dystrophies. Dis. Model. Mech. 2012, 5, 726–732. [Google Scholar] [CrossRef]
- Hsu, K.; Traver, D.; Kutok, J.L.; Hagen, A.; Liu, T.X.; Paw, B.H.; Rhodes, J.; Berman, J.N.; Zon, L.I.; Kanki, J.P.; et al. The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 2004, 104, 1291–1297. [Google Scholar] [CrossRef]
- Renshaw, S.A.; Loynes, C.A.; Trushell, D.M.; Elworthy, S.; Ingham, P.W.; Whyte, M.K. A transgenic zebrafish model of neutrophilic inflammation. Blood 2006, 108, 3976–3978. [Google Scholar] [CrossRef]
- Hall, C.; Flores, M.V.; Storm, T.; Crosier, K.; Crosier, P. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev. Biol. 2007, 7, 42. [Google Scholar] [CrossRef]
- Redd, M.J.; Kelly, G.; Dunn, G.; Way, M.; Martin, P. Imaging macrophage chemotaxis in vivo: Studies of microtubule function in zebrafish wound inflammation. Cell Motil.Cytoskelet. 2006, 63, 415–422. [Google Scholar] [CrossRef]
- Meijer, A.H.; Spaink, H.P. Host-pathogen interactions made transparent with the zebrafish model. Curr. Drug Targets 2011, 12, 1000–1017. [Google Scholar] [CrossRef]
- Fleming, A. Zebrafish as an alternative model organism for disease modelling and drug discovery: Implications for the 3Rs. NC3Rs 2007, 10, 1–7. [Google Scholar]
- Crippen, T.L.; Bootland, L.M.; Leong, J.C.; Fitzpatrick, M.S.; Schreck, C.B.; Vella, A.T. Analysis of salmonid leukocytes purified by hypotonic lysis of erythrocytes. J. Aquat. Anim. Health 2001, 13, 234–245. [Google Scholar] [CrossRef]
- Herbomel, P.; Thisse, B.; Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 1999, 126, 3735–3745. [Google Scholar]
- Levraud, J.P.; Colucci, G.E.; Redd, M.J.; Lutfalla, G.; Herbomel, P. In vivo analysis of zebrafish innate immunity. Methods Mol. Biol. 2008, 415, 337–363. [Google Scholar]
- Herbomel, P.; Thisse, B.; Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. J. Dev. Biol. 2001, 238, 274–288. [Google Scholar] [CrossRef]
- Da Silva, W.F.; Egami, M.I.; Santos, A.A.; Antoniazzi, M.M.; Silva, M.; Gutierre, R.C.; Paiva, M.J. Cytochemical, immunocytochemical and ultrastructural observations on leukocytes and thrombocytes of fat snook (Centropomus parallelus). Fish Shellfish Immunol. 2001, 31, 571–577. [Google Scholar]
- Mathias, J.R.; Perrin, B.J.; Liu, T.X.; Kanki, J.; Look, A.T.; Huttenlocher, A. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol. 2006, 80, 1281–1288. [Google Scholar] [CrossRef]
- Kanther, M.; Rawls, J.F. Host-microbe interactions in the developing zebrafish. Curr. Opin. Immunol. 2010, 22, 10–19. [Google Scholar] [CrossRef]
- Shepard, J.L.; Zon, L.I. Developmental derivation of embryonic and adult maerophages. Curr. Opin. Hematol. 2000, 7, 3–8. [Google Scholar] [CrossRef]
- Lam, S.H.; Chua, H.L.; Gong, Z.; Wen, Z.; Lam, T.J.; Sin, Y.M. Morphologie transformation of the thymus in developing zebrafish. Dev. Dyn. 2002, 225, 87–94. [Google Scholar] [CrossRef]
- Zhong, S.; Liu, J.; Ren, X.; Zhang, J.; Zhou, S.; Xu, X.P. Pharmacokinetics and excretion of chlorogenic acid in beagle dogs. Pharmazie 2008, 63, 520–524. [Google Scholar]
- Zhang, X.; Huang, H.; Yang, T.; Ye, Y.; Shan, J.; Yin, Z.; Luo, L. Chlorogenic acid protects mice against lipopolysaccharide-induced acute lung injury. Injury 2010, 41, 746–752. [Google Scholar] [CrossRef]
- Dos Santos, M.D.; Almeida, M.C.; Lopes, N.P.; de Souza, G.E. Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull. 2006, 29, 2236–2240. [Google Scholar] [CrossRef]
- Traver, D.; Herbomel, P.; Patton, E.E. The zebrafish as a model organism to study development of the immune system. Adv. Immunol. 2003, 81, 253–330. [Google Scholar]
- Trede, N.S.; Langenau, D.M.; Traver, D.; Look, A.T.; Zon, L.I. The use of zebrafish to understand immunity. Immunity 2004, 20, 367–379. [Google Scholar] [CrossRef]
- Meeker, N.D.; Trede, N.S. Immunology and zebrafish: Spawning new models of human disease. Dev. Comp. Immunol. 2008, 32, 745–757. [Google Scholar] [CrossRef]
- Lieschke, G.J.; Trede, N.S. Fish immunology. Curr. Biol. 2009, 19, R678–R682. [Google Scholar] [CrossRef]
- Van der Sar, A.M.; Musters, R.J.; van Eeden, F.J.; Appelmelk, B.J.; Vandenbroucke-Grauls, C.M.; Bitter, W. Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell. Microbiol. 2003, 5, 601–611. [Google Scholar] [CrossRef]
- Buckley, C.D.; Ross, E.A.; McGettrick, H.M.; Osborne, C.E.; Haworth, O.; Schmutz, C.; Stone, P.C.; Salmon, M.; Matharu, N.M.; Vohra, R.K.; et al. Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J. Leukoc. Biol. 2006, 79, 303–311. [Google Scholar]
- Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio), 4th ed.; University of Oregon Press: Eugene, OR, USA, 2007; pp. 4–20. [Google Scholar]
- Le, G.D.; Redd, M.J.; Colucci, G.E.; Murayama, E.; Kissa, K.; Briolat, V.; Mordelet, E.; Zapata, A.; Shinomiya, H.; Herbomel, P. Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 2008, 111, 132–141. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds CA and DEX are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yang, L.-L.; Wang, G.-Q.; Yang, L.-M.; Huang, Z.-B.; Zhang, W.-Q.; Yu, L.-Z. Endotoxin Molecule Lipopolysaccharide-Induced Zebrafish Inflammation Model: A Novel Screening Method for Anti-Inflammatory Drugs. Molecules 2014, 19, 2390-2409. https://doi.org/10.3390/molecules19022390
Yang L-L, Wang G-Q, Yang L-M, Huang Z-B, Zhang W-Q, Yu L-Z. Endotoxin Molecule Lipopolysaccharide-Induced Zebrafish Inflammation Model: A Novel Screening Method for Anti-Inflammatory Drugs. Molecules. 2014; 19(2):2390-2409. https://doi.org/10.3390/molecules19022390
Chicago/Turabian StyleYang, Li-Ling, Guo-Quan Wang, Li-Mei Yang, Zhi-Bing Huang, Wen-Qing Zhang, and Lin-Zhong Yu. 2014. "Endotoxin Molecule Lipopolysaccharide-Induced Zebrafish Inflammation Model: A Novel Screening Method for Anti-Inflammatory Drugs" Molecules 19, no. 2: 2390-2409. https://doi.org/10.3390/molecules19022390
APA StyleYang, L.-L., Wang, G.-Q., Yang, L.-M., Huang, Z.-B., Zhang, W.-Q., & Yu, L.-Z. (2014). Endotoxin Molecule Lipopolysaccharide-Induced Zebrafish Inflammation Model: A Novel Screening Method for Anti-Inflammatory Drugs. Molecules, 19(2), 2390-2409. https://doi.org/10.3390/molecules19022390