Antibacterial Activity of Methyl Gallate Isolated from Galla Rhois or Carvacrol Combined with Nalidixic Acid Against Nalidixic Acid Resistant Bacteria
Abstract
:Introduction
Results and Discussion
Strain | Serotypes | a) MIC MG | MIC NA | b) FICI | ||
---|---|---|---|---|---|---|
Alone (µg/mL) | With NA (µg/mL) | Alone (µg/mL) | With MG (µg/mL) | |||
CCARM 1 | NR-E.coli | 250 | 125 | 250 | 15.6 | 0.56 |
CCARM 2 | NR-E.coli 078 | 250 | 125 | 250 | 15.6 | 0.56 |
CCARM 3 | NR-S. typhimurium | 500 | 125 | 500 | 31.25 | 0.31 |
CCARM 4 | NR-S. derby | 250 | 125 | 250 | 62.5 | 0.75 |
CCARM 5 | NR-S. enteritidis | 500 | 250 | 500 | 31.25 | 0.56 |
CCARM 6 | NR-S. minesota | 250 | 500 | 250 | 62.5 | 2.25 |
CCARM 7 | NR-K. oxytoca | 1000 | 500 | 250 | 15.6 | 0.56 |
CCARM 8 | NR-E.cloacae | 250 | 125 | 500 | 31.25 | 0.56 |
Strain | Serotypes | a) MIC CA | MIC NA | b) FICI | ||
---|---|---|---|---|---|---|
Alone (µg/mL) | With NA (µg/mL) | Alone (µg/mL) | With CA (µg/mL) | |||
CCARM 1 | NR-E.coli | 250 | 31.25 | 250 | 31.25 | 0.25 |
CCARM 2 | NR-E.coli 078 | 250 | 62.5 | 250 | 500 | 2.25 |
CCARM 3 | NR-S. typhimurium | 250 | 62.5 | 500 | 31.25 | 0.31 |
CCARM 4 | NR-S. derby | 250 | 31.25 | 250 | 31.25 | 0.25 |
CCARM 5 | NR-S. enteritidis | 500 | 125 | 500 | 15.6 | 0.28 |
CCARM 6 | NR-S. minesota | 500 | 31.25 | 250 | 15.6 | 0.12 |
CCARM 7 | NR-K. oxytoca | 125 | 62.5 | 250 | 250 | 1.5 |
CCARM 8 | NR-E.cloacae | 500 | 250 | 500 | 500 | 1.5 |
Strain | Serotypes | a) MIC (µg/mL) | |||
---|---|---|---|---|---|
NA | NA+MG | NA+CA | b) NO | ||
CCARM 1 | NR-E.coli | 250 | 15.6 | 31.25 | 0.97 |
CCARM 2 | NR-E.coli 078 | 250 | 15.6 | 500 | 0.03 |
CCARM 3 | NR-S. typhimurium | 500 | 31.25 | 31.25 | 0.97 |
CCARM 4 | NR-S. derby | 250 | 62.5 | 31.25 | 1.97 |
CCARM 5 | NR-S. enteritidis | 500 | 31.25 | 15.6 | 1.97 |
CCARM 6 | NR-S. minesota | 250 | 62.5 | 15.6 | 1.97 |
CCARM 7 | NR-K. oxytoca | 250 | 15.6 | 250 | 1.97 |
CCARM 8 | NR-E.cloacae | 500 | 31.25 | 500 | 3.9 |
Combination | a) ΣFICI | No. of strains showing | ||||
---|---|---|---|---|---|---|
Range | Median | Synergy (%) | Partial Synergy (%) | Additive (%) | Indifference (%) | |
MG+NA | 0.31~2.25 | 0.76 | 1 | 6 | 0 | 1 |
Total | 1/8 (12.5) | 6/8 (75) | 0 | 1/8 (12.5) | ||
CA+NA | 0.12 ~2.25 | 0.77 | 5 | 0 | 0 | 3 |
Total | 5/8 (62.5) | 0 | 0 | 3/8 (37.5) |
Experimental
Plant materials and chemicals
Bacterial strains and culture medium
Determination of the minimum inhibitory concentrations
The checkerboard dilution test
Conclusions
Acknowledgements
- Sample Availability: Available from the corresponding author.
References
- Edmond, M.B.; Wallace, S.E.; McClish, D.K.; Pfaller, M.A.; Jones, R.N.; Wenzel, R.P. Nosocomial bloodstream infection in United States hospitals: a three-yearanalysis. Clin. Infect. Dis. 1999, 29, 239–244. [Google Scholar]
- Ge, Y.; Difuntorum, S.; Touami, S.; Critchley, I.; Burli, R.; Jiang, V.; Drazan, K.; Moser, H. In vitro antimicrobial activity of GSQ1530, a new heteroaromatic polycyclic compound. Antimicrob. Agents Chemother. 2002, 46, 3168–3174. [Google Scholar] [CrossRef]
- Meletiadis, J.; Mouton, J.W.; Meis, J.F.; Verweij, P.E. In vitro drug interaction modeling of combinations of azoles with terbinafine against clinical scedosporium prolificans Isolates. Antimicrob. Agents Chemother. 2003, 47, 106–117. [Google Scholar] [CrossRef]
- Pankey, G.; Ashcraft, D.; Patel, N. In vitro synergy of daptomycin plus rifampin against enterococcus faecium resistant to both linezolid and vancomycin. Antimicrob. Agents Chemother. 2005, 49, 5166–5128. [Google Scholar] [CrossRef]
- Eliopoulos, G.M.; Eliopoulos, C.T. Antibiotic combinations: should they be tested. Clin. Microbiol. Rev. 1998, 1, 139–156. [Google Scholar]
- Grover, G.; Kini, S.G. 2006. Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents. Eur. J. Med. Chem. 2006, 41, 256–262. [Google Scholar] [CrossRef]
- Michel, J.; Luboshitzky, R.; Sacks, T. Bactericidal effect of combinations ofnalidixic acid and various antibiotics on enterobacteriaceae. J. Antimicrob. Chemother. 1973, 4, 201–204. [Google Scholar] [CrossRef]
- Nostro, A.; Cellini, L.; Di Bartolomeo, S.; Cannatelli, M.A.; Di Campli, E.; Procopio, F.; Grande, R.; Marzio, L.; Alonzo, V. Effects of combining extracts (from propolis or Zingiber officinale) with clarithromycin on Helicobacter pylori. Phytother Res. 2006, 20, 187–190. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.; Nychas, G.J.E. A study of the minimum inhibitory concentration and mode action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef]
- Juven, B.J.; Kanner, J.; Schved, F.; Weisslowicz, H. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Microbiol. 1994, 76, 626–631. [Google Scholar] [CrossRef]
- Helander, I.M.; Alakomi, H.L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; Von-Wright, A. Char-acterization of the action of selected essential oil components on gram-negative bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Chami, N.; Bennis, S.; Chami, F.; Aboussekhra, A.; Remmal, A. Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral Microbiol. Immunol. 2005, 20, 106–111. [Google Scholar] [CrossRef]
- Tampieri, M.; Galuppi, P.; Macchioni, R.; Carelle, F.; Falcioni, M.S.; Cioni, L.; Morelli, P.L.I. The inhibition of Candida albicans by selected essential oils and their major components. Mycopathologia 2005, 59, 339–345. [Google Scholar]
- Ultee, A.; Smid, E.J. Influence of carvacrol on growth and toxin production by Bacillus cereus. Int. J. Food Microbiol. 2001, 64, 373–378. [Google Scholar] [CrossRef]
- Khasawneh, M.; Montenieri, J.A.; Maupin, G.O. Use of novel compounds for pest control: insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar. J. Med. Entomol. 2005, 42, 352–358. [Google Scholar] [CrossRef]
- Lindberg, C.M.; Melathopoulos, A.P.; Winston, M.L. Laboratory evaluation of miticides to control Varroa jacobsoni (Acari:Varroidae), a honey bee (Hymenoptera:Apidae) parasite. J. Econ. Entomol. 2000, 93, 189–198. [Google Scholar] [CrossRef]
- Ahn, Y.J.; Lee, C.O.; Kweon, J.H.; Ahn, J.W.; Park, J.H. Growth-inhibitory effects of Galla Rhois-derived tannins on intestinal bacteria. J. Appl. Microbiol. 1998, 84, 439–443. [Google Scholar]
- Ahn, Y.J.; Lee, H.S.; Oh, H.S.; Kim, H.T.; Lee, Y.H. Antifungal activity and mode of action of Galla Rhois-derived phenolics against phytopathogenic fungi. Pestic Biochem Physiol. 2005, 81, 105–112. [Google Scholar] [CrossRef]
- Choi, J.G.; Kang, O.H.; Lee, Y.S.; Oh, Y.C.; Chae, H.S.; Jang, H.J.; Kim, J.H.; Sohn, D.H.; Shin, D.W.; Park, H.; Kwon, D.Y. In vitro activity of methyl gallate isolated from galla rhois alone and in combination with ciprofloxacin against clinical isolates of salmonella. J Microbiol Biotechnol. 2008, 18, 1848–1852. [Google Scholar]
- Chung, K.T.; Lu, Z.; Chou, M.W. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem. Toxicol. 1998, 36, 1053–1060. [Google Scholar] [CrossRef]
- Kubo, I.; Fujita, K.; Nihei, K. Anti-Salmonella Activity of Alkyl Gallates. J. Agric. Food Chem. 2002, 50, 6692–6696. [Google Scholar] [CrossRef]
- Chen, J.C.; Ho, T.Y.; Chang, Y.S.; Wu, S.L.; Hsiang, C.Y. Anti-diarrheal effect of Galla Chinensis on the Escherichia coli heat-labile enterotoxin and gangloside interaction. J. Ethnopharmacol. 2006, 103, 385–391. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (Approved standards). CLSI document M7-A5; CLSI: Wayne, PA, USA, 2000.
- Timurkaynak, F.; Can, F.; Azap, O.K.; Demirbilek, M.; Arslan, H.; Karaman, S.O. In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii isolated from intensive care units. Int. J. Antimicrob. Agents 2006, 27, 224–228. [Google Scholar] [CrossRef]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Choi, J.-G.; Kang, O.-H.; Lee, Y.-S.; Oh, Y.-C.; Chae, H.-S.; Jang, H.-J.; Shin, D.-W.; Kwon, D.-Y. Antibacterial Activity of Methyl Gallate Isolated from Galla Rhois or Carvacrol Combined with Nalidixic Acid Against Nalidixic Acid Resistant Bacteria. Molecules 2009, 14, 1773-1780. https://doi.org/10.3390/molecules14051773
Choi J-G, Kang O-H, Lee Y-S, Oh Y-C, Chae H-S, Jang H-J, Shin D-W, Kwon D-Y. Antibacterial Activity of Methyl Gallate Isolated from Galla Rhois or Carvacrol Combined with Nalidixic Acid Against Nalidixic Acid Resistant Bacteria. Molecules. 2009; 14(5):1773-1780. https://doi.org/10.3390/molecules14051773
Chicago/Turabian StyleChoi, Jang-Gi, Ok-Hwa Kang, Young-Seob Lee, You-Chang Oh, Hee-Sung Chae, Hye-Jin Jang, Dong-Won Shin, and Dong-Yeul Kwon. 2009. "Antibacterial Activity of Methyl Gallate Isolated from Galla Rhois or Carvacrol Combined with Nalidixic Acid Against Nalidixic Acid Resistant Bacteria" Molecules 14, no. 5: 1773-1780. https://doi.org/10.3390/molecules14051773
APA StyleChoi, J.-G., Kang, O.-H., Lee, Y.-S., Oh, Y.-C., Chae, H.-S., Jang, H.-J., Shin, D.-W., & Kwon, D.-Y. (2009). Antibacterial Activity of Methyl Gallate Isolated from Galla Rhois or Carvacrol Combined with Nalidixic Acid Against Nalidixic Acid Resistant Bacteria. Molecules, 14(5), 1773-1780. https://doi.org/10.3390/molecules14051773