Fault Diagnosis of Wind Turbine Rotating Bearing Based on Multi-Mode Signal Enhancement and Fusion
Abstract
1. Introduction
2. Methods
2.1. Dataset Construction
2.1.1. Basic Research Dataset
2.1.2. Dataset Construction
2.2. CAVF-Net
2.2.1. Feature Extraction Stage
2.2.2. Bidirectional Cross-Attention Stage
2.2.3. Causal Inference and Feature Fusion Stage
2.2.4. Classifier Stage
3. Experiments and Results
3.1. CAVF-Net Model Training
3.1.1. Feature Extraction of Acoustic and Vibration Signals
3.1.2. Bidirectional Cross-Attention Model Training
3.1.3. Causal Inference
3.1.4. Classifier Design
3.2. Fault Diagnosis
3.2.1. Experimental Setup
3.2.2. Feature Analysis
3.2.3. Accuracy Analysis
Comparative Experiments for Schemes 1–6
Comparative Experiments for Schemes 6–9
Mean Accuracy Comparison
3.2.4. Comparative Analysis of Existing Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAVF-Net | Causal Acoustic–Vibration Fusion Network |
BCA | Bidirectional Cross-Attention |
MFCC | Mel-Frequency Cepstral Coefficient |
STFT | Linear Short-Time Fourier Transform |
References
- Global Wind Energy Council. Global Wind Report 2024; Technical Report; Global Wind Energy Council: Lisbon, Portugal, 2024. [Google Scholar]
- Ding, S.; Yang, C.; Zhang, S. Acoustic-signal-based damage detection of wind turbine blades—A review. Sensors 2023, 23, 4987. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, F.; Luo, H. Virtual shaft-based synchronous analysis for bearing damage detection and its application in wind turbines. Wind Energy 2022, 25, 1252–1269. [Google Scholar] [CrossRef]
- Sarath, R. Combined classification models for bearing fault diagnosis with improved ICA and MFCC feature set. Adv. Eng. Softw. 2022, 173, 103249. [Google Scholar] [CrossRef]
- Tao, H.; Wang, P.; Chen, Y.; Stojanovic, V.; Yang, H. An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks. J. Frankl. Inst. 2020, 357, 7286–7307. [Google Scholar] [CrossRef]
- Xu, Z.; Mei, X.; Wang, X.; Yue, M.; Jin, J.; Yang, Y.; Li, C. Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors. Renew. Energy 2022, 182, 615–626. [Google Scholar] [CrossRef]
- Shi, H.; Li, Y.; Bai, X.; Zhang, K.; Sun, X. A two-stage sound-vibration signal fusion method for weak fault detection in rolling bearing systems. Mech. Syst. Signal Process. 2022, 172, 109012. [Google Scholar] [CrossRef]
- You, K.; Lian, Z.; Gu, Y. A performance-interpretable intelligent fusion of sound and vibration signals for bearing fault diagnosis via dynamic CAME. Nonlinear Dyn. 2024, 112, 20903–20940. [Google Scholar] [CrossRef]
- Liu, D.; Mao, Q.; Gao, L.; Wang, G. Leveraging Contrastive Language–Image Pre-Training and Bidirectional Cross-attention for Multimodal Keyword Spotting. Eng. Appl. Artif. Intell. 2024, 138, 109403. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, C. Multi-lag and multi-type temporal causality inference and analysis for industrial process fault diagnosis. Control Eng. Pract. 2022, 124, 105174. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G.; Lin, L. Cross-modal causal relational reasoning for event-level visual question answering. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 11624–11641. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cui, L.; Xu, Y. Quantitative and localization fault diagnosis method of rolling bearing based on quantitative mapping model. Entropy 2018, 20, 510. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Zhang, A.; Li, C.; Qiu, L. A novel bearing fault diagnosis method based on few-shot transfer learning across different datasets. Entropy 2022, 24, 1295. [Google Scholar] [CrossRef]
- Wang, X.; Du, Y. Fault diagnosis of wind turbine gearbox based on modified hierarchical fluctuation dispersion entropy of tan-sigmoid mapping. Entropy 2024, 26, 507. [Google Scholar]
- Wang, H.; Liu, Z.; Peng, D.; Cheng, Z. Attention-guided joint learning CNN with noise robustness for bearing fault diagnosis and vibration signal denoising. ISA Trans. 2022, 128, 470–484. [Google Scholar] [CrossRef]
- Yao, Y.; Gui, G.; Yang, S.; Zhang, S. A recursive denoising learning for gear fault diagnosis based on acoustic signal in real industrial noise condition. IEEE Trans. Instrum. Meas. 2021, 70, 1–15. [Google Scholar] [CrossRef]
- Jung, W.; Kim, S.H.; Yun, S.H.; Bae, J.; Park, Y.H. Vibration, acoustic, temperature, and motor current dataset of rotating machine under varying operating conditions for fault diagnosis. Data Brief 2023, 48, 109049. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Xiao, M.; Liu, H.; Li, Z.; Zhou, S.; Xu, X.; Wang, D. Gear fault diagnosis based on CS-improved variational mode decomposition and probabilistic neural network. Measurement 2022, 192, 110913. [Google Scholar] [CrossRef]
- Randall, R.B.; Antoni, J. Rolling element bearing diagnostics—A tutorial. Mech. Syst. Signal Process. 2011, 25, 485–520. [Google Scholar] [CrossRef]
- Tao, H.; Geng, L.; Shan, S.; Mai, J.; Fu, H. Multi-stream convolution-recurrent neural networks based on attention mechanism fusion for speech emotion recognition. Entropy 2022, 24, 1025. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, X. Information fusion in a multi-source incomplete information system based on information entropy. Entropy 2017, 19, 570. [Google Scholar] [CrossRef]
- Xu, D.; Fan, X.; Gao, W. Multiscale attention fusion for depth map super-resolution generative adversarial networks. Entropy 2023, 25, 836. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.; Zhong, W. Multi-modality image fusion and object detection based on semantic information. Entropy 2023, 25, 718. [Google Scholar] [CrossRef]
- Liang, Q.; Liu, Z.; Chen, Z. A networked method for multi-evidence-based information fusion. Entropy 2022, 25, 69. [Google Scholar] [CrossRef]
- Kibrete, F.; Woldemichael, D.E.; Gebremedhen, H.S. Multi-Sensor data fusion in intelligent fault diagnosis of rotating machines: A comprehensive review. Measurement 2024, 232, 114658. [Google Scholar]
- Wang, G.; Zhao, B.; Xiang, L.; Li, W.; Zhu, C. Information interval spectrum: A novel methodology for rolling-element bearing diagnosis. Measurement 2021, 183, 109899. [Google Scholar] [CrossRef]
- Huang, S.; Li, J.; Wu, L.; Zhang, W. Research on acoustic fault diagnosis of bearings based on spatial filtering and time-frequency domain filtering. Measurement 2023, 221, 113533. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, D.; Xu, Y.; Zhen, D.; Gu, F.; Ball, A.D. Early rolling bearing fault diagnosis in induction motors based on on-rotor sensing vibrations. Measurement 2023, 222, 113614. [Google Scholar] [CrossRef]
- Liu, S.; Chen, S.; Chen, Z.; Gong, Y. Fault Diagnosis Strategy Based on BOA-ResNet18 Method for Motor Bearing Signals with Simulated Hydrogen Refueling Station Operating Noise. Appl. Sci. 2023, 14, 157. [Google Scholar] [CrossRef]
- Joshuva, A.; Kumar, R.S.; Sivakumar, S.; Deenadayalan, G.; Vishnuvardhan, R. An insight on VMD for diagnosing wind turbine blade faults using C4. 5 as feature selection and discriminating through multilayer perceptron. Alex. Eng. J. 2020, 59, 3863–3879. [Google Scholar] [CrossRef]
- Liao, Y.; Li, W.; Lian, G.; Li, J. Heterogeneous Multi-Sensor Fusion for AC Motor Fault Diagnosis via Graph Neural Networks. Electronics 2025, 14, 2005. [Google Scholar] [CrossRef]
- Mejbel, B.G.; Sarow, S.A.; Al-Sharify, M.T.; Al-Haddad, L.A.; Ogaili, A.A.F.; Al-Sharify, Z.T. A data fusion analysis and random forest learning for enhanced control and failure diagnosis in rotating machinery. J. Fail. Anal. Prev. 2024, 24, 2979–2989. [Google Scholar] [CrossRef]
- Sui, T.; Feng, Y.; Sui, S.; Xie, X.; Li, H.; Liu, X. A Bearing Fault Diagnosis Method Combining Multi-Source Information and Multi-Domain Information Fusion. Machines 2025, 13, 289. [Google Scholar] [CrossRef]
- Yang, J.; Han, H.; Dong, X.; Wang, G.; Zhang, S. Bearing Fault Diagnosis Grounded in the Multi-Modal Fusion and Attention Mechanism. Appl. Sci. 2025, 15, 1531. [Google Scholar] [CrossRef]
- Sun, S.; Xia, X.; Zhou, H. Bearing fault diagnosis under time-varying speeds with limited samples using frequency temporal series graph and graph generative classified adversarial networks. Neurocomputing 2025, 647, 130613. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Dai, M.; Li, W.; Tang, J. Time-shift denoising Combined with DWT-Enhanced Condition Domain Adaptation for Motor Bearing Fault Diagnosis via Current Signals. IEEE Sens. J. 2024, 35019–35035. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Hu, J.; Liang, P.; Wang, B.; Yuan, X.; Zhang, L. Graph optimization algorithm enhanced by dual-scale spectral features with contrastive learning for robust bearing fault diagnosis. Knowl.-Based Syst. 2025, 315, 113275. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Han, C.; Li, S.; Feng, Y.; Wang, H.; Cui, Z.; Gryllias, K. A personalized federated meta-learning method for intelligent and privacy-preserving fault diagnosis. Adv. Eng. Inform. 2024, 62, 102781. [Google Scholar] [CrossRef]
Dataset | Data Type | Frequency (kHz) | Load | Location | Numbers of Data Files (.mat) |
---|---|---|---|---|---|
Normal, FI03, FI10, FO03, and FO10 | |||||
Basic | Acoustic | 51.2 | 0 | A | 3,072,000 × 5 |
Vibration | 25.6 | 0 | A (X axis) | 1,536,000 × 5 | |
A (Y axis) | 1,536,000 × 5 |
Dataset | Frequency (kHz) | Data Type (Acoustic and Vibration) | Contain Types (FI03, FI10, FO03, FO10, and Normal) | Duration (s) | Interference |
---|---|---|---|---|---|
Basic | 51.2 and 25.6 | All | All | 5 × 60 × 3 | None |
Resample | 25.6 | All | All | 5 × 60 × 3 | None |
Dataset A | 25.6 | All | All | 5 × 60 × 3 | Acoustic (MN and BWN), |
Vibration (VIOP and SVN) | |||||
Dataset B | 25.6 | All | All | 5 × 60 × 3 | Acoustic (0.1 WN, MN, and BWN), |
Vibration (0.1 WN, VIOP, and SVN) | |||||
Dataset C | 25.6 | All | All | 5 × 60 × 3 | Acoustic (0.2 WN, MN, and BWN), |
Vibration (0.2 WN, VIOP, and SVN) | |||||
Dataset D | 25.6 | All | All | 5 × 60 × 3 | Acoustic (0.4 WN, MN, and BWN), |
Vibration (0.4 WN, VIOP, and SVN) |
Signal Type | Vibration Signal | Acoustic Signal |
---|---|---|
Normal | 0.4559 | 0.5441 |
FI03 | 0.8122 | 0.1878 |
FI10 | 0.1547 | 0.8453 |
FO03 | 0.3785 | 0.6215 |
FO10 | 0.8924 | 0.1076 |
Experimental Scheme | Data Type (Acoustic, Vibration) | Feature Enhancement | Feature Fusion Mode |
---|---|---|---|
Acoustic signal only (1) | Acoustic | None | None |
Vibration signal only (2) | Vibration | None | None |
Multi-modal + SVM (3) | All | None | Static feature fusion |
Multi-modal + early fusion (4) | All | None | Direct feature fusion |
Multi-modal + late fusion (5) | All | None | Fixed weight fusion |
Multi-modal + causal inference (6) | All | None | Causal weighting fusion |
Multi-modal + BCA + gated fusion (7) | All | Bidirectional Cross-Attention | Dynamic weighted feature fusion |
Multi-modal + BCA + late fusion (8) | All | Bidirectional Cross-Attention | Fixed weight fusion |
CAVF-Net (9) | All | Bidirectional Cross-Attention | Causal weighting fusion |
Experimental Scheme | Average Accuracy (%) |
---|---|
Acoustic signal only (1) | 79.10 |
Vibration signal only (2) | 86.56 |
Multi-modal + SVM (3) | 91.48 |
Multi-modal + Early Fusion (4) | 89.89 |
Multi-modal + Late Fusion (5) | 89.34 |
Multi-modal + Causal Inference (6) | 92.12 |
Multi-modal + BCA + Gated Fusion (7) | 92.94 |
Multi-modal + BCA + Late Fusion (8) | 93.66 |
CAVF-Net (9) | 95.42 |
Method | Input Modes | Epochs | Efficiency | Accuracy (%) | Accuracy Rank |
---|---|---|---|---|---|
CAVF-Net (Baseline) | Vibration and Acoustic | 50 | 1.0× | 99.20 | Superior |
GIN-BDF [31] | Vibration, Temperature, Acoustic, and Current | 100 | 2.0× | 98.99 | High |
Random forest [32] | Vibration, Temperature, and Current | N/A | N/A | 96.00 | Moderate |
M2IFD [33] | Vibration, Current | N/A | N/A | 98.38 | High |
FAN-BD [34] | Vibration, Current | N/A | N/A | 97.50 | High |
FTSG-GCCAN [35] | Vibration | 100 | 2.0× | 98.91 | High |
DWCDA-CNN [36] | Current | 200 | 4.0× | 82.54 | Low |
DSSF-CL [37] | Vibration | 100 | 4.0× | 98.66 | High |
FedFGCR [38] | Vibration | 100 | 6.0× | 92.82 | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, S.; Zhou, G.; Wang, X.; Li, W. Fault Diagnosis of Wind Turbine Rotating Bearing Based on Multi-Mode Signal Enhancement and Fusion. Entropy 2025, 27, 951. https://doi.org/10.3390/e27090951
Ding S, Zhou G, Wang X, Li W. Fault Diagnosis of Wind Turbine Rotating Bearing Based on Multi-Mode Signal Enhancement and Fusion. Entropy. 2025; 27(9):951. https://doi.org/10.3390/e27090951
Chicago/Turabian StyleDing, Shaohu, Guangsheng Zhou, Xinyu Wang, and Weibin Li. 2025. "Fault Diagnosis of Wind Turbine Rotating Bearing Based on Multi-Mode Signal Enhancement and Fusion" Entropy 27, no. 9: 951. https://doi.org/10.3390/e27090951
APA StyleDing, S., Zhou, G., Wang, X., & Li, W. (2025). Fault Diagnosis of Wind Turbine Rotating Bearing Based on Multi-Mode Signal Enhancement and Fusion. Entropy, 27(9), 951. https://doi.org/10.3390/e27090951