Entropy as a Tool for the Analysis of Stock Market Efficiency During Periods of Crisis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Fama, E.F. Efficient capital markets. J. Financ. 1970, 25, 383–417. [Google Scholar] [CrossRef]
- Fama, E.F. Market efficiency, long-term returns, and behavioral finance. J. Financ. Econ. 1998, 49, 283–306. [Google Scholar] [CrossRef]
- Fama, E.F. The behavior of stock-market prices. J. Bus. 1965, 38, 34–105. [Google Scholar] [CrossRef]
- Basu, S. Investment performance of common stocks in relation to their price-earnings ratios: A test of the efficient market hypothesis. J. Financ. 1977, 32, 663–682. [Google Scholar]
- Ammy-Driss, A.; Garcin, M. Efficiency of the financial markets during the COVID-19 crisis: Time-varying parameters of fractional stable dynamics. Phys. A Stat. Mech. Its Appl. 2023, 609, 128335. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X. COVID-19 and financial market efficiency: Evidence from an entropy-based analysis. Financ. Res. Lett. 2021, 42, 101888. [Google Scholar] [CrossRef]
- Vogl, M. Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framework. Chaos Solitons Fractals 2023, 166, 112884. [Google Scholar]
- Lawi, A.; Mesra, H.; Amir, S. Implementation of Long Short-Term Memory and Gated Recurrent Units on grouped time-series data to predict stock prices accurately. J. Big Data 2022, 9, 89. [Google Scholar] [CrossRef]
- Lopez-Lira, A.; Tang, Y. Can chatgpt forecast stock price movements? return predictability and large language models. arXiv 2023, arXiv:2304.07619. [Google Scholar] [CrossRef]
- Rizvi, S.A.R.; Arshad, S. How does crisis affect efficiency? An empirical study of East Asian markets. Borsa Istanb. Rev. 2016, 16, 1–8. [Google Scholar] [CrossRef]
- Kim, J.H.; Shamsuddin, A. Are Asian stock markets efficient? Evidence from new multiple variance ratio tests. J. Empir. Financ. 2008, 15, 518–532. [Google Scholar] [CrossRef]
- Risso, W.A. The informational efficiency and the financial crashes. Res. Int. Bus. Financ. 2008, 22, 396–408. [Google Scholar] [CrossRef]
- Lim, K.-P.; Brooks, R.D.; Kim, J.H. Financial crisis and stock market efficiency: Empirical evidence from Asian countries. Int. Rev. Financ. Anal. 2008, 17, 571–591. [Google Scholar] [CrossRef]
- Zunino, L.; Zanin, M.; Tabak, B.M.; Pérez, D.G.; Rosso, O.A. Forbidden patterns, permutation entropy and stock market inefficiency. Phys. A: Stat. Mech. Its Appl. 2009, 388, 2854–2864. [Google Scholar] [CrossRef]
- Liao, T.L.; Tsai, L.-C.; Ke, M.-C.; Chiang, Y.-C.; Hsu, C.-H. Financial crisis and market efficiency: Evidence from European stock markets. Eur. J. Financ. 2019, 25, 1194–1210. [Google Scholar] [CrossRef]
- Fox, J.; Sklar, A. The Myth of the Rational Market: A History of Risk, Reward, and Delusion on Wall Street; Harper Business: New York, NY, USA, 2009. [Google Scholar]
- Ball, R. The global financial crisis and the efficient market hypothesis: What have we learned? J. Appl. Corp. Financ. 2009, 21, 8–16. [Google Scholar] [CrossRef]
- Malkiel, B.G. The efficient-market hypothesis and the financial crisis. In Rethinking Finance: Perspectives on the Crisis; Proceedings of a conference; Russel Sage Foundation: New York, NY, USA, 2011. [Google Scholar]
- Drożdż, S.; Grümmer, F.; Górski, A.Z.; Ruf, F.; Speth, J. Dynamics of competition between collectivity and noise in the stock market. Phys. A Stat. Mech. Its Appl. 2000, 287, 440–449. [Google Scholar] [CrossRef]
- Gençay, R.; Gradojevic, N. The tale of two financial crises: An entropic perspective. Entropy 2017, 19, 244. [Google Scholar] [CrossRef]
- Olbryś, J.; Komar, N. Symbolic Encoding Methods with Entropy-Based Applications to Financial Time Series Analyses. Entropy 2023, 25, 1009. [Google Scholar] [CrossRef]
- Olbryś, J.; Majewska, E. Regularity in stock market indices within turbulence periods: The sample entropy approach. Entropy 2022, 24, 921. [Google Scholar] [CrossRef]
- Ahmed, S.; Hasan, M.M.; Kamal, M.R. Russia–Ukraine crisis: The effects on the European stock market. Eur. Financ. Manag. 2023, 29, 1078–1118. [Google Scholar] [CrossRef]
- Eom, C.; Oh, G.; Jung, W.-S. Relationship between efficiency and predictability in stock price change. Phys. A Stat. Mech. Its Appl. 2008, 387, 5511–5517. [Google Scholar] [CrossRef]
- Brouty, X.; Garcin, M. A statistical test of market efficiency based on information theory. Quant. Financ. 2023, 23, 1003–1018. [Google Scholar] [CrossRef]
- Martins, A.M.; Correia, P.; Gouveia, R. Russia-Ukraine conflict: The effect on European banks’ stock market returns. J. Multinatl. Financ. Manag. 2023, 67, 100786. [Google Scholar] [CrossRef]
- Nowotarski, J.; Weron, R. Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renew. Sustain. Energy Rev. 2018, 81, 1548–1568. [Google Scholar] [CrossRef]
- Siedlecki, R.; Papla, D.; Bem, A. A logistic law of growth as a base for methods of company’s life cycle phases forecasting. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Inf. Sci. 2018. [Google Scholar]
- Stosic, D.; Stosic, D.; Ludermir, T.; de Oliveira, W.; Stosic, T. Foreign exchange rate entropy evolution during financial crises. Phys. A Stat. Mech. Its Appl. 2016, 449, 233–239. [Google Scholar] [CrossRef]
- Lahmiri, S.; Gagnon, S. Emerging Markets Reward Risk: Empirical Evidence from MENA during 2008 Financial Crisis. In Risk and Contingency Management: Breakthroughs in Research and Practice; IGI Global: Hershey, PA, USA, 2018; pp. 421–433. [Google Scholar]
- Maasoumi, E.; Racine, J. Entropy and predictability of stock market returns. J. Econom. 2002, 107, 291–312. [Google Scholar] [CrossRef]
- Espinosa-Paredes, G.; Rodriguez, E.; Alvarez-Ramirez, J. A singular value decomposition entropy approach to assess the impact of Covid-19 on the informational efficiency of the WTI crude oil market. Chaos Solitons Fractals 2022, 160, 112238. [Google Scholar] [CrossRef]
- Schrodinger, E. What is Life?: The Physical Aspect of the Living Cell; Cambridge University Press: Cambridge, UK, 1946. [Google Scholar]
- Bejan, A. The Physics of Life: The Evolution of Everything; St. Martin’s Press: New York, NY, USA, 2016. [Google Scholar]
- Godfrey, M.D.; Granger, C.W.; Morgenstern, O. The Random-Walk Hypothesis Of Stock Market Behavior a. Kyklos 1964, 17, 1–30. [Google Scholar] [CrossRef]
- Nyquist, H. Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Nyquist, H. Certain factors affecting telegraph speed. Trans. Am. Inst. Electr. Eng. 1924, 43, 412–422. [Google Scholar] [CrossRef]
- Hartley, R.V. Transmission of information 1. Bell Syst. Tech. J. 1928, 7, 535–563. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Hausser, J.; Strimmer, K. Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. J. Mach. Learn. Res. 2009, 10. [Google Scholar]
- Boon, J.P.; Tsallis, C. Special issue overview Nonextensive statistical mechanics: New trends, new perspectives. europhysics news 2005, 36, 185–186. [Google Scholar] [CrossRef]
- Cartwright, J. Roll over, boltzmann. Phys. World 2014, 27, 31. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Rényi, A. On measures of Entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability; Volume 1: Contributions to the Theory of Statistics; Berkeley, University of California Press: Berkeley, CA, USA, 1961; pp. 547–562. [Google Scholar]
- Harremoës, P. Interpretations of Rényi entropies and divergences. Phys. A Stat. Mech. Its Appl. 2006, 365, 57–62. [Google Scholar] [CrossRef]
- Principe, J.C.; Xu, D.; Erdogmuns, D. Renyi’s entropy, divergence and their nonparametric estimators. Inf. Theor. Learn. Renyi’s Entropy Kernel Perspect. 2010, 47–102. [Google Scholar]
- Baez, J.C. Rényi entropy and free energy. Entropy 2022, 24, 706. [Google Scholar] [CrossRef] [PubMed]
- Gamero, L.; Plastino, A.; Torres, M.E. Wavelet analysis and nonlinear dynamics in a nonextensive setting. Phys. A Stat. Mech. Its Appl. 1997, 246, 487–509. [Google Scholar] [CrossRef]
- Ishizaki, R.; Inoue, M. Time-series analysis of foreign exchange rates using time-dependent pattern entropy. Phys. A Stat. Mech. Its Appl. 2013, 392, 3344–3350. [Google Scholar] [CrossRef]
- Alvarez-Ramirez, J.; Rodriguez, E.; Alvarez, J. A multiscale entropy approach for market efficiency. Int. Rev. Financ. Anal. 2012, 21, 64–69. [Google Scholar] [CrossRef]
- Martina, E.; Rodriguez, E.; Escarela-Perez, R.; Alvarez-Ramirez, J. Multiscale entropy analysis of crude oil price dynamics. Energy Econ. 2011, 33, 936–947. [Google Scholar] [CrossRef]
- Dunkel, J.; Trigger, S.A. Time-dependent entropy of simple quantum model systems. Phys. Rev. A At. Mol. Opt. Phys. 2005, 71, 052102. [Google Scholar] [CrossRef]
- Pelap, F.; Fomethe, A.; Fotue, A.; Tabue, M.D. Time Dependent Entropy and Decoherence in a Modified Quantum Damped Harmonic Oscillator. J. Quantum Inf. Sci. 2014, 4, 214. [Google Scholar] [CrossRef]
- Özcan, Ö.; Aktürk, E.; Sever, R. Time dependence of joint entropy of oscillating quantum systems. Int. J. Theor. Phys. 2008, 47, 3207–3218. [Google Scholar] [CrossRef]
- Agrrawal, P.; Gilbert, F.W.; Harkins, J. Time dependence of CAPM betas on the choice of interval frequency and return timeframes: Is there an optimum? J. Risk Financ. Manag. 2022, 15, 520. [Google Scholar] [CrossRef]
- Tong, S.; Thankor, N.V. Quantitative EEG Analysis Methods and Clinical Applications; Artech House: Norwood, MA, USA, 2009. [Google Scholar]
- Agrrawal, P.; Agarwal, R. A Longer-Term evaluation of Information releases by Influential market Agents and the Semi-strong market Efficiency. J. Behav. Financ. 2023, 1–26. [Google Scholar] [CrossRef]
- Siedlecki, R.; Papla, D. Conditional correlation coefficient as a tool for analysis of contagion in financial markets and real economy indexes based on the synthetic ratio. Procedia-Soc. Behav. Sci. 2016, 220, 452–461. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papla, D.; Siedlecki, R. Entropy as a Tool for the Analysis of Stock Market Efficiency During Periods of Crisis. Entropy 2024, 26, 1079. https://doi.org/10.3390/e26121079
Papla D, Siedlecki R. Entropy as a Tool for the Analysis of Stock Market Efficiency During Periods of Crisis. Entropy. 2024; 26(12):1079. https://doi.org/10.3390/e26121079
Chicago/Turabian StylePapla, Daniel, and Rafał Siedlecki. 2024. "Entropy as a Tool for the Analysis of Stock Market Efficiency During Periods of Crisis" Entropy 26, no. 12: 1079. https://doi.org/10.3390/e26121079
APA StylePapla, D., & Siedlecki, R. (2024). Entropy as a Tool for the Analysis of Stock Market Efficiency During Periods of Crisis. Entropy, 26(12), 1079. https://doi.org/10.3390/e26121079