Attitude Synchronization of a Group of Rigid Bodies Using Exponential Coordinates
Abstract
1. Introduction
2. Preliminaries
2.1. Notation
2.2. Kinematic and Dynamics
2.3. Graph Theory
3. Attitude Synchronization
4. Simulations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Byrnes, C.I.; Isidori, A. On the attitude stabilization of rigid spacecraft. Automatica 1991, 27, 87–95. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, L.; Cheng, J.; Zhou, J.; Wang, Y. Task scheduling and attitude planning for agile earth observation satellite with intensive tasks. Aerosp. Sci. Technol. 2019, 90, 23–33. [Google Scholar] [CrossRef]
- Nascimento, T.P.; Saska, M. Position and attitude control of multi-rotor aerial vehicles: A survey. Annu. Rev. Control. 2019, 48, 129–146. [Google Scholar] [CrossRef]
- Pliego-Jiménez, J.; Arteaga-Pérez, M.; Sánchez-Sánchez, P. Dexterous robotic manipulation via a dynamic sliding mode force/position control with bounded inputs. IET Control. Theory Appl. 2019, 13, 832–840. [Google Scholar] [CrossRef]
- Pliego-Jiménez, J. On the attitude estimation of nonholonomic wheeled mobile robots. Automatica 2023, 148, 110764. [Google Scholar] [CrossRef]
- Bhat, S.P.; Bernstein, D.S. A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Syst. Control. Lett. 2000, 39, 63–70. [Google Scholar] [CrossRef]
- Chaturvedi, N.A.; Sanyal, A.K.; McClamroch, N.H. Rigid-body attitude control. IEEE Control. Syst. Mag. 2011, 31, 30–51. [Google Scholar]
- Emlen, J.T. Flocking behavior in birds. Auk 1952, 69, 160–170. [Google Scholar] [CrossRef][Green Version]
- Motsch, S.; Tadmor, E. A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys. 2011, 144, 923–947. [Google Scholar] [CrossRef][Green Version]
- Abdessameud, A.; Tayebi, A.; Polushin, I.G. Attitude synchronization of multiple rigid bodies with communication delays. IEEE Trans. Autom. Control. 2012, 57, 2405–2411. [Google Scholar] [CrossRef]
- Nuño, E.; Ortega, R. Achieving consensus of Euler–Lagrange agents with interconnecting delays and without velocity measurements via passivity-based control. IEEE Trans. Control. Syst. Technol. 2018, 26, 222–232. [Google Scholar] [CrossRef]
- Pliego-Jiménez, J.; Martínez-Clark, R.; Cruz-Hernández, C.; Avilés-Velázquez, J.D.; Flores-Resendiz, J.F. Flocking and formation control for a group of nonholonomic wheeled mobile robots. Cogent Eng. 2023, 10, 2167566. [Google Scholar] [CrossRef]
- Ren, W. Distributed attitude consensus among multiple networked spacecraft. In Proceedings of the 2006 IEEE American Control Conference, Minneapolis, MN, USA, 14–16 June 2006; pp. 1760–1765. [Google Scholar]
- Smith, R.S.; Hadaegh, F.Y. Distributed estimation, communication and control for deep space formations. IET Control. Theory Appl. 2007, 1, 445–451. [Google Scholar] [CrossRef]
- Tron, R.; Thomas, J.; Loianno, G.; Daniilidis, K.; Kumar, V. A distributed optimization framework for localization and formation control: Applications to vision-based measurements. IEEE Control. Syst. Mag. 2016, 36, 22–44. [Google Scholar]
- Wang, J.; Zhang, R.; Yuan, J.; Luo, J. Multi-cubesat relative position and attitude determination based on array signal detection in formation flying. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3378–3393. [Google Scholar] [CrossRef]
- Sharma, M.; Kar, I. Almost global attitude consensus of multi-agent rigid bodies on TSO(3)N in the presence of disturbances and directed topology. Nonlinear Dyn. 2021, 104, 3617–3631. [Google Scholar] [CrossRef]
- Lawton, J.R.; Beard, R.W. Synchronized multiple spacecraft rotations. Automatica 2002, 38, 1359–1364. [Google Scholar] [CrossRef]
- Mayhew, C.G.; Sanfelice, R.G.; Sheng, J.; Arcak, M.; Teel, A.R. Quaternion-based hybrid feedback for robust global attitude synchronization. IEEE Trans. Autom. Control. 2011, 57, 2122–2127. [Google Scholar] [CrossRef]
- Butcher, E.A.; Maadani, M. Consensus control of a multi-agent rigid body system on TSO (3) N and TSE (3) N. In Proceedings of the 2019 IEEE Sixth Indian Control Conference (ICC), Hyderabad, India, 18–20 December 2019; pp. 98–103. [Google Scholar]
- Sarlette, A.; Sepulchre, R.; Leonard, N.E. Autonomous rigid body attitude synchronization. Automatica 2009, 45, 572–577. [Google Scholar] [CrossRef][Green Version]
- Liu, X.; Zou, Y.; Meng, Z.; You, Z. Velocity-free coordinated attitude synchronization and tracking control of multiple spacecraft. IET Control. Theory Appl. 2020, 14, 461–469. [Google Scholar] [CrossRef]
- Liu, T.; Huang, J. Leader-following attitude consensus of multiple rigid body systems subject to jointly connected switching networks. Automatica 2018, 92, 63–71. [Google Scholar] [CrossRef]
- Ren, W. Distributed cooperative attitude synchronization and tracking for multiple rigid bodies. IEEE Trans. Control. Syst. Technol. 2010, 18, 383–392. [Google Scholar] [CrossRef]
- Zou, A.M. Distributed attitude synchronization and tracking control for multiple rigid bodies. IEEE Trans. Control. Syst. Technol. 2013, 22, 478–490. [Google Scholar] [CrossRef]
- Arteaga, M.A.; Gutiérrez-Giles, A.; Pliego-Jiménez, J. Local Stability and Ultimate Boundedness in the Control of Robot Manipulators; Springer: Berlin, Germany, 2021. [Google Scholar]
- Murray, R.M.; Li, Z.; Sastry, S.S. A Mathematical Introduction to Robotic Manipulation; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Shi, X.N.; Zhang, Y.A.; Zhou, D. Almost-global finite-time trajectory tracking control for quadrotors in the exponential coordinates. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 91–100. [Google Scholar] [CrossRef]
- Bullo, F.; Murray, R.M. Proportional derivative (PD) control on the Euclidean group. In Proceedings of the 3rd IEEE European Control Conference, Rome, Italy, 5–8 September 1995; pp. 1091–1097. [Google Scholar]
- Spong, M.W.; Hutchinson, S.; Vidyasagar, M. Robot Modeling and Control; Wiley: New York, NY, USA, 2006; Volume 3. [Google Scholar]
- Ren, W.; Beard, R.W.; Atkins, E.M. Information consensus in multivehicle cooperative control. IEEE Control. Syst. Mag. 2007, 27, 71–82. [Google Scholar]
- Fax, J.A.; Murray, R.M. Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control. 2004, 49, 1465–1476. [Google Scholar] [CrossRef][Green Version]
- Olfati-Saber, R.; Fax, J.A.; Murray, R.M. Consensus and cooperation in networked multi-agent systems. Proc. IEEE 2007, 95, 215–233. [Google Scholar] [CrossRef][Green Version]
- Nuño, E.; Ortega, R.; Basañez, L.; Hill, D. Synchronization of Networks of Nonidentical Euler-Lagrange Systems With Uncertain Parameters and Communication Delays. IEEE Trans. Autom. Control. 2011, 56, 935–941. [Google Scholar] [CrossRef]
- Graham, A. Kronecker Products and Matrix Calculus with Applications; Courier Dover Publications: Mineola, NY, USA; New York, NY, USA, 2018. [Google Scholar]
- Hong, Y.; Hu, J.; Gao, L. Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 2006, 42, 1177–1182. [Google Scholar] [CrossRef][Green Version]
- Khalil, H.K. Nonlinear Systems, 3rd ed.; Patience Hall: Richardson, TX, USA, 2002. [Google Scholar]
- Sepulchre, R.; Jankovic, M.; Kokotovic, P.V. Constructive Nonlinear Control; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
Index | 1 | 2 | 3 | 4 |
---|---|---|---|---|
0° | 45° | 125° | 170° | |
arbitrary |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidón-Ayala, M.; Pliego-Jiménez, J.; Cruz-Hernandez, C. Attitude Synchronization of a Group of Rigid Bodies Using Exponential Coordinates. Entropy 2023, 25, 832. https://doi.org/10.3390/e25060832
Sidón-Ayala M, Pliego-Jiménez J, Cruz-Hernandez C. Attitude Synchronization of a Group of Rigid Bodies Using Exponential Coordinates. Entropy. 2023; 25(6):832. https://doi.org/10.3390/e25060832
Chicago/Turabian StyleSidón-Ayala, Miguel, Javier Pliego-Jiménez, and César Cruz-Hernandez. 2023. "Attitude Synchronization of a Group of Rigid Bodies Using Exponential Coordinates" Entropy 25, no. 6: 832. https://doi.org/10.3390/e25060832
APA StyleSidón-Ayala, M., Pliego-Jiménez, J., & Cruz-Hernandez, C. (2023). Attitude Synchronization of a Group of Rigid Bodies Using Exponential Coordinates. Entropy, 25(6), 832. https://doi.org/10.3390/e25060832