Some Considerations about the Anodic Limit of Ionic Liquids Obtained by Means of DFT Calculations
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. QSAR and Anodic Limit of Different Anions
3.2. Ab-Initio and DFT Calculation of the Anodic Limit
3.3. Development of an Empirical Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, K.; Qi, S.; Wang, H.; Huang, J.; Wu, M.; Yang, Y.; Li, X.; Ren, Y.; Ma, J. High-Voltage Electrolyte Chemistry for Lithium Batteries. Small Sci. 2022, 2, 2100107. [Google Scholar] [CrossRef]
- Navarra, M.A. Ionic Liquids as Safe Electrolyte Components for Li-Metal and Li-Ion Batteries. MRS Bull. 2013, 38, 548–553. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Z.; Shi, L.; Jungsuttiwong, S.; Yuan, S. Ionic Liquids for High Performance Lithium Metal Batteries. J. Energy Chem. 2021, 59, 320–333. [Google Scholar] [CrossRef]
- Paul, A.; Muthukumar, S.; Prasad, S. Review—Room-Temperature Ionic Liquids for Electrochemical Application with Special Focus on Gas Sensors. J. Electrochem. Soc. 2020, 167, 037511. [Google Scholar] [CrossRef]
- Rüther, T.; Bhatt, A.I.; Best, A.S.; Harris, K.R.; Hollenkamp, A.F. Electrolytes for Lithium (Sodium) Batteries Based on Ionic Liquids: Highlighting the Key Role Played by the Anion. Batter. Supercaps 2020, 3, 793–827. [Google Scholar] [CrossRef]
- Xu, W.; Shusterman, A.J.; Marzke, R.; Angell, C.A. LiMOB, an Unsymmetrical Nonaromatic Orthoborate Salt for Nonaqueous Solution Electrochemical Applications. J. Electrochem. Soc. 2004, 151, A632. [Google Scholar] [CrossRef]
- Ue, M.; Murakami, A.; Nakamura, S. Anodic Stability of Several Anions Examined by Ab Initio Molecular Orbital and Density Functional Theories. J. Electrochem. Soc. 2002, 149, A1572–A1577. [Google Scholar] [CrossRef]
- Johansson, P. Intrinsic Anion Oxidation Potentials. J. Phys. Chem. 2006, 110, 12077–12080. [Google Scholar] [CrossRef]
- Johansson, P. Erratum: Intrinsic Anion Oxidation Potentials (Journal Physical Chemistry A (2006) 110A (12077)). J. Phys. Chem. 2007, 111, 1378. [Google Scholar] [CrossRef][Green Version]
- Ong, S.P.; Ceder, G. Investigation of the Effect of Functional Group Substitutions on the Gas-Phase Electron Affinities and Ionization Energies of Room-Temperature Ionic Liquids Ions Using Density Functional Theory. Electrochim. Acta 2010, 55, 3804–3811. [Google Scholar] [CrossRef][Green Version]
- Carboni, M.; Spezia, R.; Brutti, S. Perfluoroalkyl-Fluorophosphate Anions for High Voltage Electrolytes in Lithium Cells: DFT Study. J. Phys. Chem. C 2014, 118, 24221–24230. [Google Scholar] [CrossRef]
- Haskins, J.B.; Bauschlicher, C.W.; Lawson, J.W. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability. J. Phys. Chem. B 2015, 119, 14705–14719. [Google Scholar] [CrossRef] [PubMed]
- Karu, K.; Ruzanov, A.; Ers, H.; Ivaništšev, V.; Lage-Estebanez, I.; García de la Vega, J. Predictions of Physicochemical Properties of Ionic Liquids with DFT. Computation 2016, 4, 25. [Google Scholar] [CrossRef][Green Version]
- Cheng, L.; Assary, R.S.; Qu, X.; Jain, A.; Ong, S.P.; Rajput, N.N.; Persson, K.; Curtiss, L.A. Accelerating Electrolyte Discovery for Energy Storage with High-Throughput Screening. J. Phys. Chem. Lett. 2015, 6, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Kazemiabnavi, S.; Zhang, Z.; Thornton, K.; Banerjee, S. Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries. J. Phys. Chem. B 2016, 120, 5691–5702. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.P.; Andreussi, O.; Wu, Y.; Marzari, N.; Ceder, G. Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations. Chem. Mater. 2011, 23, 2979–2986. [Google Scholar] [CrossRef][Green Version]
- Zhang, Y.; Shi, C.; Brennecke, J.F.; Maginn, E.J. Refined Method for Predicting Electrochemical Windows of Ionic Liquids and Experimental Validation Studies. J. Phys. Chem. B 2014, 118, 6250–6255. [Google Scholar] [CrossRef]
- Lian, C.; Liu, H.; Li, C.; Wu, J. Hunting ionic liquids with large electrochemical potential windows. AIChE J. 2019, 65, 804–810. [Google Scholar] [CrossRef]
- Maftoon-Azad, L. Electrochemical stability windows of Ali-cyclic ionic liquids as lithium metal battery Electrolytes: A computational approach. J. Mol. Liq. 2021, 343, 117589. [Google Scholar] [CrossRef]
- Piatti, E.; Guglielmero, L.; Tofani, G.; Mezzetta, A.; Guazzelli, L.; D’Andrea, F.; Roddaro, S.; Pomelli, C.S. Ionic liquids for electrochemical applications: Correlation between molecular structure and electrochemical stability window. J. Mol. Liq. 2022, 364, 120001. [Google Scholar] [CrossRef]
- Lethesh, K.C.; Bahaa, A.; Abdullah, M.; Bamgbopa, M.O.; Susantyoko, R.A. Temperature-Dependent Electrochemical Stability Window of Bis(trifluoromethanesulfonyl) imideand Bis (fluorosulfonyl) imide Anion Based Ionic Liquids. Front. Chem. 2022, 10, 859304. [Google Scholar] [CrossRef] [PubMed]
- Paolone, A.; Brutti, S. Comparison of the performances of different computational methods to calculate the electrochemical stability of selected ionic liquids. Materials 2021, 14, 3221. [Google Scholar] [CrossRef]
- Paolone, A.; Brutti, S. Performances of different DFT functionals to calculate the anodic limit of fluorinated sulphonyl-imide anions for lithium cells. J. Phys. Conf. Ser. 2021, 2090, 012078. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, J.; Li, G.; Zhao, W.; Zhao, X.; Mu, T. The electrochemical stability of ionic liquids and deep eutectic solvents. Sci. China Chem. 2016, 59, 571–577. [Google Scholar] [CrossRef]
- Brutti, S.; Simonetti, E.; de Francesco, M.; Sarra, A.; Paolone, A.; Palumbo, O.; Fantini, S.; Lin, R.; Falgayrat, A.; Choi, H.; et al. Ionicliquidelectrolytes for high-voltage, lithium-ionbatteries. J. Power Sources 2020, 479, 228791. [Google Scholar] [CrossRef]
- Shao, Y.; Molnar, L.F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S.T.; Gilbert, A.T.B.; Slipchenko, L.V.; Levchenko, S.V.; O’Neill, D.P.; et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 2006, 8, 3172–3191. [Google Scholar] [CrossRef] [PubMed]
- Huber, B.; Roling, B. Development of a Ag/Ag+ micro-reference electrode for electrochemical measurements in ionic liquids. Electrochim. Acta 2011, 56, 6569–6572. [Google Scholar] [CrossRef]
- Sonoda, K.; Ueda, A.; Iwamoto, K. Non-Aqueous Electrolyte and Electrochemical Device Comprising the Same. EP 1 174 941 A2, 23 January 2002. [Google Scholar]
- Seki, S.; Serizawa, N.; Hayamizu, K.; Tsuzuki, S.; Umebayashi, Y.; Takei, K.; Miyashiro, H. Physicochemical and electrochemicalproperties of 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and 1-ethyl-3-methylimidazolium tetracyanoborate. J. Electrochem. Soc. 2012, 159, A967. [Google Scholar] [CrossRef]
- Ignat–ev, N.V.; Finze, M. Cyanoborates. Eur. J. Inorg. Chem. 2019, 2019, 3539–3560. [Google Scholar] [CrossRef]
- Reiter, J.; Paillard, E.; Grande, L.; Winter, M.; Passerini, S. Physicochemical properties of N-methoxyethyl-N-methylpyrrolidinum ionic liquids with perfluorinated anions. Electrochim. Acta 2013, 91, 101–107. [Google Scholar] [CrossRef]
- O’Mahony, A.M.; Silvester, D.S.; Aldous, L.; Hardacre, C.; Compton, R.G. Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. J. Chem. Eng. Data 2008, 53, 2884–2891. [Google Scholar] [CrossRef]
- Namazian, M.; Lin, C.Y.; Coote, M.L. Benchmark Calculations of Absolute Reduction Potential of Ferricinium/Ferrocene Couple in Nonaqueous Solutions. J. Chem. Theory Comput. 2010, 6, 2721–2725. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Qin, L.; Jiang, J.; Mu, T.; Gao, G. Thermal, electrochemical and radiolytic stabilities of ionic liquids. Phys. Chem. Chem. Phys. 2018, 20, 8382–8402. [Google Scholar] [CrossRef] [PubMed]
- Asakura, R.; Duchêne, L.; Kühnel, R.-S.; Remhof, A.; Hagemann, H.; Battaglia, C. Electrochemical Oxidative Stability of Hydroborate-Based Solid-State Electrolytes. ACS Appl. Energy Mater. 2019, 2, 6924–6930. [Google Scholar] [CrossRef]
- Xu, W.; Angell, C.A. Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions. Electrochem. Solid-State Lett. 2001, 4, E1. [Google Scholar] [CrossRef]
- Grishina, E.P.; Kudryakova, N.O. Conductivity and electrochemical stability of concentrated aqueous choline chloride solutions. Russ. J. Phys. A 2017, 91, 2024–2028. [Google Scholar] [CrossRef]
- Chen, S.; Lan, R.; Humphreys, J.; Tao, S. Perchlorate Based “Oversaturated Gel Electrolyte” for an Aqueous Rechargeable Hybrid Zn–Li Battery. ACS Appl. Energy Mater. 2020, 3, 2526–2536. [Google Scholar] [CrossRef]
- Shi, C.; Quiroz-Guzman, M.; DeSilva, A.; Brennecke, J.F. Physicochemical and electrochemical properties of ionic liquids containing aprotic heterocyclic anions doped with lithium salts. J. Electrochem. Soc. 2013, 160, A1604. [Google Scholar] [CrossRef]
- Shaplov, A.S.; Lozinskaya, E.I.; Vlasov, P.S.; Morozova, S.M.; Antonov, D.Y.; Aubert, P.-H.; Armand, M.; Vygodskii, Y.S. New family of highlyconductive and low viscousionicliquids with asymmetric 2,2,2-trifluoromethylsulfonyl-N-cyanoamide anion. Electrochim. Acta 2015, 175, 254–260. [Google Scholar] [CrossRef]
- Sun, W.; Guo, Y.; Lu, Y.; Hu, A.; Shi, F.; Li, T.; Sun, Z. Electrochemical biosensor based on graphene, Mg2Al layered double hydroxide and hemoglobin composite. Electrochim. Acta 2013, 91, 130–136. [Google Scholar] [CrossRef]
- Palumbo, O.; Appetecchi, G.B.; Maresca, G.; Brubach, J.-B.; Roy, P.; Di Muzio, S.; Trequattrini, F.; Bordignon, D.; Legrand, F.; Falgayrat, A.; et al. Synthesis, PhysicalProperties and Electrochemical Applications of Two Ionic Liquids Containing the Asymmetric (Fluoromethylsulfonyl)(Trifluoromethylsulfonyl)imideAnion. Appl. Sci. 2022, 12, 4524. [Google Scholar] [CrossRef]
- Wu, F.; Schür, A.R.; Kim, G.-T.; Dong, X.; Kuenzel, M.; Diemant, T.; D–Orsi, G.; Simonetti, E.; De Francesco, M.; Bellusci, M.; et al. A novel phosphonium ionic liquid electrolyte enabling high-voltage and high-energy positive electrode materials in lithium-metal batteries. Energy Storage Mater. 2021, 42, 826–835. [Google Scholar] [CrossRef]
- Barbarich, T.J.; Driscoll, P.F. A lithium salt of a Lewis acid-base complex ofiImidazolide for lithium-ion batteries. Electrochem. Solid-State Lett. 2003, 6, A113. [Google Scholar] [CrossRef]
- Zhang, S.S. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Commun. 2006, 8, 1423–1428. [Google Scholar] [CrossRef]
- Sun, G.H.; Li, K.X.; Sun, C.G. Application of 1-ethyl-3-methylimidazolium thiocyanate to the electrolyte of electrochemical double layer capacitors. J. Power Sources 2006, 162, 1444–1450. [Google Scholar] [CrossRef]
- Kozyrev, Y.N.; Mendkovich, A.S.; Kokorekin, V.A.; Luzhkov, V.B.; Rusakov, A.I. Integrated Study of the Thiocyanate Anion Electrooxidation by Electroanalytical and Computational Methods. J. Electrochem. Soc. 2021, 168, 125501. [Google Scholar] [CrossRef]
- Wakai, C.; Oleinikova, A.; Ott, M.; Weingartner, H. How Polar Are Ionic Liquids? Determination of the Static Dielectric Constant of an Imidazolium-based Ionic Liquid by Microwave Dielectric Spectroscopy. J. Phys. Chem. B 2005, 109, 17028–17030. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Kumar, A. Static Dielectric Constant of Room Temperature Ionic Liquids: Internal Pressure and Cohesive Energy Density Approach. J. Phys. Chem. B 2008, 112, 12968–12972. [Google Scholar] [CrossRef] [PubMed]
- Weingärtner, H. The static dielectric permittivity of ionic liquids. J. Mol. Liq. 2014, 192, 185–190. [Google Scholar] [CrossRef]
- Shock, C.J.; Stevens, M.J.; Frischknecht, A.L.; Nakamura, I. Solvation Energy of Ions in a Stockmayer Fluid. J. Phys. Chem. B 2020, 124, 4598–4604. [Google Scholar] [CrossRef]
MP2 eV | HF eV | B3LYP eV | MN-12SX eV | M11 eV | Experimental Anodic Limit V | |
---|---|---|---|---|---|---|
acetate | −4.33 | −4.35 | 0.26 | −0.25 | −3.05 | 4.64 [24,27] |
AsF6 | −11.36 | −11.25 | −4.76 | −5.44 | −8.44 | 6.5 [7] |
B(CF3)4 | −9.71 | −9.24 | −4.56 | −4.87 | −7.59 | 6.48 [28] |
B(CN)4 | −8.65 | −9.01 | −5.18 | −5.32 | −8.33 | 6.30 [29,30] |
BETI | −8.49 | −8.24 | −3.86 | −4.26 | −6.99 | 5.65 [31] |
BF4 | −9.64 | −9.55 | −3.13 | −3.76 | −6.82 | 5.76 [24,30,32,33,34] |
BH4 | −4.67 | −4.67 | −0.87 | −0.85 | −3.72 | 2.0 [35] |
BOB | −8.61 | −8.32 | −3.7 | −4.06 | −6.81 | 4.5 [36] |
Cl | −3.38 | −3.38 | 0.4 | 0.27 | −2.5 | 3.60 [24,32,34,37] |
ClO4 | −7.33 | −7.21 | −2.14 | −2.63 | −5.48 | 5.71 [24,38] |
cyanopyrrolide | −2.81 | −2.77 | −0.49 | −0.53 | −3.06 | 3.37 [39] |
DCA | −4.32 | −4.31 | −0.97 | −1.1 | −3.74 | 2.82 [24,40] |
FAP | −8.83 | −8.38 | −4.08 | −4.39 | −7.00 | 5.72 [29,32] |
FSI | −8.34 | −8.16 | −3.72 | −4.06 | −6.85 | 5.62 [40,41] |
FTFSI | −8.2 | −7.93 | −3.63 | −3.97 | −6.71 | 5.00 [42] |
HSO4 | −6.48 | −6.24 | −1.56 | −1.88 | −4.81 | 6.86 [24] |
IM14 | −8.47 | −8.22 | −3.84 | −4.24 | −6.97 | 4.85 [31,43] |
Im(BF3)2 | −5.81 | −5.99 | −3.3 | −3.33 | −6.11 | 5.35 [44] |
NO3 | −5.72 | −5.39 | 0.01 | −0.63 | −3.48 | 4.57 [24] |
ODFB | −7.73 | −7.41 | −3.98 | −3.1 | −5.86 | 4.2 [45] |
PF6 | −10.86 | −10.71 | −4.27 | −4.92 | −7.94 | 5.38 [32,34] |
TFO | −7.01 | −6.84 | −2.02 | −2.47 | −5.33 | 5.50 [24,32,34] |
TFSAM | −6.11 | −6.16 | −2.43 | −2.67 | −5.38 | 5.70 [40] |
TFSI | −8.32 | −8.06 | −3.67 | −4.07 | −6.8 | 5.65 [24,29,32,34,40] |
thiocyanate | −3.42 | −3.44 | −0.41 | −0.4 | −3.08 | 3.65 [46,47] |
triazolide | −3.18 | −3.31 | −0.54 | −0.6 | −3.38 | 3.57 [39] |
TSAC | −6.85 | −6.72 | −2.81 | −3.11 | −5.81 | 6.02 [40] |
Functional | Type of Approximation | MSE (V2) |
---|---|---|
M08-HX | GH-mGGA | 1.61 |
M11 | RSH-mGGA | 1.64 |
M06-2X | GH-mGGA | 1.81 |
MN-12SX | RSH-mGGA | 1.81 |
MP2 | -- | 1.87 |
M11-L | mGGA | 1.97 |
BMK | mGGA | 2.00 |
ωB97X-D | RSH-GGA | 2.18 |
ωB97M-V | RSH-mGGA | 2.22 |
CAM-B3LYP | RSH-GGA | 2.27 |
B3LYP | GH-GGA | 2.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paolone, A.; Di Muzio, S.; Palumbo, O.; Brutti, S. Some Considerations about the Anodic Limit of Ionic Liquids Obtained by Means of DFT Calculations. Entropy 2023, 25, 793. https://doi.org/10.3390/e25050793
Paolone A, Di Muzio S, Palumbo O, Brutti S. Some Considerations about the Anodic Limit of Ionic Liquids Obtained by Means of DFT Calculations. Entropy. 2023; 25(5):793. https://doi.org/10.3390/e25050793
Chicago/Turabian StylePaolone, Annalisa, Simone Di Muzio, Oriele Palumbo, and Sergio Brutti. 2023. "Some Considerations about the Anodic Limit of Ionic Liquids Obtained by Means of DFT Calculations" Entropy 25, no. 5: 793. https://doi.org/10.3390/e25050793
APA StylePaolone, A., Di Muzio, S., Palumbo, O., & Brutti, S. (2023). Some Considerations about the Anodic Limit of Ionic Liquids Obtained by Means of DFT Calculations. Entropy, 25(5), 793. https://doi.org/10.3390/e25050793