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Abstract: In this work, we discuss two types of trilocality of probability tensors (PTs) P = [P(aya2a3)]
over an outcome set (3 and correlation tensors (CTs) P = [P(ayapa3|x1x2x3)] over an outcome-input
set A3 based on a triangle network and described by continuous (integral) and discrete (sum) trilocal
hidden variable models (C-triLHVMs and D-triLHVMSs). We say that a PT (or CT) P is C-trilocal (resp.
D-trilocal) if it can be described by a C-triLHVM (resp. D-triLHVM). It is proved that a PT (resp. CT)
is D-trilocal if and only if it can be realized in a triangle network by three shared separable states and a
local POVM (resp. a set of local POVMs) performed at each node; a CT is C-trilocal (resp. D-trilocal) if
and only if it can be written as a convex combination of the product deterministic CTs with a C-trilocal
(resp. D-trilocal) PT as a coefficient tensor. Some properties of the sets consisting of C-trilocal and
D-trilocal PTs (resp. C-trilocal and D-trilocal CTs) are proved, including their path-connectedness
and partial star-convexity.

Keywords: C-trilocality; D-trilocality; bell locality; probability tensor; correlation tensor

1. Introduction

Quantum networks [1-4] have recently attracted much interest as they have been
identified as a promising platform for quantum information processing, such as long-
distance quantum communication [5,6]. In an abstract sense, a quantum network consists
of several sources, which distribute entangled quantum states to spatially separated nodes;
then, the quantum information is processed locally in these nodes. This may be seen as
a generalization of a classical causal model [7,8], where the shared classical information
between the nodes is replaced by quantum states. Clearly, it is important to understand the
quantum correlations that arise in such a quantum network. Recent developments have
shown that the network structure and topology lead to novel notions of nonlocality [9,10],
as well as new concepts of entanglement and separability [11-13], which differ from the
traditional concepts and definitions [14,15]. Dealing with these new concepts requires
theoretical tools for their analysis. Thus far, examples of entanglement criteria for the
network scenario have been derived using the mutual information [11,12], the fidelity with
pure states [12,13], or covariance matrices build from measurement probabilities [16,17].
According to Bell’s local causality assumption [18,19], the different systems measured in the
experiment are considered to be all in an initial joint “hidden" state A, where A is arbitrary
and could even describe the state of the entire universe prior to the measurement choices.
The probability P(o|m, A) of obtaining measurement outcome o of any particular system
can depend arbitrarily on the global state A and on the type m of measurement performed
on that system, but not on the measurements performed on distant systems.

Focusing on quantum networks, a completely different approach to multipartite
nonlocality was proposed [20-22]. For the case where distant observers share entanglement
distributed by independent several sources, the observers may correlate distant quantum
systems and establish strong correlations across the entire network by performing joint
entangled measurements, such as the well-known Bell state measurement used in quantum
teleportation [23]. It turns out that this situation is fundamentally different from standard
multipartite nonlocality, and allows for radically novel phenomena. As regards correlations,
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it is now possible to witness quantum nonlocality in experiments where all the observers
perform a fixed measurement; i.e., they receive no input [24-27]. This effect of quantum
nonlocality without inputs is remarkable, and radically departs from previous forms of
quantum nonlocality [9].

Recently, Kraft et al. [28] demonstrated that the theory of quantum coherence provides
powerful tools for analyzing correlations in quantum networks and provided a direct
link between the theory of multisubspace coherence [29,30] and the approach to quantum
networks using covariance matrices [16,17]. Patricia et al. [31] derived sufficient conditions
for entanglement to give rise to genuine multipartite nonlocality in networks and found that
any network where the parties are connected by bipartite pure entangled states is genuine
multipartite nonlocal, independently of the amount of entanglement in the shared states
and of the topology of the network. Supi¢ et al. [32] introduced a notion of genuine network
quantum nonlocality and showed several examples of correlations that are genuine network
nonlocal, considering the so-called bilocality network of entanglement swapping. Recently,
Tavakoli et al. [33] contributed a review paper by discussing the main concepts, methods,
results, and future challenges in the emerging topic of Bell nonlocality in networks. Some
open problems were listed at the end of their paper. In particular, the authors said that, “in
the triangle network with no inputs and binary outputs, the conjecture that the local and
quantum sets are identical remains open”.

When a triangle network consisting of three quantum systems Sq, S and S3 (refer to
Figure 1 below) is locally measured one time, the probabilities P(a;,a;,a3) of obtaining
outcomes a1, ay, a3 atnodes Sq, Sy and S3 form a nonnegative tensor P = [P(ay,ay,a3)] over
Q3 = [01] x [02] x [03] with

Y Pay,ap,a3) =1,
a1,a2,a3
[0;] denotes the set consisting of outcomes 1,2, ..., 0; at node S;. We call it a probability ten-
sor (PT) over Q3. When a triangle network is locally measured many times, the conditional
probabilities P(ajazaz|x1xpx3) of obtaining outcomes a1, a3, a3 at nodes S, S; and Sz form
a nonnegative tensor P = [P(ay,ap, a3|x1, x2, x3)] over Az = Q3 x [mq] x [my] x [m3] with

2 P(ﬂl,ﬂz,ﬂ3|3€1, X2, x3> =1
ay,a2,a3

for all (xq,x2,x3) € [myq] x [my] x [m3], [m;] denotes the set consisting of inputs 1,2, ..., m;
at node S;. We call it a correlation tensor (CT) over As.

In this work, we aim to introduce and discuss two types of trilocality of PTs and CTs,
called C-trilocality and D-trilocality, according to their descriptions of continuous (integral)
and discrete (sum) the types of trilocal hidden variable models. In Section 2, we will define
and discuss the C-trilocality and D-trilocality of a PT. Section 3 is devoted to introduce and
discuss the C-trilocality and D-trilocality of a CT. In Section 4, we will give a summary and
list some open questions.

Figure 1. A triangle quantum network where the Hilbert spaces of systems Sy, S, and S5 are H(1) =
1P eu, 1@ = 1P en?), and #®) = 1P o1, respectively.
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2. Trilocality of Probability Tensors

In what follows, we use H 4 and Hp to denote the finite-dimensional complex Hilbert
spaces describing quantum systems A and B, respectively. The composite system of A
and B is then described by the Hilbert space H ap := H 4 ® Hp. We also use Ix and Dx to
denote the identity operator on a Hilbert space Hx and the set of all quantum states of the
system X described by Hx, respectively, where X = A, B and AB. We also use the notation
[m] = {1,2,...,m} for every positive integer m.

2.1. Triangle Quantum Networks

Considering a system-based network A/ with N nodes S,, (quantum systems), the topo-
logical structure of the network can be described by a directed graph G(N) = (V(N), E(N))
with the set V(N') = {S1,52,...,Sn} of vertices and the set E(N') of edges where S;S; €
E(N) if and only if S; and S; share a resource p;; (a quantum state of a system H; ® ;).
Put n(S;) = {S; : 5;Sj € E(N)} and assume that each node shares a resource with at least
one node, i.e., n( i) ;é @foralli=1,2,...,N. The state ps of the network N/, called the
network state, is the tensor product of all shared states p; j in a certain order that you chose.
Clearly, the feature of a network N is determined by its topology G(N') together with its
network state p .

For example, for a triangle network 7N given by Figure 1, we have

V(TN) = {51,52,53}, E(TN) = {5152, 5253, 5351},

and the network state p7r of TN reads

prn = p12®p230p31 € D eHP e onPen oni), (1)

where
o012 € DAHP@HP), 005 € DHP @HY), 031 € D(’H(3)®H(l)). 2)
To explore the property of the network, a POVM measurement M(") = {M } a—118

performed at each node S,,. Put M = {M(" }N . The observed probablhty distribution
over the outcomes reads

P (ay, ... an) = tr[(@N_ MY ) o) 3)

where @N_ M, ") are positive operators on the Hilbert space Hnet := @~ 1H(i), px denotes
the state of Hnet Obtained from the network state p after performing the canonical unitary
transformation 7 from the space Hstate Of o7 ONto Hnet, i-e., oy = TonT . We call g the
measurement state.

Let us consider the triangle network given by Figure 1. To find out the state p7a,
we write

o2 = Y a()xVeox® e pHVan?),
023 = Z‘B € D(H£2)®H§3))r
Z 1) zP ez e DHP oHM).

Thus, the network state reads

orw = L aip(i)r () (XN exPhe (P ey ez ezl),
ik
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resulting in the measurement state
prv = Lap()r (02 oxV)e (P ey e (v ez),
ijk
a state of
HVeHPon® = Hen oM P o )oH enl).
Here, the action of T is
|x§1)x%z)xgz)xgg)xés)x§1)> — |x§l)x§1)>®|x§2)x§2)>®|x§3)x§3)>
for all |x]§i)) € 7—[1@. The joint probability is given by
P (a1, a0,03) = tr[(®i—1Mgz))ﬁT\Aﬂ
= Y aB()rum (zVexM))
i,jk
xtr[Mg?(xl@)@Yj@) )] x (M (v ez, )

In particular, when the shared states p; ; are separable, they can be written as convex
combinations of product states. Then, we can assume that the coefficients a(7), B(j), v (k)

are probability distributions (PDs) of , j, k and that the operators X; (®) Y(t) and Z1(<) are all
states. Put . ) .
Pi(a ki) = My (VX))

Po(aali,j) = M (X @),

Py(aslj k) = u[ME (vP 0z,

which are PDs of outcomes a1, a3, a3, respectively. Thus, in this case, Equation (4) becomes

P (a1, a0,03) = Y a(i)B(j)y (k) Py (a1 |k, ) Pa(azi, ) Ps (as]j, k) ®)
ik

for all possible a1,a,a3. This is just the motivation for introducing the concept of D-
trilocality; see Section 2.2.

2.2. Trilocality of Probability Tensors

The central question is whether a given probability distribution may originate from
a network with a given topology [28]. The usual Bell nonlocality of a quantum state or a
quantum network is the property that is exhibited by performing a set of non-compatible
local POVM measurement.

Renou et al. [9] pointed out that quantum nonlocality can be demonstrated without
the need of having various input settings, but only by considering the joint statistics of
fixed local measurement outputs. They call this property quantum nonlocality without
inputs. For example when a triangle network is measured by just one local POVM M,
]omt probabilities P4 N(al, ay,a3) are obtained, which form a nonnegative tensor PT V=
[[PTN(al,az, a3)] over the index set Q3 = [01] X [02] X [03]. Generally, when a function
P : Q3 — [0,1] satisfies the completeness condition:

Z P(ﬂl,ﬂz,ﬂ?,) = 1/

ai,a2,a3

we call it a probability tensor (PT) over ()3, denoted by P = [P(ay, az,a3)].
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Fritz in ([22] Definition 2.12) called a probability tensor P = [P(ay,a3,a3)] over ()3
classical in Cs if it can be written as

P(ay,az,a3) = //A6]1()\1)172()\2)113(/\3)1’1(&1|7\3)\1)P2(112|7\1)\2)
X P3 (113 | /\2/\3)(?1/\1 d)\zd}\g (6)

for appropriate (conditional) distributions g1 (A1), 42(A2),q3(A3), P1(a1|AzA1), Pa(az21A1A2),
and Ps(as|AA3). It was proved ([22] Proposition 2.13) that classical correlations in C3
are monogamous in the sense that 4; is independent of Aq (i.e., I(a; : A1) = 0) and a3 is
independent of A; (i.e., I(a3 : Ap) = 0) whenever P(a; = a3) = 1. Since the representation
(6) is given by the integral of hidden variables, we call it a continuous trilocal hidden variable
model (C-triLHVM) for P.

Motivated by this work, we introduce the following concepts of trilocality of tripar-
tite PTs.

Definition 1. Let P = [P(aq,a2,4a3)] be a PT over Q3.

(1) P is said to be C-trilocal if it has a C-triLHVM:

P(ay,az,a3) = /// 71(A1)92(A2)q3(A3) Pr(a1|A3A1) P (a2|A1A2)
A]XA2><A3
x P3(a3|A2A3)dp (A1) dpz(A2)dps(As) @)
for some product measure space
(A,Z,‘u) = (Al X A2 X A3,Zl X 22 X 23,]/[1 X Uz X ]/13),

where A = (A1, A2, A3), dp(A) = dp1 (A1)dp2(A2)dps(A3), and

() g;(A;) is a density function (DF) of A;, i.e., q;(A;) > 0 for all A; in A; such that
fAj qi(A)dpi(A) =1

(b) Py(a1|A3A1), Pa(a2|A1A2) and P3(az|AxA3), called response functions (RSs) at nodes
1,2 and 3, are PDs of a1,a; and a3, respectively, for each A = (A1, A2, A3) in A and are

(-measurable on A w.r.t. A = (A1, Ay, A3) for each a = (ay,ap,a3) in Q.
(2) P is said to be D-trilocal if it has a D-triLHVM:

] 12 13

P(ay,az,a3) = Y. Y Y. q1(A1)q2(A2)g3(A3) Pr(ar|AsA1) Pa(az|A1A2) P3(a3|A2As) - (8)
Mi=1A7=1A3=1

for all ay € [Ok] (k =1, 2,3), where qk(Ak)r Pl (a1|/\3/\1),P2(a2|/\1/\2) and P3(ﬂ3|A2A3) are
PDs of Ay, a1, a; and a3, respectively.

(3) P is said to be C-nontrilocal (resp. D-nontrilocal) if it is not C-trilocal (resp. not
D-trilocal).

Please refer to Figure 2.

a

Figure 2. A trilocal scenario.
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We use PTEtlocal(()5) and p7P-trlocal (04) to denote the sets of all C-trilocal and
D-trilocal PTs over ()3, respectively. Obviously, P77 < trilocal () o pD-trilocal ()
When P has a C-triLHVM (7), by letting

dye(A) = ai(Ae)dpe(Ai) (k = 1,2,3),
equivalently, defining measures v on Xy as

Yk (Ex) = /A XE, (M) gk (Ak)dpk(A), VE € Xy,
k

where X, (Ax) is the characteristic function of E;, we obtain a product probability space
(A,Z,’)/) = (Al X A2 X A3,21 X 22 X 23,’)/1 X Y2 X 73).

In this setting, the C-triLHVM (7) becomes
P(ay,a,a3) = /A Py(a1|A3A1) P2 (a2|A1A2) P3(a3|A2A3)dy (M), )

where dy(A) = dy1(A1)dy2(A2)dy3(As).
Conversely, every C-triLHVM (9) can be written as a C-triLHVM (7) by letting g (Ax) = 1.
This leads to the following conclusion.

Proposition 1. A tripartite PT P = [P(ay, ay, a3)] over Qg is C-trilocal if and only if it admits a
C-triLHVM (9) for a product probability space

(A,Z,’)’) = (Al X Az X A3,Zl X 22 X 23,’)/1 X Y2 X ’)/3)

Example 1. Consider the PT P = [P(ay, a2, a3)] over Q3 defined by Riemann integral

P(ay,ap,a3) = ///[0 P Py(a1|A3A1) Pa(a2|A1A2) P3(a3|A2A3)dA1dA2d A5, (10)

where
cos(a;AzA1/01)

Pi(ay|AzA) = ’
1(@1]Ash) Yy cos(kiAzAi/o1)

COS(ﬂz)\l )\2 /02)

P /\ /\ - 7
2(112‘ 1 2) ZZ§=1COS(k2A1A2/02)

COS(ﬂg}\z}\g /03)

P3(az|ArA3) = ,
3( 3‘ 2 3) ZZ:;=1 COS(k3A2A3/03)

which are PDs of a1, ay, as, respectively, and measurable w.r.t. Lebesgue measure (7y1,7Y2,7Y3) on
A = [0,1]3. Peype is clearly a C-trilocal PT over Q)3 using Proposition 1.

Moreover, if we replace the space A = [0,1]3 of hidden variables in Example 1 with
A = [-1,1]% and take p;(};) = 1 fori = 1,2,3, then the PT P = [P(ay, a5, a3)] defined by

Playas,as) = [[[ | prA)p002)ps(Aa)Pr (a1 Ashn) Po(aal a2) P (a3 A223)dds ay

is also C-trilocal.
Question 1. Consider the PT Py, = [P(ay, a2,a3)] over Q)3 given by Riemann integral

3
P(a1,02,05) = 1= / / [ Pr(a114521)Pa 021112 Pa (15[ A223)dAr A2, (12)
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where A denotes the closed unit ball in R? and the PDs P;(a;|A3A1), Pa(a2|A1A2) and
P3(a3|AA3) are as in Example 1. An interesting question is whether Py, is C-trilocal.

It is remarkable to mention that a C-triLHVM for a PT must be given by an integral
that is taken over a product space A1 x Ay x A3 due to the independence of the hidden
variables A1, Ay and A3. It is also noted that the integrand must be a product of the three
DFs of A1, A; and A3 and the three PDs of a1, a4, and a3 with parameters (A3, A1), (A1, A2)
and (Ap, A3), respectively. Although the unit ball A in Question 1 is homeomorphic to the
unit cube [0,1]3 or [—1,1]3, the integrand may be changed as the one that is not of the
desired form. Thus, the answer to Question 1 may be very hard.

Definition 2. A tripartite PT P = [P(ay, ap,a3)] over Q3 is said to be tri-quantum if there exists
a TN with the state p s and a local POVM M = MO oM @M®) such that P = P?—AN, ie.,

P(ay, ay,a3) = P (ar, a0, 03) := tr(@3_ MU o7w], Vay € [og]- (13)

In particular, when the shares” states p;; can be chosen as separable states, we say that P is
separable tri-quantum.

Definition 3. A triangle network TN given by Figure 1 is said to be C-trilocal (resp. D-trilocal)
if, for every local POVM M = MWD @M@ @MB), where MK) = {M,g];)}dk the generated PT

Hk:1'
P%\/ = [Prar(ay,az,a3)] is C-trilocal (resp. D-trilocal). It is said to be non C-trilocal (resp. non
D-trilocal) if it is not C-trilocal (resp. non D-trilocal), i.e., there exists an M = {M(k) }izl such

that PT Pé\-’lN is non-C-trilocal (resp. non-D-trilocal), referring to Figure 3.

Figure 3. A trilocal triangle network.

Proposition 2. Every separable (i.e., all shared states p; ; are separable) triangle network TN
given by Figure 1 is D-trilocal.

Proof. Suppose that the T given by Figure 1 is separable. Then, the shared states p; ; are
separable, i.e., there exist scalars x,,,y,, 2\, € [0,1] satisfying

ny Ny 13
Z 0 =1, Z yrn=1 Z 2 =1
Xi=1 Ap=1 A=1
such that ;
1
pa= Y el ()eel (M) € DHPonD),

=1

1
ma= Y v (M) (1) € DHP o),
Ap=1
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13
1= Y 20 (As)@ps (As) € DY wHY),
Az=1

where pgs) (r) € D(HES)). Thus, the network state reads

pra= L xmnzaer (M)epr” ()@ (M)ey” (A2)eps” (Aa)@py” (1a),
M,A2,A3

which is a state of system Hgl) ®7—l( )®H(2)®H( )®H(3) ®7—[§1), and then the measurement

state is
v = Y vz (05 ()@l ()@ (0P (M) @l (A2))@ (0 (A1) 25 (A3)),
AA2,A3

being a state of system
HVen@en® = (HVeu)emP et )o 1P onl).
For every local POVM measurement, M = MN@M@@M©®) of system HMoH 2 oK),

where M {M } _,, we have

PP (ar,a0,03) = te[(@3_ MI)ora

= Y xAlyazthr[Mﬁ) (pi” ()\1)®P§1) (A3))]
A A2,A3

xtr[MP) (0 (M) @0l ()] [ME) (0 () @08 (13))]

= Y 51(M)92(A2)q3(A3) Pi(a1]|A3A1) Pa(az|A1A2) P3(az]A2A3),
Mz As

for all ay € [Ok], where q1 (Al) = X)\l,q;)_()\z) = y)\z,q:g()tg,) = Z), and
Pr(m|Ash) = M, (o1 (A1) @05 (1)),

Py(m|AAs) = tr[MP (0P (A1) 20 (A2))],

P3(az|A2A3) = tr[Méi’) (P?) ()\2)®P£3) (A3))]-
Clearly,

{3 M) Iagemgr {P1(a1]A3A1) oy e o), {P2(a2|1A1242) Yoy c (0,0 1 P3 (3] A2A3) Fasclog]

are PDs. It follows from Definition 3 that the triangle network 7N given by Figure 1 is
D-trilocal. The proof is completed. []

Proposition 3. A PT P over Q)3 is D-trilocal if and only if it is separable tri-quantum.

Proof. The sufficiency is given by Proposition 2. To show the necessity, welet P = {P(ay,a;,43)}
be a D-trilocal PT over (3. Then, it can be written as (8). Choose Hilbert spaces

1 =1 —cmu = uP® =, 1) = ud =,
take their orthonormal bases {|A3)}"? a1 {IA) -1 and {IA) ) A.—1 respectively, and put

HO = uMen) = cnecm, 1@ = P en) = cnecn, 1O = uP o)) = creC
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and choose separable states

1
o12= Y (A ® A1) (M| € DD eHP) = D(Checm),
A=l

1)
p25= Y. 92(M2)|A2) (Aa] ® A2} (Ao € D(HS @HY)) = D(C0C™),
Ap=1

13
031 = Y g3(As)|As) (As| ® [As) (As] € D(HP @) = D(CBaC™),
Az=1

then we obtain a triangle network 7N with the network state

PTN = P1200238p31
= Y 51(M)q2(A2)g3(As)
A1 A2,A3

XA (M| @ A1) (A1]@]A2) (A2] @ [A2)(A2|®[A3) (A3] @ [A3) (A5,

inducing the measurement state

—_—~

orn = Y 1(AM)92(A2)g3(A3)
A1A2,A3

X (|A3)(A3|@[A1) (M) @ (JA1) (A1 ®]A2) (A2]) @ ([A2) (A2|®[A3) (As]),

in D(HM@H @ @H (). By defining separable positive operators:

ns nq
MDD = Y Y Py(an[A5A])[ASAL) (ASAL,
A=1A1=1

ny nyp
2
MP = Y Y PyaaAJA5) AL AS) (A A,
M =17)=1
(3) 1y n3
My, =Y. Y Ps(az|A3A3)|A5A5) (A5A5]
M=11}=1

on Hilbert spaces (1), H(?) and H (%), respectively, we obtain POVMs {M,Slk{) }Zi _, of system
H®) for each k = 1,2,3. Using (8) yields that

P(a1,a3,a3) = tr[(@3_ MY )7, Vay € [oy].
This shows that P is separable tri-quantum. The proof is completed. [

Recently, Tavakoli et al. [33] said that, “in the triangle network with no inputs and
binary outputs, the conjecture that the local and quantum sets are identical remains open”.
Proposition 3 above shows that D-trilocality and separable tri-quantum of a tripartite PT
are equivalent. Renou et al. ([9] Theorem I) found a PT (they called a quantum distribution)
Pg(a, b, c) that cannot be reproduced by any classical trilocal model (9) with deterministic
response functions (DRFs) P; (a1|A3A1), Pa(a2|A1A7), P3(a3|A2A3). After a careful reading
of their proof, we find that the proof of Xy N X; = @ (for example) works well only for
a D-triLHVM with DRFs. In fact, they proved that the Py(a, b, c) cannot be reproduced
by any D-triLHVM with DRFs. The following proposition shows that a D-triLHVM (8)
can be assumed to be deterministic, i.e., the response functions are {0, 1}-valued. Thus,
combining ([9] Theorem I), we see that the quantum distribution Py (a,b,c) is not D-trilocal.
This shows that a tri-quantum PT is not necessarily D-trilocal. Thus, an interesting question
is whether the Pg(a, b, c) is C-trilocal.
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Proposition 4. A tripartite PT P = [P(ay,ay,a3)] over Q3 is D-trilocal if and only if it can be
written as

P(ay,ap,a3) = Y 1y (pa) 7o (po) 73 (ps) Py (a1 |pspn ) Pa(az | papio) Pa(aslpaps) — (14)
H1/M2,13

for all ay € [og], where {7ty (pix) } y e D, are PDs and
{Pr(a1|papn) Yoy efo) AP2(a2|p112) Yaye(oy) AP35 H213) Yoz fos)
are {0,1}-PDs for all p.

Proof. The sufficiency is clear. To show the necessity, we assume that P is D-trilocal. Then,
it can be written as (8). Since matrices

[Pr(a1]AsA1)] € RS5O, [Py (azA142)] € RM™7% and [P3(as[A2A3)] € R 7%

are row-stochastic (RS), they can be represented as convex combinations of all {0, 1}-RS
matrices [34], i.e.,

Np

k=1

Ny N3
Py(ar|A3Aq) = Zri501,1i(/\3,/\1)’p2(a2|)\1)\2) - ZSj§ﬂ2r1<j(/\1r7\z)’P3(a3‘/\2/\3) - Z tas Ly (A2, As)/
i-1 =1

where N1 = (07)"™,N; = (02)""2, N3 = (03)"", and {]i}fill, {Kj}]N:zl and {Lk}i\]jl are
the sets of all maps from [n3n4] into [01], [n1712] into [02], and [nyn3] into [03], respectively.
Using (8) yields that

P(ay,az,03) = ). ), 41(M)92(A2)a5(A3)7istiday s ag) Dan K (11,12) Oy Li 12 )
i,j,k Ay,A2,A3

= Y mpr)ma(p2) 3 (ps) Pr(ar | papn) Pa(az|pa o) P3 (a3l paps),
Mk €Dy

where D = [Na] x [n1], Dy = [N3] x [n2], D3 = [Nq] x [n3], and
p = (s5,AM), w2 = (te, A2), 43 = (i, A3),
m1(p1) = q1(M)sj, ma(p2) = qa(A2)tk, 3 (p3) = q3(As)ri

Pr(arlpapn) = 0o, 1i(as,00)r Pal@2lpapia) = bay k(2,00 Pa(@3lHapia) = bag 1, (a05)-
Clearly, {7 (px) }ypep, (k = 1,2,3) are PDs and for all p,

{Pr(an|papn) Yoy efo) A P2(a2|p112) Yoy (o) AP35 H213) Yoz fos)
are {0,1}-PDs. Equation (14) follows, and the proof is completed. [

To discuss geometric and topological properties of C-trilocal and D-trilocal PTs, we
have to put them into a topological space. A natural way is to consider the real Hilbert
space P(Q)3) consisting of all tensors P = [P(ay,a3,a3)] over Az defined by functions
P : O3 — R, in which the operations and inner products are given by

sP+tQ = [sP(ay,az,a3) + tQ(ay,a2,a3)], (P|Q) = Y _ P(ay,az,a3)Q(a1, a2, a3)

aj

for all s, € R and all elements P and Q of P(A3). The norm induced by the inner
product reads

Nf—=

IP[| = <2P(a1,az,aa)|2>

aj
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and then a sequence {P,}7 ; = {[Pu(a1,a2,43)]}5 is convergent (in norm) to P =
[P(ay,az,a3)] if and only if

nh_r}r;o Py(ay,az,a3) = P(ay,az,a3), Ya; € [0;](i = 1,2,3).

Thus, the set PT(Asz) of all PTs over ()3 forms a compact convex set in the Hilbert
space P(Q3).

Since the hidden variables in a C-triLHVM or a D-triLHVM for a PT are assumed to
be independent, the sets P70l (();) and P7P-tilocal ()3 are not necessarily convex.
However, we have the following.

Proposition 5. Both PT et (3 and PTP-trilocal (03 are path-connected sets in the Hilbert
space P(Q3).

Proof. LetP = [P(ay,a3,a3)] and Q = [Q(ay, a2, a3)] be any two elements of P70l ()3,
Then, P and Q have C-trLHVMSs:

P(a1,ap,a3) = /APl(/\l)Pz()\z)Ps(/\B)Pl(ﬂl|7\37\1)P2(612|/\1/\2)P3(ﬂ3|)\27\3)dﬂ(/\)r

Qlaz,az,03) = [ 41(21)92(62)13(8) Q1 (a1 12381) Qal021182) Qs (0316285 ) A (2),

for all possible a1, ay, az. Put Py(ay,az,a3) = m; then, Py := [Py(ay,a;,43)] is a D-trilocal

(and then C-trilocal) CT over Q3. For every t € [0,1/2], set

1
P{(a1|2\3)\1) = (1 — Zt)Pl (a1|A3A1) + Zi’a;

1
Pj(az|A17z) = (1 —2t)Py(a2|A1A2) + 21‘5;

1
Pé(ll3|)\2)\3) = (l — 2t)P3(LZ3|)\2)\3) + Zta,

which are clearly PDs of a1, 4, and a3, respectively. Putting
P'(ay,a2,a3) = /A q1(M)42(A2)q3(A3) Py (a1|A3A1) P3 (a2 | A1 A2) P3 (a3 |A2A3)dpe (),

then P(t) := [P'(a1,az,a3)] is a C-trilocal CT for all + € [0,1/2] with P(0) = P and
P(1/2) = Py. Obviously, the map ¢ — P(t) from [0,1/2] into P77 rilocal (), is continuous.
Forevery t € [1/2,1], set

Qf(a1]¢381) = (2t — 1)Q1(a1/¢381) +2(1 — 1) !

a;
Q4 (a2]&182) = (2t — 1)Qa(a2]E182) +2(1 — t)%;
1

03’

Q5(a3]ags) = (2t —1)Qs(a3]6283) +2(1 — t)
which are clearly PDs of 41,42 and a3, respectively. Putting
Q' (a1, a2,a3) = /r q1(81)92(52)95(83) Q1 (a118381) Q5 (a216162) Q5 (38283)d (§),

then Q(t) := [Q'(ay,a2,a3)] is a C-trilocal CT for all t € [1/2,1] with Q(1/2) = Py and
Q(1) = Q. Obviously, the map t +— Q(t) from [1/2,1] into P7<ilocal () is continuous.
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p{")

(a1ljzj1) =

Next, we define a mapping f : [0,1] — P77l (5) by

_ P(t), te [0,1/2],‘
) —{ ), te(1/2,1].

Clearly, f is continuous everywhere and and then induces a path in p7Ctrilocal () , connect-
ing P and Q. This shows that P70l (()3) is path-connected. Similarly, P7P-trilocal ()
is also path-connected. The proof is completed. [

Clearly, if a PT is D-trilocal, then it must be C-trilocal with a C-triLHVM given by
counting measures on A]- (j = 1,2,3). We can not show that the converse of this implication,
but we obtain the following approximation result.

Proposition 6. Suppose that P = [P(ay,ay,a3)] is a C-trilocal PT over Q3 with a C-triLHVM
given by three-hold Riemann integral over A = [ry,81] X [r2,52] X [r3,83); then, P is in the closure
of PTP-trilocal (33 in the Hilbert space P (Q3).

Proof. Suppose that

Plarazas) = [[] 41(A)a2(02)05(00) P (@ Aaho) Pa(az i o)
XP3(113|A2A3)d/\1d)\2d)\3 (15)
for all a € [ox](k = 1,2,3), where qk()\k) > 0(VAx € Ag := [rg, s]) with fsk qx (Ap)dAg =
1(k = 1,2,3). Let us show that there exists a sequence {P, } "% of D-trilocal PTs over ()3

such that P,, — P asn — oc.
Dividing each interval [ry, s¢| into n small equal-length intervals:

19 = e+ (s —m) (i = D)/ mrc+ (s —m)i/n) G =1,2,....,m),

we obtain a partition T" of A:

1 2 3 .
=T fujads T I]‘(l) x Ij(z) X I]‘(3)|1 <jr<nk=1,223)}
For each (j1, jo, j3) € [n]?, by taking a point = (g}(l’l),g](:)lg( )) € T! . . and letting

ey '
fn,k = Z qk(gl(:)), ﬂlgn) (]k) = { f”’: ’ lffn,k > 0/

ixeln] L if =0,

we obtain a PD {nlgn) (ji) }j,e[n) such that

Qk(ﬁj(k) fnknk)(]k (i) Yo k(@) (16)
ir€ln)
Put
Py(a1|&™Me™), B{ (aalnf) = Pa(aal&™el™), P{ (asljajs) = Palasle!Vel™)
i h i S, /13 312]3 34316, 7657 )

Py(ay,a2,a3) = Z ﬂ%")(h)”én)(J'z)ﬂgn)(jS)Pf")(m|]'3J'1)Pz(")(ﬂzl]'ljz)Pa(n)(ﬂ3|]'zj3)-

Ju2j3=1
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Clearly, P,, := [Py(a1,42,a3)](n = 1,2,...) are D-trilocal PTs over ()3. We see from the
property of Riemann integral that

-7 Sk
kX:qlk:iAQAMMM:1%:LZ$. (17)

e ixeln]

Thus, by using Equations (17), (16) and the property of Riemann integral as well as
Equation (15), we obtain that, for each a; € [ox](k = 1,2,3),

lim Pn (ul, az, 613)

n—r—+00
n
= lm ) n%’”<f1>n§”’<jz>n§”’<js>Pf”><a1|j3j1>P§”><az|j1jz>P§"><as|jzj3>
J1j2,j3=1
. S1— 71 Sy — T
_ ngrfm( 1 1)( Zn3 2)( 53 — Z q Z ‘72 12 Z QB
i €[n] ir€[n i3€[n)
x Yo w0 as (o) (3) P (anjajin ) S (ﬂz\fl]é)Pg(n (a3j2j3)
jl/j21j3=1
. 51 —71)(so —19)(s3 — 7 LC
=7ggfl 1xzﬁZX3 )y 1(E")a2(2 s ()

uj2 ]'3*1
xPy(ar]gV e Pa(aa |2V ) Pa(aslg )
= // | 11(A1)72(12)q3(A3) Pr(a1[A3A1) Pa(a2|A142) Ps (a3 1245 )dAr dA2d A
= P(ay,a,4a3).
This shows that P, — P as n — oco. The proof is completed. [

This conclusion implies that, if the set of all a D-trilocal PTs P = [P(ay, a3, a3)] over
)3 is closed, then the PT given by Equation (15) is D-trilocal.

In addition, when a PT P is given by Equation (15) where A = [s1, +00) X [s3, +00) X
[s3,+0), DFs g; and RFs P;(a;| - -) are Riemann integrable on any [s;, S;] and [s, S1]
[s2, S2] X [s3, S3], respectively, it is C-trilocal with a C-triLHVM (15) given by Lebesgue
measure on A. In this case, the Levi’s lemma yields that

Plaaza) = tim [[] g10002012)0(0) Pr(an|dsdy)

n—+0oo

X P (112‘)\1)\2)133({13|)t2)t3)d)\1d/\2d)t3 (18)

for all a € [ox|(k =1,2,3), where A,, = [s1,81 + 1| X [s2,52 + 1] X [s3,83 + n]. Put

) (py = — M) g5
ql ( l) f[Si’Si+n] qz(tz)dtl( 7“7 )/

then lim;, 4 f[sl-,s,--i-n] qi(ti)dti = f[sl-,-i-oo) Qi(ti)dti =1lasn — +oo, and

100 209N € sl [ g ()dn =1

Foreachn =1,2,..., letting

P, (ﬂlr ap, ﬂ3) = ///A qgn) (Al)qgn) ()\z)qu)()\g)Pl(ﬂﬂ/\g,/\l)
><P2(a2|/\1/\2)P3(a3|)\2A3)d)t1d/\2d)x3, (19)
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we obtain a C-trilocal PT P, = [P,(ay,a2,a3)] over Q3 with a C-triLHVM (19) in terms

of Riemann integral over A,. Proposition 6 yields that P, ¢ P7P-trilocal((03) for all n.

Equation (18) implies that P = lim,, , o P;;. It follows that P € P7P-tilocal(()5),
Similarly, one can check that the PT P over ()3 defined by infinite series

400 400 H4oo
P(ay,az,a3) = Y Y. Y, 41(A1)g2(A2)q3(A3) Py (a1|AgAq) Pa(a2|A1A2) P3(a3|A2A3)

A1=$1 Ap=s3 A3=s3

is also C-trilocal and in the closure P7P-tlocal () of pyD-trilocal ()

3. Trilocality of Tripartite CTs

In this section, we aim to discuss two types of trilocality of a tripartite correlation
tensor (CTs) [35]: P = [P(ayaa3|x1x2x3)] over an index set

Az = [01] x [02] X [03] x [m1] x [my] x [m3],
which is a nonnegative tensor with index set Az such that

Z P(ayapaz|x1xpxs) =1, Vx; € [m;](i =1,2,3).

a;€oj]
We use CT (A3) to denote the sets of CTs over Aj.
Definition 4. Let P = [P(ayaza3|x1x2x3)] be a CT over As.

(1) P is said to C-trilocal if it has a C-triLHVM:

P(aazaz|x1x2x3) = /Aq1(/\1)q2(/\2)q3()\3)P1(01|x1,/\3/\1)
X Py (a|x2, AMAz) P3(as|x3, ApAz)du(A) (20)

for a product measure space
(A,Q,]l) = (A1 X Ap X A3,Ql X 02 X 03,}11 X U X ],l3),

where A = (Ay,A2,A3), qj(A;) is a DF of A;, Pi(a1|x1,A3A1), P2(aa]xa, AA2) and
P3(az|x3, ApA3), called response functions (RSs) at nodes 1,2 and 3, are nonnegative (-
measurable on A for all x;,a; and PDs of outcomes a1, a; and a3, respectively, for all A1, A
and As.

(2) P is said to be D-trilocal if it has a D-triLHVM:

] 112 3

P(magaz|xixoxs) = ). Y. Y. q1(A1)q2(A2)qa(As) Pr(a|x1, AsAy)
A1=1Ag=1 A3=1

X Py (az|x2, AMA2) P3(as]x3, A2A3) (21)
for all x € [my], ax € [ox](k = 1,2,3), where

qk(Ax), Pr(a1|x1, A3A1), Pa(az|xa, A1A2), P3(az|x3, A2A3)

are PDs of Ay, a1, ap, a3, respectively.

(3) P is said to be C-nontrilocal (resp. D -nontrilocal) if it is not C-trilocal (resp. not
D-trilocal).

We use CTEilocal(A5) and ¢7P-trilocal(A5) to denote the sets of all C-trilocal and
D-trilocal CTs over Ag, respectively. Clearly, CT <0l (Az) o ¢P-tilocal (A5,

Similar to the analysis before Proposition 1, we can obtain the following.
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Proposition 7. A CT P = [P(ayaza3|x1x2x3)] over As is C-trilocal if and only if it admits a
C-triLHVM:

P(ayaza3|x1x0x3) = /A Py(ay]x1, AsA) Po(az|x2, A1A2) Ps(as|xs, A2A3)dy(A)  (22)
for some product probability space
(AZ,7) = (A1 X Ag X Az, Xq X Ep X E3,71 X 72 X 73)-

It is obvious that different C-trilocal CTs over the same index set Az have their C-
triLHVMs that are given by product measure spaces that may be different. However,
the following result shows that a finite number of C-trilocal CTs Py (k = 1,2,...,m) over A3
have C-triLHVMs based on a common product measure space.

Proposition 8. Let P, = [Pr(ayaxas|x1xox3)](k = 1,2,...,m) be m C-trlocal CTs over As.
Then, there is a product measure space

(51 X 52 X S3,Tl X T2 X Tg,’)’l X Y2 X ’)/3)

and three DFs f;(s;) of s;(i = 1,2,3) such that

Py(arazaz|xixpx3) = ///S s f1(51)f2(52)f3(53)1’1(k)(ﬂl|x115351)P2(k) (a2]x2,5152)
1 2 3

% P (a3x3, 5253)d 71 (s1)d 72 (52)d 73 (s3), Wk € [m], 23)
forall a;, x;.

Proof. By Definition 4, each P can be represented as

Py(a1a203 1 223) /// a0 80 P lxa, 221Y)

B e W“)P(k( slxa, 137457)
k
< )y (1) (1) @
for some product measure space

(Agk) X Aék) X Agk),ng) X ng) X Qék),ygk) X ygk) X ygk)).

Putting

produces a product measure space
(S1x 82 x 83, Ty x T x T3, 11 X 72 X 73)
and three DFs f;(s;) of s;(i = 1,2,3). By letting
k k k) 4 (k
P (a1]x1,531) = Py (@21, 4572,

Pz(k) (a2]x2, 8157)) = PV (azIXz,Agk)/\ék)),
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Py (a3l s255) = PE (aslas, A5 257),

for all s; = (Agl),/\gz), .. .,/\l(m)) in S;, we obtain (23) using Equation (24). The proof
is completed.

Using Definitions 1 and 4, we see that, when a CT P = [P(a1a2a3|x1x2x3)] over Az is
C-trilocal (resp. D-trilocal), the induced PTs Py, x,x, := [P(a142a3]|x1x2x3)] over Q23 must
be C-trilocal (resp. D-trilocal) for all (x1, xp, x3) in [m1] % [my] x [m3]. Equivalently, if the
PT P0,0,0 is non-C-trilocal (resp. non-D-trilocal) for some (x9,x9,x9) in [mq] x [m3] x [m3)],
then the CT P = [P(ayaza3|x1x2x3)] must be non-C-trilocal (resp. non-D-trilocal). In this
sense, we can say that the non-trilocality of PTs is stronger than that of CTs. Furthermore,
let P = [P(ayaza3|x1x2x3)] be a C-trilocal CT. Then, it has a C-triLHVM (20). By letting

Prlafx ) = [ a(Aa)Prlmrfxr, Asd)ds(As);
3
Py(az|xp, M) = /A 2(A2) Pa(a2]x2, A1A2)dpa (A2),
2
we see from (20) that the marginal distribution of P on the subsystem 515, reads

Ppy(ayaz|x122) = ) P(a1a2as|x1xx3) = /

R q1(A1)Py(ag|xy, A1) Pa(az]xa, A )dpi (A1) (25)
as 1

for all possible x1, xp, a1, ay. Thus, P1p = [Pi2(a1az|x1x2)] becomes a Bell local CT [35] over
[01] X [02] x [my] x [my]. Similarly, the marginal distributions Pp3 = [Pa3(a2a3|x2x3)] and
P13 = [Pi3(aya3|x1x3)] are Bell local CTs over [0p] X [03] X [mp] x [m3] and [01] X [03] X
[mq] x [m3], respectively. This analysis leads to the following necessary condition for a CT
to be C-trilocal. [

Proposition 9. The three bipartite marginal distributions of a tripartite C-trilocal CT are Bell local.

Remark 1. In particular, when A3 is a singleton {A3}(As = 1) and q3(A3) = uz({As}) =1,
Equation (20) becomes

P(ayagaz|xixpx3) = //A " q1(A1)q2(A2) Py (aq|x1, A)Pa(az|xz, AAz)
1 2
x P3(a3|x3, A2)dp (A1)dp2(A2). (26)

In this case, P is said to be C-bilocal, shortly bilocal [20,21,36] and Equation (26) is called a C-biLHVM
of P. In addition, when Ny and Az can be chosen as finite sets, P is said to be D-bilocal. We use
CTEbcl (A3) and CTPYI%l(A3) to denote the sets of all C-bilocal and D-bilocal CTs over Ag,
respectively. Conversely, when P is a C-bilocal over Az, it has a C-biLHVM (26), which can be written
as (20) with A3 being a singleton {A3} with A3 = 1 and q3(A3) = uz({As}) = 1. Thus,

CTC—bilocal ( A3) c CTC—trilocal ( A3), CTD—bilocul ( A3) C CTD—trilocal ( A3)-
It is proved in ([36] Theorem 2.1) that
CTC—bilocal(AB) — CTD—bilocal (A3) = CTbilocal (AS)-

Definition 5. A tripartite CT P = [P(ajapa3|x1x2x3)] over A is said to be tri-quantum if there
exists a TN with the state p7 and a set of local POVMs

M = {Mayiyes |5 € [mi]} = {IMP@MP @MY |x, € [my]}, 27)
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with M,(f;) = {M(k) }Ok_, such that P = T}, where

aglxg dap=1

T%\I/\tl(’llﬂzﬂ3|x1x2x3) = tr[(@%:lM(:)

|

TN Vag € [og] (28)

for all possible x, ay. In particular, when the shares states p; ; can be chosen as separable states, we
say that P is separable tri-quantum.

Definition 6. A triangle network TN given by Figure 1 is said to be strongly trilocal if, for any
set M of local POV Ms of the form (27), the resulting CT T%‘\, is D-trilocal.

Using Proposition 9, we see that, when one of the three marginal distributions is Bell
nonlocal, P must be neither C-trilocal nor D-trilocal. Since every entangled pure state is Bell
nonlocal [37], when one of the shared states p; ; in the triangle network given by Figure 1
is an entangled pure state, there are a set of local POVMs (27) such that the resulting CT
P = T#4, is not C-trilocal and then not D-trilocal. Thus, the network is not strongly trilocal.
Conversely, we have the following.

Proposition 10. Every separable (i.e., all shared states p; ; are separable) triangle network TN
given by Figure 1 is strongly trilocal.

Proof. Suppose that the T\ given by Figure 1 is separable. Then, the shared states p; ; are
separable, i.e., there exist PDs {q; (/\1)}?1:1, {72(A2) Ki:l and {g3(A3) Ki:l such that

nq
p2= Y a(A)pY (A)ee?(0) e DHPeH?),
A=1

12
P23 =Y. ‘h(/\z)Péz)()LZ)®P§3)()‘2) € D(H§2)®H§3))'
Ao=1

13
P31= ), ‘%3(/\3)P§3)()\3)®P§1)()‘3) € D(Hgs)@’%él))'
Ns=1

where pgs) (r) € D(HES) ). Thus, the network state reads

orn = Y a(M)n(A)g3(Aa)el! ()@l (M) @l (A2) @0t (A1) @8 (A3)@p (1),
)\1!)‘2//\3

being a state of system Hil)®7—[§2)®H£2)®H§3)®H£3)®H§1). Then, the measurement
state is

v = Y n(M)e(M)3(s) e (As)@el ()@ (0 (A)@p (M) @0 (A2)@p8 (A3)).
A,A2,A3

being a state of system
HVoH@on® = (HP o) oHP oH ) o (HY oH).

for any set M of local POVMs of the form (27) of system H () @H () @H(3), we compete that
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TM (ara2a3)x100x3) = te[(@3_ M{)orn)

= L ale(asts)ei, 6 (e (1)

xtr[MZ (o (A2l (M) ME), (0f (2)@pS” (1))

= Y 51(M)92(A2)q3(A3) Pr(a1]x1, A3A1) Pa(az]xa, AA2) Ps(as|x3, A2As),
A€ ]

for all a; € [og], where

Py(ar]xy, Asha) = MU, (o1 (M) @ps” (Aa))],

Pa(azlxz, M) = ML (0P (M) @p}” (12))],

Pa(a3|xs, A2Aa) = M3, (017 (M) 90" (As)))-

Clear]y, {Qk(/\k)})\ke[nk}' {Pl(a1|x1,/\3/\1)}a1€[01],{Pz(az\xz, /\1/\2)}a2€[02]/ and
{Ps(az|xs, )\2)\3)}”36[03] are PDs of Ay, a1,a; and a3, respectively. This shows that T7MN
is D-trilocal. It follows from Definition 6 that the triangle network 7N given by Figure 1 is
strongly trilocal. The proof is completed. [

Theorem 1. (Realization). A CT P over A3 is D-trilocal if and only if it is separable tri-quantum.

Proof. The sufficiency is given by Proposition 10. To show the necessity, we let P =
{P(ayaza3|x1x2x3)} be a D-trilocal PT over As. Then, it can be written as the form of (21):

1 13

P(ayaza3|x1x2x3) = 2 Yo Y q1(M)g2(A2)g3(A3) Py (a1 |x1, AzAq)

A=12A3=1A3=1
><P2(112\x2, )\1)\2)P3(Ll3|)€3,}\2)\3) (29)

for all a € [ox|(k =1,2,3), where

{ak(Ai) b,y APL(a1]x1, AsA1) b, e o), {P2 (422, AMA2) Yoy (0,0 { P3(a3] X3, A2A3) } a0y
are PDs for all possible xi, A;. Define
Hgl) _ 7_42) _ (Cnl,ng) _ 7_43) _ anergl) _ H£3) —cm,
take their orthonormal bases {|A3) }> =17 11A1) 311:1 and {|A7) }Ki _,, respectively, and put
HU =M ent) = cnecn, #H® = wPen? = cnecn, HO = 1P en)) = crecn

and choose separable states

12 = (M)A (M| @ A1) (A € DV en?) = D(cmecm),
M

1
025 = Y 02(A2)[A2) (Aa] ® [A2) (Ag| € D(HP o) = D(CmeCm™),
Ap=1

13
031 = Y. q3(A3)|A3) (A3 @ [A3)(As] € D(HS))@HS)) = D(CBC™),
Aa=1

then we obtain a triangle network 7N with the network state
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PTN

PTN =

01,2802,3X03,1
Yo 1(A)92(A2)g3(A3) A1) (A1] @ A1) (A1|®]A2) (A2] @ [A2) (A2 ®|A3) (As| @ [A3)(As],

AL A2,A3

inducing the measurement state

Yo q1(AM)g2(A2)43(A3) (|A3) (As| @[ A1) (A1]) © (JA1) (A1]@]A2) (A2]) © (JA2)(A2]®[A3)(Asl),

A1A2,A3

in D(HM@H @ @HB)). By defining positive operators:

ns nq
1
MUY= Y Y Pulanla, A0 A5 (A3,

M=1A=1
(2) o 2 Y Y Y
Maz\xz = Z E Py (az|x2, A1A5)[A145) (M43,
M =1,=1
(3) L BV BV ISV
Myxs = Y. Y Pa(as|x3, ApA3)[A5A5) (A543
Ay=1A4=1

on H, 1) and HO), respectively, we obtain POVMs {Mp(,]]:) }Zizl of system H () for each
k =1,2,3. It is easy to check that

P(ayapa3|x1x0x3) = tr[(®i:1M£:‘)xn)p/ﬁ\//], Vay € [ox], Xy € [my].

This shows that P is separable tri-quantum. The proof is completed. [

To discuss geometric and topological properties of C-trilocal and D-trilocal CTs, we
have to put them into a topological space. A natural way is to consider the real Hilbert
space T (A3) consisting of all correlation-type tensors [35] P = [P(ayaza3|x1x2x3)] over Az
defined by functions P : A3 — R, in which the operations and inner products are given by

sP +tQ = [sP(ayaza3|x1x2x3) + tQ(ara2a3]x1x2x3)],
(P|Q) = ) P(a1a2a3]x1x2x3) Q(a142a3|x1 x2x3)
a;,Xi

for all s, € R and all elements P and Q of 7(A3). The norm induced by the inner
product reads

1
2
P = <Z |P(a1112113|x1x2x3)2>

ai,Xi

and then a sequence {P, }7° | = {[Pu(a1a2a3|x1x2x3)] };1_; in T (A3) is convergent (in norm)
to P = [P(a1a2a3|x1x2x3)] if and only if

lim Py (a1a203|01000%3) = P(arazaz|x1x2x3), Vi € [mi], a; € [0i](i = 1,2,3).

Thus, the set CT (A3) of all CTs over Az forms a compact convex set in 7 (A3). Since
the hidden variables in a C-triLHVM or a D-triLHVM are assumed to be independent,
the sets CT7 ol (Az) and 7Pl (A) are not necessarily convex. However, we have
the following.

Theorem 2. (Path-connectedness). Both CT 10 (A3) and CTP*0l(A3) are path-connected
sets in the Hilbert space T (A3).
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Proof. Let P = [P(a1aza3|x1x2x3)] and Q = [Q(a142a3]x1x2x3)] be any two elements of
cTCtilocal (ALY Then, P and Q have C-trLHVMs:

P(ayaza3|x1x2x3) =/AP1(7\1)P2(A2)P3(A3)P1(01|x1,AsAl)Pz(ﬂz|x2,/\1/\2)P3(ﬂ3|x3r/\2A3)d#()‘)/

and

Q(aya2a3|x1x2x3) :/rIh(51)42(52)%(53)(21(ﬂ1|x1/C3Cl)Q2(ﬂz|x2/ClCZ)Q3(03|x3r§253)d’Y(§)

for all possible a1, a3, a3. Put

Py(araza3]x1x2x3) = ,Pg := [Po(ayazas]x1x2x3)],

010203
then Py is a D-trilocal (and then C-trilocal) CT over Aj. For every t € [0,1/2], set

1
Py (a1]x1, A3A1) = (1 = 2¢) Py (a1]x1, A3Aq) + 21‘a?

1
Pﬁ(az\xz, A1A2> = (1 — 2t)P2(ﬂ2|X2, MA2) + ZtE;

1
Pi(as|x3, A2A3) = (1 —2t)P3(az|x3, A2A3) + 2t£,

which are clearly PDs of a1, a; and a3, respectively. Putting

P'(ayaza3|x1x2x3) :/A171(7\1)512(/\2)173()\3)1’{(“1|x1/)\3)\1)1’5(‘12|x2//\1/\2)P:§(a3|x3//\2/\3)0114()\)/

then P(t) := [P!(ayaza3|x1x2x3)] is a C-trilocal CT over Aj; for every t € [0,1/2] with
P(0) = Pand P(1/2) = Py. Obviously, the map t — P(t) from [0,1/2] into P77 < trilocal (()3)
is continuous.

Similarly, for every t € [1/2,1], set

Qi (aq|x1,831) = (2t = 1)Qq(a1]x1, E381) +2(1 — t)l;

01

Qb (aa|x2, E182) = (2t — 1)Qa(aa|x2, E182) +2(1 — t%;

Q5(as|x3, 8283) = (2t — 1)Q3(az|x3, &283) +2(1 — f)%,

which are clearly PDs of a1, a; and a3, respectively. Putting

Q' (a1a2a3|x1x2x3) = /r 1(81)92(82)93(83) Q1 (a1]x1, €381) Q5 (a2|x2, £182) Q5 (a3]x3, §283)dy (§),

then Q(t) := [Q(ayaza3|x1x2x3)] is a C-trilocal CT over Az for every t € [1/2,1] with
Q(1/2) = Pyand Q(1) = Q. Obviously, the map t — Q(t) from [1/2,1] into P70l (A3)
is continuous.

Define a mapping f : [0,1] — CTC 0@l (A) by

P(t), t€1]0,1/2];
f®) —{ Q) te(1/2,1],

then f is continuous everywhere and and then induces a path in C & trlocal(p5), connecting
P and Q. This shows that CT %l (A3) is path-connected. Similarly, C7P-10%al (A3) is
also path-connected. The proof is completed. [
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For k = 1,2,3, taking a CT Ey = [Ej(ax|xx)] over [og] x [my] and defining

1 1
S1(arazaz|x1x2x3) = Eq(a1]xq) x e o5

1 1
Sa(arazas3|x1x2x3) = o x Ep(a]x2) x o

1 1
53(611612613‘X1XZX3) = a X a X E3(Ll3|X3),

we obtain three CTs Sy := [Si(a1a2a3]x1x2%3)] over Az with

Y Sk(arazaz|xixoxz) = Ex(ag|xy)
a;(i#k)

for k = 1,2,3. Clearly, Sy is D-trilocal and then C-trilocal CT over A3 for each k. Put
C7—%};trilocal(A3) _ {P c C7—C-triloca1(A3) . Pk — Ek}l

where

Pelag|xg) :== Y P(ayazaz|x1xoxs)
a;(i7k)

denotes the marginal distribution of P(ajaa3|x1x2x3) on the k-th node.

Theorem 3. (Partial star-convexity). The set C T%;t’iloc‘d (A3) is star-convex with a sun Sy, for
eachk =1,2,3,1ie.,

tS + (1 — HCTE ™ (A3) € CTE ™ (A3), Vt € [0,1]. (30)

Proof. Let P = [P(ayaza3|x1x2x3)] € CT%;trﬂocal(Ag,). Then, P has a C-triLHVM:

P(ayaza3|x1x2x3) = /APl(/\1)P2()\2)P3(/\3)P1(ﬂ1|x1,)\3)\1)
X Py(az|xp, AMA2)P3(az|x3, ApAsz)dp(A), (31)

where (A, Q, i) = (A1 X Ay x Az, 1 X Qp x Qg, 11 X pp X p3) is a product measure space
with A = (Aq, A, A3). Thus,

E(ai|x1) = Pi(a1|x1) == ) P(arazas|xixoxs)

az,a3

= p1(A1)p3(A3)Py(ag|xy, AsAr)dpy (A1)dps(As). (32)

Ay XAz
Put P({0,1}) = {®, {0}, {1},{0,1} }, which is a c-algebra on {0, 1}, and set
Ay = A x{0,1},0) = Oy x P({0,1}),A5 = (A2,s), 4y = p2 X ¢,
where ¢ denotes the counting measure on {0,1}. Then, we obtain a product measure space
(A1 % Ap X Az, Qg x O x Q3,1 X iy X i3).

Forevery t € [0,1] and every A} = (Ay,s), set

{5
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which is a DF of A); define

1

= s=0;
P, JAMAL) = 02’ !
2(a2|x2 1 2) { PB(ﬂ2|x2,/\1/\2), S:1,

1
- s=0;
P ,AGA3) = 03’ !
3(ﬂ3|x3 2 3) { PC(LI3|X3,/\2/\3), S:1,

which are PDs of a; and a3, respectively. For all x1, x2, x3, a1, a2, a3, we see from (32) and (31) that

A A ’ As) P ,/\ A
//\le§an p1(A1)f(A2,8)p3(As) Pr(a]x1, AzAq)
X Py(az|x2, A1 A%) Pa(a3x3, ApAs)dpir (A1) dpia(Ay)dp(A3)
Lo oo PODPEOPAR) L= DPs (a1, dada)

11
x ——dp1(Ar)dpa(A2)dus(A3)
02 03

A A A3)tP JA3A
+/A1><A2><A3p1( 1)P2(A2) p3(A3)tPr(a1]x1, AzA)

X Py (az|x2, A A2) P3(az|x3, ApAz)dp (A1)dua(A2)dpus(Az)
= (1 — t)S(ﬂ1a2ﬂ3|xleX3) + tP(a1a2a3|x1x2x3).

This shows that (1 — ¢)S; + tP is C-trilocal with S; = E; and then an element of CT%;trﬂocal(A@.
Thus,
Sy + (1 _ t)C’TE;trilocal(Ag) C Cﬁ;trilocaI(A3)

forallt € [0,1]. Thatis, C 7'%;“110‘31 (A3) is star-convex with a sun S;. Similarly, C 7'%;@“"’1 (A3)
is star-convex with a sun Sy for k = 2, 3. The proof is completed. [

Remark 2. Let p = [p(i, ], k)] be a C-trilocal PT over a finite set I x | x K with a C-triLHVM.:

p(i,j k) = /A 71(M)92(A2)q3(A3) Py (i[A3A) Pa (| A1 A2) P3 (k| A2A3)dp(A),

where q;(A;) is a DF of Aj, P1(i|AsA1), Pa(jlA1A2), Ps(k[A2A3) are PDs of Aj,i,j and k, respec-

tively. Suppose that {P;(a1]x1)}s, (o) 1 P(32]%2) Yayefo,) and {Pr(a3]x3) }ayeo;) are PDs of
a1, ay and a3, respectively, Thus, the CT P defined by

P(ayazaz|x1x2x3) = Y p(i, ], k) P(aq]x1) Pj(az|x2) Pc(a3|x3) (33)
ik

can be written as

P(ayapas|x1x2x3) = Y p(i,j, k) Pi(ay|x1)Pj(az|x2) Pe(az]x3)
ik

= /A‘11(/\1)172()\2)113(7\3)1’1(@1|x1/)\3)\1)

X Py (a2|x2, MA2) P3(a3|x3, A2A3)dp(A),

where
Py(a1]x1,A3A1) = Y Pi(i|AsA1) Pi(ar|x1),
icl
Py(az|x2, MAz) = Y Pa(jlA1A2) Pi(az|xz),
j€l

P3(a3|x3, AoAz) = Y Ps(k|AzA3) P (az]x3),
kek
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which are PDs of a1, ap and a3, respectively. Thus, P is a C-trilocal CT over Az. In particular, when
N; = 0"i(i =1,2,3),T3 = [N1] x [N2] x [N3], p = [p(i, ] k)] € PT"osl(Ty),
we obtain that P := Y, i p(i, j, k)Djjx is a C-trilocal CT over Az, where

Dij = [Diji(a12a3|x12%3)] = [0ay,J;(x1) %5, K; (x2) Oz, Ly (x3) ]
in which
Ui oIt =1 Im] = 1]},
{K1,Ky, ..., KN, } = {K|K : [my] = [02]},
{L1, Ly, ..., Ly} = {L|L : [m3] — [o3]}.
Clearly, Djj’s are D-trilocal CTs over Az. This shows that

C7~C—trilocul(A3) S {Z p(i,j, k)Di]'k cp=1[r@j k] e 'P']’Ctrilocal(rs)}. (34)
ijk
Similarly,
e (p3) 5 {Z p(i,j Dy p = [p(i,j,K)] € PTD'””“”’(rs)}- 35)
ijk

Next, we aim to show that Equations (34) and (35) are indeed equalities. To do this, we
recall that an m x n function matrix B(A) = [b;j(A)] on A is said to be row-stochastic (RS)
means that, foreach A € A, b;j(A) > 0 foralli, j and Z?:l bij(A) = 1foralli € [m].Itis clear
that every m x n {0, 1}-row statistics matrix T = [T};] corresponds uniquely a mapping
F: [m] — [n] so that Tj; = §; r(;). Thus, the sets of all {0, 1}-row-stochastic matrices of
orders my X 01, my X 07, and m3 X 03 can be written as

0,1 .
RSM ), = {R; = 60, 1 (e i = 1,2, N1},

Mo X0p

0,1 1
RSMOY {Kj = [‘5az,l<j(x2)]xzﬂz j=12,...,Na},

0,1
RSMU) = {Li = [64, 1, (x50 -k = 1,2,..., N3},

M3 X03
respectively.
Lemma 1 ([36]). Let (A, Q, u) be a measure space. Then, every m x n function RS matrix

B(A) = [bjj(A)] on A whose entries are Q-measurable on A can be written as a convex combination
of all {0,1}-RS matrices Ry’s:

B(A) = ¥ ax(A)Ry, VA € A, (36)
1

»
Il

where a(k =1,2,...,n™) are all nonnegative and Q-measurable functions on A.

Using ([35] Theorem 5.1) implies that

¢ Belllocal (p ) — {Zp(l}j,k)Dzj‘k :p=1[plijk)] e PT(F3)}, (37)
ijk

where PT (I'3) denotes the set of all PTs over I';. Based this lemma, we can show the
following conclusion, which say that a CT over A3 is C-trilocal (resp. D-trilocal) if and only
if it can be written as a convex combination of local deterministic CTs D;j;’s with C-trilocal
(resp. D-trilocal) coefficients.
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Theorem 4.

¢ Crtrilocal (p4) — {Z pi,j, Dy = p = [p(i,j,K)] € PTC‘*”"““%Fs)}f (38)
i,j,k

CTD—trilocul(A3) _ {Z P(l, ]-, k)Di]'k p= [[p(l,], k)ﬂ c PTD—trilocal(l—-3) } (39)
ijk
Proof. Suppose that P is C-trilocal; then, it has a C-triLHVM (20). Since matrices
M</\3/ Al) = [Pl (al |x11 /\3/\1)]3(?1,111 € le %0 7
M(M, A2) = [Pa(a2]x2, AMA2)]xy 0, € R™272,

M()\z,}\g) = [Pg(ﬂ2|X3,/\2/\3)}x3,g3 € R™3*%

are row-stochastic with measurable entries, we see from Lemma 1 that they have the
following decompositions:

Ny

Py (ai]|x1,A3M) = Zpl(i|/\3/\l)5u1,li(xl)’ (40)
i=1
N,

Py(ag|xp, AMAg) = Z P (j|/\1/\2)5’12/1<]’(x2)’ 41
j=1
N3

P3(az|x3, AaA3) = Z Ps (k|A2A3)5a3,Lk(X3)’ 42)
k=1

where P (i|A3A1), P2(jiA1A2) and P3(k|A2A3) are PDs of 7, j and k, respectively, and measur-
able w.r.t. (A3,A1), (A1, A2) and (A, A3), respectively. Hence,

P(ayapas|x1x2x3) = ) p(i,j,K)0ay () O K (x) O Ly () (43)
ijk

where
plij k) = /A q1(A1)q2(A2)43(A3) Py (] AsA1) Pa(j|A1A2) P3 (k[ A2A3)d (D), (44)
which forms a C-trilocal PT p = [p(i, j, k)] over I's, satisfying

P =Y p(ij,k)Di.
ik

Conversely, if p = [p(i, j, k)] is a C-trilocal PT over I's, then it has a C-triLVHM (44), and so
the CT P = [P(ajaa3|x1x2x3)] defined by (43) has a C-triLHVM (20) in light of (40)—(42). Thus,
P becomes a C-trilocal CT over Az and Equation (38) follows. Similarly, (39) is also valid.
The proof is completed. [

Theorem 4 implies that both D-trilocal and C-trilocal CTs over Az are Bell local. It also
yields that every C-trilocal CT P over A3 can be written as a convex combination (43) of the
deterministic D-bilocal CTs D over As.

Corollary 1.

CTC—trilocal (Ag) c ConV(CTD—bilocal (A3)) — CTBell—local (A3). (45)
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Let CT U104 (A) be the set of all C-trilocal CTs over Az with C-triLHVMs given by
three-hold Riemann integrals over a product region A; x Ay x As.

Theorem 5. [ S rr v
CTD—trilocul(A3) - CT%—trilocal(AS) C CTD'triZOC“Z(A3) (46)

where CTPHrocl (A3) denotes the closure of TP (A3) in the Hilbert space T (As).

Proof. The second inclusion can be checked in a way similar to the proof of Proposition 6.
To check the first inclusion, we let P € CT Pl (A3) Then, it can be written as (21):

11 1o 13

P(aapas|xixoxs) = Y Y. Y q1(A1)92(A2)q3(A3) Py(a1]x1, AsAr)
AT=1 Ap=1 A5=1
X Py (a2]x2, AMA2) P3(a3|xs, A2A3)
for all x; € [my], ax € [ox](k = 1,2,3), where
Ak (Ak), Pr(ar|x1, AsAq), Pa(az]xa, AMAz), P3(as|x3, A2A3)

are PDs of Ay, a1, a3, a3, respectively. By using the characteristic function of a set S:

1, x€8;
XS(X): 0, x¢5§

we define functions:

pr(t) = Y ak(A)x -1 () (Ve € [0,mk)), pr(ng) = 0,k =1,2,3,
Mk

Qu(arfxy, t3tr) = Y Pr(ar|x1, A3A) X[y —1.00) ¢ [As—1,05) (1, 13)
Az,A

if (tl,tg) € [0, nl) X [0, 113); Ql(a1|x1,t3t1) = %, otherwise;

Qa(az]xo, tita) = ) Paaa|x2, MA2) X[ —1,00)x [ha—1,0,) (1, 12)
A1, A2

if (#1,£2) € [0,n7) x [0,12); Q2(az|xa, t1t2) = %, otherwise;

Qs(as|xs, tats) = ) P3(a3]x3, A2A3) X [ay—1,00)x [As—1,05) (2, £3)
A2,A3
if (to,t3) € [0,m2) X [0,n3); Qz(az|xs, tat3) = 01—3, otherwise. Clearly, pi(f;) is a DF of

te € [0,m)(k = 1,2,3), Qi(a1]x1, tat1), Qa(az|x2, t1t2) and Qs(as|x3, t2t3) are PDs of ay, a;
and a3, respectively, for all x; € [my] and all t; € [0, ng]. It is easy to check that

np ny ns
Pammalnzny) = [ [ [ pi(n)pa(t)pa(t)Qi(mrfx tat)
X Q2 (az|x2, t12)Q3(as|x3, tat3)dtrdtadts
for all possible x;, a;. Thus, P € CT$ %l (A3). This completes the proof. [

4. Conclusions and Questions

When a triangle network is locally measured one run or many runs, a probability
tensor (PT) P = [P(ayaza3)] over Q3 or a correlation tensor (CT) P = [P(ajapa3]|x1x2x3)]
over Az is obtained. In this work, we have introduced and discussed C-trilocality and
D-trilocality of PTs and CTs according to their descriptions of continuous (integral) and



Entropy 2023, 25,273 26 of 27

discrete (sum) trilocal hidden variable models (C-triLHVMs and D-triLHVMs). We named
that a PT (or CT) P is C-trilocal (resp. D-trilocal) if it can be described by a C-triLHVM
(resp. D-triLHVM). With these definitions, the following conclusions have been proved:

(1) A PT (resp. CT) is D-trilocal if and only if it can be realized in a triangle network
by three shared separable states and a local POVM (resp. a set of local POVMs);

(2) A CT is C-trilocal (resp. D-trilocal) if and only if it can be written as a convex
combination of the product deterministic CTs with a C-trilocal (resp. D-trilocal) PT as
coefficient tensor;

(3) When one of the shared states p; ; in the triangle network is Bell nonlocal (especially,
a pure entangled state), the network must be C-nontrilocal and then D-nontrilocal;

(4) The sets «PTC-trilocal (03)/ PTD-trilocal (03)’ C7-C-trilocal(A3) and CTD-trilocal(A3) are
path-connectedness and have partial star-convexity.

However, the following questions are interesting and needed to be discussed further.

Question 2.

(Q2.1) CTC—trilocal(AB) — CTD-trﬂocal A3>?

(QZ.Z) PTC-trilocal (03) _ PTD—trilocal (03)7

Question 3.

(Q3-1) CTD—trilocal(AS) — CTD-trilocal (Ag)?

(Q3.2) Wocal((h) _ PTD-trilocal(Q3)?

Question 4.

(Q4.1) C’TCT% — CTC—trilocal (A3)?

(Q4-2) rprTC-t'rilocal(Qs) _ P7—C-trilocal(Q3)?
Theorem 4 implies that (Qi.1) and (Qi.2) are equivalent for each i = 2,3, 4.
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