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Abstract: This paper addresses the problem of detecting multiple static and mobile targets by an
autonomous mobile agent acting under uncertainty. It is assumed that the agent is able to detect
targets at different distances and that the detection includes errors of the first and second types. The
goal of the agent is to plan and follow a trajectory that results in the detection of the targets in a
minimal time. The suggested solution implements the approach of deep Q-learning applied to max-
imize the cumulative information gain regarding the targets’ locations and minimize the trajectory
length on the map with a predefined detection probability. The Q-learning process is based on a
neural network that receives the agent location and current probability map and results in the pre-
ferred move of the agent. The presented procedure is compared with the previously developed
techniques of sequential decision making, and it is demonstrated that the suggested novel algorithm
strongly outperforms the existing methods.

Keywords: search and detection; probabilistic decision-making; autonomous agent;
deep Q-learning; neural network

1. Introduction

The detection of hidden stationary or moving targets is the first task of search proce-
dures; this task focuses on recognizing target locations and precedes the chasing of the
targets by the search agent [1,2]. Usually, the solution of the detection problem is repre-
sented by a certain distribution of the search effort over the considered domain [3,4]; for
recent results and an overview of the progress in this field, see, e.g., [5-8].

In the simplest scenario of the detection of static targets by a static agent, it is as-
sumed that the agent is equipped with a sensor that can obtain information (complete or
incomplete) from all points in the domain. Using such a sensor, the agent screens the en-
vironment and accumulates information about the targets’ locations; when the resulting
accumulated information becomes sufficiently exact, the agent returns a map of the do-
main with the marked locations of the targets.

In the case of a moving agent, the detection process acts similarly, but it is assumed
that the agent is able to move over the domain to clarify the obtained information or to
reach a point from which the targets can be better recognized. A decision regarding the
agent’s movement is made at each step and leads the agent to follow the shortest trajectory
to achieve the detection of all targets.

Finally, in the most complex scenario of moving target detection, the agent both
moves within the domain to find a better observation position and tracks the targets to
obtain exact information about each of their locations.
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It is clear that in the first scenario, the agent has a passive role, and the problem is
focused not on decision making, but on sensing and sensor fusion. However, in the case
of a moving agent, the problem focuses on planning the agent’s path.

In recent decades, several approaches have been suggested for planning the agent’s
motion and specifying decision-making techniques for detection tasks; for an overview of
such research, see, e.g., [9,10]. Formally, such research addresses stochastic optimization
methods that process offline and result in a complete agent trajectory or involve certain
heuristic algorithms that allow the agent’s path to be planned in real time.

In this research, we follow the direction of heuristic algorithms for search and detec-
tion with false positive and false negative detection errors [7,11-13] and consider the de-
tection of static and moving targets. In addition, we assume that the agent is equipped
with an on-board controller that is powerful enough to process deep Q-learning and train
neural networks on relatively large data sets. Similar to previously obtained solutions
[12,13], a data set is represented by an occupancy grid [14,15], and the decision making
for the probability maps follows the Bayesian approach [7,8].

The implemented deep Q-learning scheme follows general deep learning techniques
[16,17] applied to search and detection processes [18] and to navigation of mobile agents
[19]. However, in addition to usual functionality, the suggested method utilizes the
knowledge about the targets’ locations in the form of probability map.

In the suggested algorithm, it is assumed that the agent starts with an initial proba-
bility map of the targets’ locations and makes decisions about its further movements either
by maximizing the expected cumulative information gain regarding the targets’ locations
or by minimizing the expected length of the agent’s trajectory up to obtaining the desired
probability map. For brevity, we refer to the first approach as the Q-max algorithm and
the second approach as the Shortest Path Length (SPL) algorithm.

The maximization of the expected information gain and minimization of the expected
path length are performed with a conventional dynamic programming approach, while
the decision regarding the next step of the agent is obtained by the deep Q-learning of the
appropriate neural network. As an input, the network receives the agent location and cur-
rent probability map, and the output is the preferred move of the agent. The a priori train-
ing of the network is conducted on the basis of a set of simulated realizations of the con-
sidered detection process.

Thus, the main contributions of the paper are the following. In contrast to known
search algorithms with learning, the suggested algorithm allows search and detection
with false positive and false negative detection errors, and, in addition to general deep
learning scheme, the suggested algorithm utilizes the current agent’s knowledge about
the targets’ locations. Note that both featured of the suggested algorithm can be used for
solving the other problems that can be formulated in the terms of autonomous agents and
probability maps.

The algorithm and the training data set were implemented in the Python program-
ming language with the PyTorch machine learning library. The performance of the algo-
rithm was compared with the performance of previously developed methods. It was
found that the novel deep Q-learning algorithm strongly outperforms (in the sense of ob-
taining the shortest agent path length) the existing algorithms with sequential decision-
making and no learning ability. Therefore, it allows the targets to be detected in less time
than the known methods.

2. Problem Formulation

Let C = {cy,c3, ..., cy} be a finite set of cells that represents a gridded two-dimen-
sional domain. It is assumed that in the domain C there are ¢ targets, v=1,..,¢, £ <
n — 1, which can stay in their locations or move over the set €, and an agent, which moves
over the domain with the goal of detecting the targets.

It is assumed that the agent is equipped with an appropriate sensor such that the
detection probability becomes higher as the agent moves closer to the target and as the
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agent observes the target location for a longer time, and the goal is to find a policy for the
agent’s motion such that it detects all ¢ targets in minimal time or, equivalently, it follows
the shortest trajectory.

This detection problem follows the Koopman framework of search and detection
problems [3] (see also [4,8]) and continues the line of previously developed heuristic al-
gorithms [12,13].

Following the occupancy grid approach [14,15], the state s(c;, t) of each cell ¢; € C,
i=1,2,..,n attime t = 1,2, ... is considered a random variable with the values s(c;, t) €
{0,1}; s(c;,t) = 0 means that the cell ¢; at time t is empty, and s(c;,t) = 1 means that
this cell ¢; at time t is occupied by a target. Since these two events are complementary,
their probabilities satisfy

Pr{s(c;,t) = 0} + Pr{s(c;,t) =1} = 1. (1)

Detection is considered as an ability of the agent to recognize the states s; of the cells,
i =1,2,..,n, and it is assumed that the probability of detecting the target is governed by
the Koopman exponential random search formula [3]

Pr{target detected in c; | target located inc;} = 1 — exp[—lc(cl-, cj,r)], (2)

where k(c;, c;,7) is the search effort applied to cell ¢; when the agent is located in cell ¢;
and the observation period is 7. Usually, the search effort k(c;, ¢;,T) is proportional to the
ratio of observation period 7 to the distance d(ci, Cj) between the cells ¢; and ¢,
K(Ci,CJ-, ‘L')~‘L'/ d(ci,cj), which represents the assumption that the shorter the distance
d(ci,cj) between the agent and the observed cell and the longer the observation period T,
the higher the detection probability is.

To define the possibility of false positive and false negative detection errors, we as-
sume that the occupied cells, the states of which at time t, t = 1,2, ..., are s(c,t) =1,
broadcast an alarm d(c,t) = 1 with probability

pra = Pri{d(c,t) =1 | s(c,t) = 1}. (3)

The empty cells, the states of which at time t, t = 1,2, ..., are s(c,t) = 0, broadcast
the alarm d(c,t) = 1 with probability

pra = Pr{a(c,t) = 1|s(c,t) = 0} = apry, )

where 0 < a < 1. The first alarm is called a true alarm, and the second alarm is called a
false alarm.
By the Koopman formula, the probability of perceiving the alarms is

Pr{alarm percieved at c; | alarm sent from ci} = exp[— d(ci, c]-)//l], (5)

where 1 is the sensitivity of the sensor installed on the agent; it is assumed that all the
cells are observed during the same period, so the value 7 can be omitted.

Denote by p;(t) = Pr{s(c; t) = 1} the probability that at time t, cell ¢; is occupied
by the target, that is, its state is s(c;, t) = 1. The vector P(t) = {p,(t), p,(t), ..., po(£)} of
probabilities p;(t), i = 1,2, ...,n, also called the probability map of the domain, represents
the agent’s knowledge about the targets’ locations in the cells ¢; € C, i = 1,2, ..., n, at time
t.

Then, the probability of the event ¥;(c;,t), i,j = 1,2,...,n, that at time t the agent lo-
cated in cell ¢; receives a signal from cell c;, is defined as follows:

p (fj(ci, t)) =p;(t — Dpraexp[—d(ci, ;) /2] + (1 = p;(t = D))praexp[—d(cic;) /2], (6)

and the probability of the event ,(c,,t), that this agent does not receive a signal at time
t,is

p(% (D) = 1-p(%(c0)). )
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Note that the event X;(c;,t) represents the fact that the agent does not distinguish
between true and false alarms, but it indicates that the agent receives a signal (which can
be either a true or false alarm) from cell ¢;. If « = 1 and therefore pry = pgy4, then

p (fj(ci; t)) = Pra exp[— d(Ci, Cj)/l], (8)
which means that the agent’s knowledge about the targets’ locations does not depend on
the probability map.

When the agent located in cell ¢; receives a signal from cell ¢;, the probability that

cell ¢; is occupied by the target is

pi(t-DPr{Z;(cyt)|s(ct)=1}
P s e (1o (i (e Dlsc. D=0 )
pi(t 1)Pr{x](cl,t)|s(cl,t) 1}+(1-py(t 1))Pr{xj(cl,t)|s(cl,t) o}

Pr{s(ci,t) = 1|fj(ci,t)} =
and the probability that c; is occupied by the target when the agent does not receive a
signal from c; is

pi(t-1)Pr{X;(c,t)|s(cyt)=1}
pi(t—1)Pr{Z;(c,t)|s(cyt)=1}+(1-pi(t—1))Pr{E, (c,,t)|s(c;,t) =0}

Pr{s(ci, t) = 1%, (c, t)} = (10)

where the probabilities p;(t — 1), i = 1,2, ...,n, represent the agent’s knowledge about
the targets’ locations at time t — 1 and it is assumed that the initial probabilities p;(0) at
time t = 0 are defined with respect to prior information; if there is any initial information
about the targets’ locations, it is assumed that p;(0) = % foreach i =1,2,...,n.

In the framework of the Koopman approach, these probabilities are defined on the
basis of Equations (6) and (7) and are represented as follows:

1l (. _ pi(t-1)pTA
PT{S(Ci' t) - 1|x} (C“ t)} - pi(t-Dpra+(1-pi(t-1))apra’ (11)

and

pi(t—1)(1-pra exp[-d(c;cj)/2])
pi(t-1)(1-pra exp[-d(cyc;)/A))+(1-pi(t-1)(1-apra exp[-d(cic;)/A])

Pr{s(c;t) = 1|%,(c, O} = (12)

The defined process of updating the probabilities is illustrated in Figure 1.

Probability map T

’ Sensing ‘

A A A A
!

True alarms False alarms

Environment
Figure 1. Receiving information and updating the probability map.

As illustrated by the figure, the agent receives true and false alarms through its on-board
sensors, and based on this information, it updates the targets’ location probabilities with
Equations (11) and (12).

In the case of static targets, the location probabilities p;(t), i = 1,2, ...,n, depend only
on the agent’s location at time ¢ and its movements, while in the case of moving targets,
these probabilities are defined both by the targets’ and by the agent’s activities. In the
considered problem, it is assumed that the targets act independently on the agent’s mo-
tion, while the agent is aware of the process that governs the targets’ motion.
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In general, the process of target detection is outlined as follows. At each step, the
agent considers the probabilities p;(t), i = 1,2, ...,n, for the targets’ locations and makes
a decision regarding its next movement. After moving to the new location (or remaining
at its current location), the agent receives signals from the available cells and updates the
probabilities p;(t) following Equations (11) and (12). The obtained updated probabilities
pi(t + 1) are used to continue the process.

The goal is to define the motion of the agent that results in the detection of all § tar-
gets in minimal time. As indicated above, in detecting the targets, the agent is not required
to arrive to their exact locations, but it is required to specify the locations as definitively
as possible. Since finding a general definition of the optimal agent’s motion for any non-
trivial scenario is computationally intractable, we are interested in a practically computa-
ble near-optimal solution.

3. Decision-Making Policy and Deep Q-Learning Solution

Formally, the detection problem of interest is specified as follows. Starting from the
initial cell ¢(0), at time ¢, the agent is located in cell ¢(t) and makes a decision regarding
its action a(t): C = C that determines to which cell ¢(t 4+ 1) the agent should move from
its current location c(t).

3.1. The Agent’s Actions and Decision Making

We assume that the policy n: C X P — a for choosing an action does not depend on
time and is specified for any t by the current agent’s location c(t) and probability map
P(t). Then, the desired policy should produce actions such that the agent’s trajectory from
the cell ¢(0) up to the final cell ¢(T) is as short as possible (in the sense that the termina-
tion time T is as short as possible), and that by following this trajectory, the agent detects
all ¢ targets. It is assumed that the number ¢ of targets is not available to the agent dur-
ing detection and is used to indicate the end of the detection process.

With respect to the indicated properties of the desired agent trajectory, a search for
the decision-making policy can follow either the maximization of the expected cumulative
information gain over the trajectory or the direct optimization of the length of the trajec-
tory in the indicated sense of minimal detection time. The first approach is referred to as
the Q-max algorithm, and the second is referred to as the SPL algorithm.

In previous research [12,13], a similar search and detection problem is solved heuris-
tically by evaluating the decisions made at each step of the search and detection process.
In the first algorithm, the agent follows the maximal Expected Information Gain (EIG) over
the cells that are reachable in a single step from the agent’s current location; in the second
algorithm, the agent moves one step toward the maximal expected information gain over
all the cells, which is the Center Of View (COV) of the domain; and in the third algorithm,
the agent moves toward the center of the distribution or the Center Of Gravity (COG) with
respect to the current probability map.

In this paper, we address a more sophisticated approach that implements deep Q-
learning techniques. First, we consider the information-based Q-max algorithm and then
the SPL algorithm.

Let us start with the Q-max solution of the considered detection problem. Assume
that at each time t the agentislocated in cell ¢(t) and action a(t) is chosen from among
the possible movements from cell c(t), which are to step “forward”, “right-forward”,
“right”, “right-backward”, “backward”, “left-backward”, “left”, or “left-forward” or
“stay in the current cell”. Symbolically, we write this choice as

a@)eA={1,7-\17 <0} (13)

Denote by P,(t + 1) a probability map that should represent the targets’ locations at
time t + 1 given that at time t, the agent chooses action a(t). Then, given action a,, the
immediate expected informational reward of the agent is defined as
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R(a,t) = Dy, (Pu(t + DIIP()), (14)

that is, the Kullback-Leibler distance between the map P,(t + 1) and the current proba-
bility map P(t). Given a policy m for choosing an action, the expected cumulative dis-
counted reward obtained by an agent that starts in cell c(t) with probability map P(t)
and chooses action a(t) is

4(c(@®), P(1),a(®)) = E{¥0v"R(a,t + 1)}, (15)
where as usual, the discount factoris 0 < y < 1, and the goal is to find a maximum value
Q(c(®), P(t), () = max g (c(t), P(£), a(t)) (16)

of the expected reward g, over all possible policies m that can be applied after action
a(t) is chosen at time t.

Since the number of possible policies is infinite, the value Q(c(t), P(t),a(t)) of the
maximal expected cumulative discounted reward cannot be calculated exactly, and for
any realistic scenario, it should be approximated. Below, we follow the deep Q-learning
approach and present the Q-max algorithm, which approximates the values
Q(c(t), P(t), al(t)) of the reward for all possible actions (13) and therefore provides crite-
ria for choosing the actions.

3.2. Dynamic Programming Scheme with Prediction and Target Neural Networks

The learning stage in the suggested Q-max algorithm is based on a neural network
with dynamic programming for predicting current rewards. In the simplest configuration,
which is still rather effective, the network consists of one input layer, which includes 2n
neurons (recall that n is the size of the domain); one hidden layer, which also includes
2n neurons; and an output layer, which includes #A = 9 neurons with respect to the
number of possible actions (13).

The inputs of the network are as follows. The first chunk of n inputs (1,2,...n) re-
ceives a binary vector that represents the agent location; namely, if the agent is located in
cell ¢;, then the jth input of the network is equal to 1 and the other n — 1 inputs are
equal to 0. The second chunk of n inputs (n + 1,n + 2, ...2n) receives the target location
probabilities; namely, the (n + i)th input receives the target location probability p;, i =
1,2, ...,n, as it appears in the probability map P.

The hidden layer of the network consists of 2n neurons, each of which implements
a fully connected linear layer and sigmoid activation function f(x) = 1/(1 + e~*). This
activation function was chosen from among several possible activation functions, such as
the step function, Softplus function and SiLU function, and it was found that it provides
adequate learning in all conducted simulations.

The nine neurons of the output layer correspond to the possible actions. Namely, the

»

first output corresponds to the action a; = “T”, “step forward”; the second output corre-
sponds to the action a, = “ 7", “step right-forward”; and so on up to action ag =“Q©”,
which is “stay in the current cell”. The value of the kth output is the maximal expected
cumulative discounted reward Q(cj,P, alk) obtained by the agent if it is in cell G, j=
1,2,...,n, and given the target location probabilities P = (p;,py, ..., Px), it chooses action
ay, k=12,..9.

The scheme of the network is shown in Figure 2.
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ci(t) €{0,1}

pi(t) € [0,1]

t—1
I

Q(c(t — 1), P(t — 1), a(t — 1);w)

R(a,t—2) | Pt—-1) —» a(t-1) «— R@t-1) |
I

x2o- | =i ‘ M Q. r@, 1)
e —=(3) — () 7
0~ D =@ G wannr
. i : }///\\i : i i’iiiiij}////’ @ .
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4 R = @ eeoro
@O —~® 9
TooE N0
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L= I Qc(®),P(1),0)

Figure 2. The neural network scheme used in the learning stage of the Q-max algorithm.

The training stage of the network implements deep Q-learning techniques, which
follow the dynamic programming approach (see, e.g., [16,17]). In general, the Bellman
equation for calculating the maximal cumulative discounted reward is as follows:

Q(c(®),P(t),a(®)) = R(a,t) + ymax Q(c(t +1),P(t + 1), a), (17)

and this equation forms a basis for updating the weights of the links in the network. The
data flow specified by this equation is shown in Figure 3.

t t+1
I I
? Q(c(®), P(t),a(t);w) Qc(t+ 1),P(t+ ),alt+ 1);w)
I I
I I
P(t) —>» a(t) «—R(@,t) | P(t+1) —>»

4 \ |

|
: \ —]
S~ c(t-1 L» c(t)

l tim:
c(t+1)

"
Figure 3. Scheme of the data flow in the training stage of the network.

Let w be a vector of the link weights of the network. In the considered case, there are
4n? + 18n + 2n + 9 values of the weights, where 4n? is the number of links between the
input layers and the hidden layer, 18n is the number of links between the hidden layer
and the output layer, 2n is the number of biases in the hidden layer and 9 is the number
of biases in the output layer.

In addition, to distinguish these steps and to separate them from the real time, we
enumerate the training steps by [ = 1,2, ... below and retain the symbol t for the real-
time moments of the detection process.

Denote by Q(c(1),P(1),a(l); w) the maximal cumulative discounted reward calcu-
lated at step [=12,.. by the network with weights w , and denote by
Q*(c(D,P(D,a(l);w") the expected maximal cumulative discounted reward calculated
using the vector w' of the updated weights following the recurrent Equation (17); that is,

Q*(c(),P(),all);w) =R+ ¥y max Q(c(l+1),P(l+1),a;w"). (18)
Then, the temporal difference learning error is
A(Q) = Q*(c(D, P, al);w") — Qc(D), P(D), a(D); w). 19)
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In practice, the values Q(c(1),P(1),a(l);w) and Q*(c(D),P(D),a(l);w") are associ-
ated with separate neural networks; the first is called the prediction network, and the sec-
ond is called the target network.

3.3. Model-Free and Model-Based Learning

The updating of the weights w in the prediction network is conducted by following
basic backpropagation techniques; namely, the weights for the next step [ +1 are up-
dated with respect to the temporal difference learning error A;(Q) calculated at the cur-
rent step l. The weights w' in the target network are updated to the values of the weights
w after an arbitrary number of iterations. In the simulations presented in subsequent sec-
tions, such updating was conducted at every fifth step.

The presented training procedure directly uses the events occurring in the environ-
ment and does not require prior knowledge about the targets” abilities. In other words, by
following this procedure, the agent detects the targets in the environment and simultane-
ously learns the environment and trains the neural network that supports the agent’s de-
cision-making processes. We refer to such a scenario as model-free learning.

The actions of the presented online model-free learning procedure are illustrated in
Figure 4.

Agent

maxaeg Q(c(l+ 1), P(L+ 1), a;w")

—

Qle, P, all);w)

“—

Calculating temporal difference error

13,71
2N

Target network

-0 0-0~

AN !

Prediction network

R(a) A (Q) L»

Weights w for updating RPN

N each r iterations L=

? c(l+1),P(L+1) c(D, P ?
} v 0
Updating probabilities
% (co 1) f FAC))
Sensing
T A A A A A
True alarms False alarms

Environment

Figure 4. The actions of the online model-free learning procedure of the Q-max algorithm.

Following the figure, at step !, the target location probabilities Pr{s(c; ) =
11%; (c;, D} and Pr{s(c;, D) = 11%,(c,, D}, i,j = 1,2,..,n, are updated by Equations (11) and
(12) with respect to the events £;(c;, 1) and X,(c, 1) of receiving and not receiving a signal
from cell ¢; while the agentisin cell ¢;. The updated target location probabilities are used
for calculating the value of the immediate reward R(a,!) by Equation (14) and the value
Q*(c(),P(D),a(l);w") by Equation (18) in the target network. In parallel, the value
Q(c(D,P(D),a(l);w) of the prediction network is used for choosing the action and



Entropy 2022, 24, 1168

9 of 24

consequently for specifying the expected position of the agent in the environment. After
calculating the temporal difference error A;(Q) between the Q-values in the target and in
the prediction network by Equation (19), the weights w in the prediction network are
updated, and the process continues with step [ + 1.

Note that in all the above definitions, the cumulative reward does not depend on the
previous trajectory of the agent. Hence, the process that governs the agent’s activity is a
Markov process with states that include the positions of the agent and the corresponding
probability maps. This property allows the use of an additional offline learning procedure
based on the knowledge of the targets” abilities.

Namely, if the abilities of the targets are known and can be represented in the form
of transition probability matrices that govern the targets’ motion, the learning process can
be conducted offline without checking the events occurring in the environment. In this
scenario, at step [, instead of the target location probabilities Pr{s(ci, D = 1]%;(c;, l)} and
Pr{s(c;, D) = 1|1%,(c,, D}, i,j = 1,2, ..., n, the networks use the probabilities of the expected
targets” locations Pr{s(c; 1) = 1|s(c;,I —1) =1} and Pr{s(c;!) =1|s(c;,l —1) =0} at
step | given the states of the cells at the previous step [ — 1.

Based on the previous definitions, these probabilities are defined as follows:

Pris(c;,1) = 1|s(¢c;, 1 — 1) = 1}

_ Pi=Dpraexp[-d(cic;)/] pi(l=1)(1=exp[-d(cic;)/2])° (20)
pi(l-D(1-a)+a pi(l-1)(1-pra exp[-d(cycj)/A])+(1-pi(1-1)) (1-apr 4 exp[-d(c;cj)/A])

and

Pr{s(c;, ) = 1|s(c;, 1 — 1) = 0}

_ pilt-Dapraexpl-a(cic))/A] pi(i=1)(1-exp[-d(ci.c;)/A]) (1-apra exp[-d(cic;)/2]) (21)

pil-D(1-)+a pi(1-1)(1-pra exp[-d(c;cj)/A])+(1-pi(1-1))(1-apra exp[-d(cicj)/2])

Since the presented procedure is based on certain knowledge about the targets’ ac-
tivity, it is called the model-based learning procedure.
The actions of the model-based offline learning procedure are illustrated in Figure 5.

Agent

maxaeg Q(c(l+ 1), P(L+ 1), a; w')

—

Qle, P, all);w)

Calculating temporal difference error

0

| A~ T~

—© O

| | | I .= I | ! | I l-=-
SN ; ; ;

Target network

2N

Prediction network
AI(Q) =l 1~

R(a)

——— s
| [P

Weights w for updating i

each r iterations L=

f c(+1),P(L+1)

cor A

} v

Updating probabilities

a()

Figure 5. The actions of the offline model-based learning procedure of the Q-max algorithm.

The model-based learning procedure differs from the model-free learning procedure
only in the use of the target location probabilities and the method of updating them. In
the model-free procedure, these probabilities are specified based on the events occurring
in the environment. In the model-free procedure, they are calculated by following the
Markov property of the system without referring to the real events in the environment.
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As a result, in the model-free procedure, the learning is slower than in the model-
based procedure. However, while in the first case, the agent learns during the detection
process and can act without any prior information about the targets’ abilities, in the sec-
ond case, it starts detection only after offline learning and requires an exact model of the
targets’ activity. Thus, the choice of a particular procedure is based on the considered
practical task and available information.

3.4. The Choice of the Actions at the Learning Stage

As indicated above, given the agent’s location c(l) and the targets’ probability map
P (1), the neural networks used at the learning stage provide nine output Q-values that
are associated with possible actions a, € A, k = 1,2, ...,9, namely,

Q(C(l)’ P(l)! all; W): Q(C(l)! P(l): 812; W)’ L Q(C(l)! P(l): 819; W)/

where a; =“1"” (“step forward”), a, =“ 7" (“step right-forward”), and so on up to
a9 = “ " (“stay in the current cell”).

The choice among the actions a, € A is based on the corresponding Q@ -values
Q(c(D),P(D),a;w), k=12,..9, and implements exploration and exploitation tech-
niques. At the initial step [ = 0, when the agent has no prior learned information about
the targets’ locations, action a(l) € A is chosen randomly. Then, after processing the step
prescribed by action a(l), the next action a(l + 1) is chosen either on the basis of the tar-
get location probabilities learned by the neural networks or randomly from among the
actions available at this step. The ratio of random choices decreases with the number of
steps, and after finalizing the learning processes in the neural networks, the actions are
chosen with respect to the @-values only.

Formally, this process can be defined using different policies, for example, with a
decaying e-greedy policy that uses the probability €, which decreases with the increase
in the number of steps from its maximal value € =1 to the minimal value € = 0. The
agent chooses an action randomly with probability € and according to the greedy rule
arg max Q(c(), P(1), a;w) with probability 1 — €. In this policy, the choice of the action is

«

governed by the probability € and does not depend on the Q-values of the actions.

A more sophisticated policy of intermittence between random and greedy choice is
the SoftMax policy. In this policy, the probability p(a,|Q;n) of choosing action a; is de-
fined with respect to both the parameter 7 € [0, +0) and the Q-values of the actions:

exp[Q(c(D.PW.aw)/n]
9, exp[Q(c),P@.apw)/n]

p(a,|Q;n) = (22)

Therefore, if n—> 0, then p(a,|Q;n) > 1 for a; =argmeal§<Q(c(l),P(l),al; w) and
a
p(a,|Q;n) » 0 for all other actions, and if n - o, then p(a,|Q;n) —>%, which corre-

sponds to a randomly chosen action. The intermediate values 0 <7 < oo correspond to
the probabilities p(a|@;n) € (0,1) and govern the randomness of the action choice. In
other words, the value of the parameter 7 decreases with the increasing number of steps
[ from its maximal value to zero; thus, for the unlearned networks, the agent chooses ac-
tions randomly and then follows the information about the targets’ locations learned by
the networks. The first stages with randomly chosen actions are usually interpreted as
exploration stages, and the later stages based on the learned information are considered
exploitation stages. In the simulations, we considered both policies and finally imple-
mented the SoftMax policy since it provides more correct choices, especially in cases with
relatively high Q-values associated with different actions.
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3.5. Outline of the Q-Max Algorithm

Recall that according to the formulation of the detection problem, the agent acts in
the finite two-dimensional domain C = {c;, ¢3, ..., ¢} and moves over this domain with
the aim of detecting ¢ <n — 1 hidden targets. At time t = 0,1,2, ... in cell c(t) € C, the
agent observes the domain (or, more precisely, screens the domain with the available sen-
sors) and creates the probability map P(t) = {p1(t), p2(t), ..., pn(t)}, where p;(¢t) is the
probability that at time t, cell ¢; is occupied by a target, i = 1,2, ..., n. Based on the prob-
ability map P(t), the agent chooses an action a(t) € A. By processing the chosen action
a(t), the agent moves to the next cell c¢(t + 1), and this process continues until the targets’
locations are detected. The agent’s goal is to find a policy of choosing the action that pro-
vides the fastest possible detection of all the targets with a predefined accuracy.

In contrast to the recently suggested algorithms [12,13], which directly implement
one-step decision making, the presented novel algorithm includes learning processes and
can be used both with model-free learning for direct online detection and with model-
based learning for offline policy planning and further online applications of this policy.
Since both learning processes follow the same steps (with the only difference being in the
source of information regarding the targets’ location probabilities), below, we outline the
Q-max algorithm with model-based learning.

The Q-max algorithm with model-based learning includes three stages: in the first
stage, the algorithm generates the training data set, which includes reasonable probability
maps with possible agent locations; in the second stage, it trains the prediction neural
network using the generated data set; and in the third stage, the algorithm solves the de-
tection problem by following the decisions made by the trained prediction neural net-
work. Algorithm 1 outlines the first stage that is generating of the training data set.

Algorithm 1. Generating the training data set

Input: domain C = {c,,cy, ..., cn},
set A={1,7,-,\1,4,<,N0} of possible actions,
probability pr, of true alarms (Equation (3)),
rate a of false alarms and their probability pr, = apr, (Equation (4)),
sensor sensitivity 4,
range [§;,§,] of possible numbers 0 < & < §, <n—1 of targets,
length L € (0,) of the agent’s trajectory,
number N € (0,) of agent trajectories,
initial probability map P(0) on the domain C.
Output:  data set thatisan L x N table of pairs (c,P) of agent positions ¢ and
corresponding probability maps P.
1. Create the L X N data table.
2. For each agent trajectory j =1,...,N do:
3. Choose anumber ¢ € [&,&,] of targets according to a uniform distribution on
the interval [&,,&,].
4.  Choose the target locations ¢y, c,, ..., ¢; € C randomly according to the uniform

distribution on the domain C.

5. Choose the initial agent position ¢(0) € C randomly according to the uniform
distribution on the domain C.

6. Forl=0,..,L—1 do:

7. Save the pair (c(l), P(1)) as the jth element of the data table.

8.  Choose an action a(l) € A randomly according to the uniform distribution on
the set A.

9. Apply the chosen action and set the next position c(l + 1) = a(c(l)) of the agent.

10. Calculate the next probability map P(! + 1) with Equations (20) and (21).

11. End for
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12. End for
13. Return the data table.

The data training data set includes N random trajectories of length L. Each element
of the data set is a pair of an agent position and a probability map.

The reason for generating the data instead of drawing it randomly is that the training
data set is used at the learning stage of the prediction network, so it should represent the
data in as realistic a form as possible. Since in the generated data set, the agent’s positions
are taken from the connected trajectory and the corresponding probability maps are cal-
culated with respect to these positions, possible actions, sensing abilities and environmen-
tal conditions, it can be considered a good imitation of real data.

The generated agent positions and corresponding probability maps are used as an
input of the prediction neural network in the training stage. The goal of the training is
specified by the objective probability map P* = {p1,p, ..., pn}, which defines the target
location probabilities that provide sufficient information for the immediate detection of
all the targets. In the best case, we have probabilities p; € {0,1}, and in practical scenarios,
it is assumed that either p; € [0,¢] or p; € [1 —¢,1] forcertain 0 < e K 1, i =1,2,..,n.

The training stage of the Q-max algorithm is implemented in the form of Algorithm
2, which is outlined below (the scheme of the learning procedure is shown in Figure 5).

Algorithm 2. Training the prediction neural network

Network structure:
input layer: 2n neurons (n agent positions and n target location probabilities,
both relative to the size n of the domain),
hidden layer: 2n neurons,
output layer: 9 neurons (in accordance with the number of possible actions).
Activation function:
sigmoid function f(x) =1/(1+e™¥).
Loss function:
mean square error (MSE) function.

Input: domain C = {¢;, ¢y, ..., Cp},

set A={1,7,-,%1,7,«N0} of possible actions,

probability pr, of true alarms (Equation (3)),

rate a of false alarms and their probability pr, = apr, (Equation (4)),

sensor sensitivity 4,

discount factor v,

objective probability map P* (obtained by using the value ¢),

number r of iterations for updating the weights,

initial value 7 (Equation (22)) and its discount factor &,

learning rate p (with respect to the type of optimizer),

number M of epochs,

initial weights w of the prediction network and initial weights w’' = w of the

target network,

training data set (that is, the L X N table of (c,P) pairs created by Procedure 1).
Output:  The trained prediction network.

Create the prediction network.

Create the target network as a copy of the prediction network.
For each epoch j =1,...,M do:

For each pair (c,P) from the training data set, do:

For each action a € A do:

Calculate the value Q(c, P, a;w) with the prediction network.
Calculate the probability p(a|Q;n) (Equation (22)).

NP
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8. End for.

9. Choose an action according to the probabilities p(a|Q;n).

10. Apply the chosen action and set the next position ¢’ = a(c) of the agent.
11. Calculate the next probability map P’ with Equations (20) and (21).

12. If P=P* or ¢’ € C, then

13. Set the immediate reward R(a) = 0.

14. Else

15. Calculate the immediate reward R(a) with respectto P and P’ (Equation (14)).
16. Endif.

17. For each action a € A do:

18. If P = P* then

19. Set Q(c’,P,a;w') =0.

20. Else

21. Calculate the value Q(c’,P’,a;w') with the target network.
22. Endif.

23. End for.

24. Calculate the target value Q* =R(a) +y max Q(c',P',a;w") (Equation (17)).

25. Calculate the temporal difference learning error as A;(Q) = Q* — Q(c, P, a; w) for
the chosen action a (Equation (19)) and set A;(Q) = 0 for all other actions.

26. Update the weights w in the prediction network by backpropagation with
respect to the error A;(Q).

27. Every r iterations, set the weights of the target network as w' = w.

28. End for.

The validation of the network was conducted on a validation data set that includes
the pairs (c, P), which are similar to the pairs appearing in the training data set but were
not used in the training procedure; the size of the validation data set is approximately ten
percent of the size of the training data set.

After training, the Q-max algorithm can be applied to simulated data or in a real
search over a domain. It is clear that the structure of the algorithm mimics the search con-
ducted by rescue and military services: first, the algorithm learns the environment (by
itself or at least by using the model) and then continues with the search in the real envi-
ronment, where the probability map is updated with respect to the received alarms and
acquired events (Equations (11) and (12)) and decision-making is conducted using the
prediction network.

3.6. The SPL Algorithm

Now let us consider the SPL algorithm. Formally, it follows the same ideas and im-
plements the same approach as the Q-max algorithm, but it differs in the definition of the
goal function. In the SPL algorithm, the goal function directly represents the aim of the
agent to detect all the targets in a minimal number of steps or to take a minimal number
of actions before reaching the termination condition.

In parallel to the reward R(a,t) defined by Equation (14) for action a € A con-
ducted at time t, we define the penalty or the price paid by the agent for action a € A at
time t. In the case of the shortest path length, the payoff represents the steps of the agent;
that is,

O(at) =1 (23)

for each time t = 1,2, ... until termination of the search. Note again that even if the agent
chooses to stay at its current position, the payoff is calculated as 1.

Then, given a policy m for choosing an action, the expected cumulative payoff of an
agent that starts in cell ¢(t) with probability map P(t) and chooses action a(t) is
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ple(c(®), P(),a(t)) = E,{¥:Z, 0(a,t + D)}, (24)
and the goal is to find the minimum value
SPL(c(t),P(t),a(t)) = min pl(c(t), P(©), a(t)) (25)

of the expected payoff pl, over all possible policies m that can be applied after action
a(t) is chosen at time t.
Then, the Bellman equation for calculating the defined minimal expected path length
is
SPL(c(t),P(t),a(t)) = 0(a,t) + min SPL(c(t + 1),P(t + 1),a), (26)
a

and the equations that define the training and functionality of the neural networks follow
this equation and have the same form as in the Q-max algorithm (with the obvious sub-
stitution of maximization by minimization and the use of y = 1).

4. Simulation Results

The suggested algorithm was implemented and tested in several scenarios and its
functionality was compared with the functionality of previously developed heuristic al-
gorithms and, in certain simple setups, with the algorithm that provides optimal solution.
Numerical simulations include training of neural network, simulation of the detection
process by Q-max and SPL algorithms and their comparisons with heuristic and optimal
solutions.

Numerical simulations were implemented using basic tools of the Python program-
ming language with the PyTorch machine learning library, and the trials were run on a
PC Intel® Core™ i7-10700 CPU with 16 GB RAM. In the simulations, the detection was
conducted over a gridded square domain of size n = n, X n, cells, and it was assumed
that the agent and each target could occupy only one cell. Given this equipment, we meas-
ured the run time of the simulations for different datasets, which demonstrated that the
suggested algorithms are implementable on usual computers and do not require specific
apparats for their functionality.

4.1. Network Training in the Q-Max Algorithm

First, let us consider the simulation of the network training. The purpose of these
simulations is to verify the training method and demonstrate a decrease in the temporal
difference learning error A(Q) with an increasing number of learning epochs. Since the
network training is the same for both the Q-max and SPL algorithms, we consider the
training for the Q-max algorithm.

The training data set was generated using the parameters n = 10 x 10 = 100, py, =
1, a=05, =15, § =1, § =10, L =50, N =200 and p;(0) =0.05, i =1,2,..,n.
The size of the training data set was 10 000.

The input parameters in the simulation used the same values of n = 10 x 10 = 100,
pra =1, a =0.5, and A = 15, and we also specified y = 0.9 and P* with € = 0.05, r =
5, 7 =100000, 6 = 0.99 and p = 0.001. The number of epochs in the simulation was
M = 30.

The initial weights w were generated by the corresponding procedures of the
PyTorch library. The optimizer used in the simulation was the ADAM optimizer from the
PyTorch library.

The average time required for training the prediction neural network was approxi-
mately 10 min (on the PC described above), which is a practically reasonable time for an
offline procedure. Note that after offline training, online decision-making is conducted
directly by immediate choice without additional calculations.
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The results of the simulations are shown in Figure 6. The presented graph was ob-
tained by averaging the temporal difference learning errors over 10,000 pairs in the data
set.

Difference learning error with respect to the number of epochs

5 training
:]-:H 1.5 — = = -validation | |
o
o 1 4
)]
=
£ 051 ]
@
g N =
0 . . . ! !
0 5 10 15 20 25 30

Training epoch t

Figure 6. The change in the temporal difference learning error with respect to the number of training
epochs. The solid line is associated with the training stage, and the dashed line is associated with
the validation stage.

The temporal difference learning error decreases both in the training stage and in the
validation stage of the learning process, and the smoothed graphs for both stages are ex-
ponential graphs with similar rates of decrease. This validates the effectiveness of the
learning process and shows that progress in the network training leads to better pro-
cessing of previously unknown data from the validation data set.

4.2. Detection by the Q-Max and Spl Algorithms

In the next simulations, we considered the detection process with the proposed Q-
max and SPL algorithms and compared both algorithms with random detection, which
provides the lower bound of the cumulative reward (for the Q-max algorithm) and payoff
(for the SPL algorithm).

Both algorithms used the same neural network as above, and the random detection
process was initialized with the same parameters as above. However, for better compari-
son, in the simulations of both algorithms and of random detection, we used the same
number of targets { = 2, which were located at the points (5,0) and (0,9), and the initial
position of the agent was ¢(0) = (9,4). By choosing these positions of the targets and the
agent, it is easy to demonstrate (a) the difference between the search processes (in which
the agent first moves to the closer target and then to the distant target) and the detection
process (in which the agent moves to the point that provides the best observation of both
targets) and (b) the motion of the agent over the domain to maximize the immediate re-
ward or minimize the immediate payoff.

The results of the simulations are shown in Figure 7. Figure 7a shows the discounted
cumulative reward for the Q-max algorithm in comparison with that of the random de-
tection process, and Figure 7b shows similar graphs for the SPL algorithm and the random
detection process.
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Figure 7. Discounted cumulative reward of detection by the Q-max algorithm (a) and cumulative
payoff of detection by the SPL algorithm (b) compared with the results obtained by the random
detection procedure. The solid line in both figures is associated with the suggested algorithms (Q-
max and SPL), and the dashed line is associated with the random choice of actions.

The detection by the proposed algorithms is much better than the detection by the
random procedure. Namely, the Q-max algorithm results in 20.5 units of discounted cu-
mulative reward, while the random procedure achieves only 13.4 units of discounted re-
ward in the same number of steps. In other words, the Q-max algorithm is nearly 1.5
times more effective than the random procedure. Similarly, while the random procedure
requires 40 steps to detect the targets, the SPL algorithm requires only 20 steps, which
means that the SPL algorithm is 50% better than the random procedure.

From these comparisons, it follows that the suggested algorithms outperform the
random procedure in terms of both the informational reward and the agent’s path length.
However, as follows from the next simulations, the numbers of agent actions up to termi-
nation in the Q-max and SPL algorithms are statistically equal, allowing either algorithm
to be applied with respect to the considered practical task.

4.3. Comparison between the Q-Max and Spl Algorithms and the Eig, Cov and Cog Algorithms

The third set of simulations included comparisons of the suggested Q-max and SPL
algorithms with the previously developed heuristic methods [12,13], which implement
one-step optimization.

The simplest algorithm is based on the expected information gain, which is an imme-
diate expected information reward

EIG(a,t) = R(a,t) = Dg,(P.(t + DI||P(D)). (27)
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as above, here, P,(t + 1) stands for the probability map that is expected to represent the
targets’ locations at time t + 1 given that at time t, the agent chooses action a(t) € A
and P(t) is the current probability map. Then, the next action is chosen as

a(t+1) =arg max EIG(a,t). (28)

A more sophisticated algorithm addresses the center of view, which is defined as the
cell in which the agent can obtain the maximal expected information gain

CoV(t) = argmax Dy, (P.(t + 1|IP(1)), (29)

where P.(t + 1) is a probability map that is expected to represent the targets’ locations at
time t + 1 when the agent is located in cell c. Then, the next action is chosen as

a(t+1) = arg min d (COV(t),al(c(t))), (30)

where d (C ov(t), al(c(t))) is the distance between the center of view COV(t) and cell

a(c(t)), to which the agent moves from its current location c(t) when it executes action
a. Note that in contrast to the next location c(t + 1), which is one of the neighboring cells
of the current agent location c¢(t), the center of view COV(t) is a cell that is chosen from
among all n cells of the domain.

Finally, in the third algorithm, the next action is chosen as

a(t+1) =arg gg{g d (COG(t), al(c(t))), (31)

where COG(t) stands for the “center of gravity”, which is the first moment of the proba-
bility map P(t), and the remaining terms have the same meanings as above.

The Q-max and SPL algorithms used the same neural network as above and were
initialized with the same parameters. As above, for all the algorithms, the agent started in
the initial position ¢(0) = (9,4) and moved over the domain with the aim of detecting
& = 2 targets.

The first simulations addressed the detection of static targets, which, as above, were
located at points (5,0) and (0,9).

The results of the detection by different algorithms are summarized in Table 1. The
results represent the averages over 30 trials for each algorithm.

Table 1. Number of agent actions and the discounted cumulative information gain in detecting two
static targets for the false alarm rate a = 0.5.

. Number of Actions up to Number of Actions up to Discounted
Detection . . . .
R Detection of the First Detection of the Cumulative
Algorithm . .
Target Second Target Information Gain
Random 25 45 13.4
EIG 17 27 17.1
cov 17 24 17.5
coG 18 29 16.1
Q-max 15 21 20.5
SPL 14 21 20.1

The table shows that the proposed Q-max and SPL algorithms outperform previously
developed methods in terms of both the number of agent actions and the value of the
discounted cumulative information gain.

The results of the simulations over time are shown in Figure 8. Figure 8a shows the
discounted cumulative reward for the Q-max algorithm in comparison with the COV al-
gorithm (the best heuristic algorithm) and the random detection process, and Figure 8b
shows similar graphs for the SPL algorithm compared to the COV algorithm and the ran-
dom detection process.
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Figure 8. Cumulative reward of detection by the Q-max algorithm for static targets (a) and cumula-
tive payoff of detection by the SPL algorithm for static targets (b) compared with the results ob-
tained by the COV algorithm.

The detection by the suggested algorithms is better than the detection by the COV
algorithm. Namely, the Q-max algorithm results in 20.5 units of discounted cumulative
reward, while the COV algorithm obtains 17.5 units of discounted reward in the same
number of steps. In other words, the Q-max algorithm is nearly 1.15 times more effective
than the COV algorithm. Similarly, while the COV algorithm requires 25 steps to detect
the targets, the SPL algorithm requires only 20 steps, which means that the SPL algo-
rithm is 25% better than the COV algorithm.

The second simulations addressed the detection of moving targets, which started in
the initial positions (5,0) and (0,9). Regarding the targets’ motion, it is assumed that
both of them, at each time t = 1,2, ..., can apply one of the possible actions from the set
A={1,7-\1"0]} so that the probability of the action © is Pr{a(t) =0} =0.9
and the probability of each other action a € A\© is (1 —0.9)/8 = 0.0125.

The results of detection by different algorithms (averaged over 30 trials for each al-
gorithm) are summarized in Table 2.

Table 2. Number of agent actions and the discounted cumulative information gain in detecting two
moving targets for the false alarm rate @ = 0.5.

Detection Number of Actions up to  Number of Actions up to Discounted
. Detection of the First Detection of the Second Cumulative
Algorithm . .
Target Target Information Gain
Random 72 105 21.8
EIG 50 65 27.1
cov 49 62 28.7
coG 55 67 26.2
Q-max 32 45 33.2

SPL 31 43 32.1




Entropy 2022, 24, 1168

19 of 24

In the detection of moving targets, the suggested Q-max and SPL algorithms also
outperform previously developed methods in terms of both the number of agent actions
and the value of the discounted cumulative information gain.

Note that the simulation was conducted for targets with a clear motion pattern,
where the probabilities of the targets” actions represent slow random motion of the targets
near their initial locations. Another possible reasonable motion pattern is motion with a
strong drift in a certain direction, which results in a similar ratio between the numbers of
actions and the discounted cumulative information gains to that presented in Table 2.

In contrast, if the random motion of the targets is a random walk with equal proba-
bilities Pr{a(t) = a} = 1/9 for all actions a € A, then the training becomes meaningless
since both with and without training, the agent needs to detect randomly moving targets.

The other results obtained for the Q-max/SPL algorithms also indicated better per-
formance by these algorithms compared with that of the heuristic algorithms. The algo-
rithms were compared with the best heuristic COV algorithm. The results of the trials for
different values of the false alarm rate a and of the sensor sensitivity A are summarized
in Table 3.

Table 3. The number of agent actions in detecting two static targets for different values of the false
alarm rate a and of the sensor sensitivity A.

Sensor Algorithm False Alarm Rate
Sensitivity a=0.25 a=0.5 a=0.75
1=15 COV 14 25 63
SPL/Q-max (average) 13 20 45
l=c COV 64 95 242
B SPL/Q-max (average) 44 54 63

For all values of the false alarm rate and the sensor sensitivity, the Q-max and SPL
algorithms strongly outperform the best heuristic COV algorithm.

To emphasize the difference in the detection time between the suggested SPL and Q-
max algorithms and the heuristic COV algorithm, the data shown in the table are depicted
in Figure 9.
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250 250
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w [ go " [ o
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Figure 9. The number of agent actions in detecting two static targets with the SPL/Q-max algorithms
(black bars) and the COV algorithm (gray bars): (a) 4 = 15 and (b) 4 = 10.

As expected, the Q-max and SPL learning algorithms demonstrate better perfor-
mance than the heuristic COV algorithms without learning, and the difference between
the algorithms increases as the false alarm rate a increases and the sensor sensitivity A
decreases. For example, if A = 15 and a = 0.25, then the improvement in the number of
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actions is 10%, while if A =5 and a = 0.75, then the improvement is significantly
stronger at 75%.

In other words, computationally inexpensive heuristic algorithms provide effective
results in searches with accurate sensors and a low rate of false alarms. However, in
searches with less precise sensors or with a high rate of false-positive errors, the heuristic
algorithms are less effective, and the Q-max and SPL learning algorithms should be ap-
plied.

4.4. Comparison between the Spl Algorithm and an Algorithm Providing the Optimal Solution

The suggested approach was compared with the known dynamic programming tech-
niques implemented in search algorithms for moving targets [11,20]. Since the known al-
gorithms directly address the optimal trajectory of the agent and result in an optimal path,
in the simulation, we considered the SPL algorithm, which uses the same criteria as the
known algorithms.

The comparisons were conducted as follows. The algorithms were trialed over the
same domain with a definite number n of cells, and the goal was to reach the maximal
probability P* = 0.95 of detecting the target. When this probability was reached, the trial
was terminated, and the number of agent actions was recorded.

Since the known algorithms [11,20] implement dynamic programming optimization
over possible agent trajectories, their computational complexity is high, and for the con-
sidered task, itis O(n-9%), where n is the number of cells and t is the number of actions.

Therefore, to finish the simulations in reasonable time (120 min for each trial), the
algorithms were trialed on a very small case with n = 10 X 10 = 100 cells. Note that in
the original simulations, these algorithms were trialed on smaller cases. If the desired
probability P* = 0.95 of detecting the targets was not reached in 120 min, the algo-
rithms were terminated.

In all trials, the known dynamic programming algorithms planned t = 7 agent ac-
tions in 120 min, while the suggested SPL algorithm, in the same time of 120 min,
planned significantly more actions and reached at least the desired probability P* = 0.95
of detecting the targets. The results of the comparison between the SPL algorithm and the
known dynamic programming algorithms that provide optimal solutions are summarized
in Table 4.

Table 4. Number of planned agent actions in detecting two static targets by the SPL algorithm and
dynamic programming (DP) algorithm for different values of the false alarm rate @ and of the sen-
sor sensitivity A.

Sensor False Alarm Rate
Algorith Ch. teristi
Sensitivity gorithim aracteristie a=0 a=005 =01 a=025 a=05
Run time 04 s 1 min 120 min 120 min 120 min
Number <.)f planned 3 < ; ; ;
DP actions
Detection probabilities 1.0 1.0 0.99 0.90 0.84
1=15 p1 and p, 1.0 0.99 0.96 0.84 0.68
B Run time 04 s 1 min 120 min 120 min 120 min
Number of planned
7 1 2
SPL actions 3 > 3 0
Detection probabilities 1.0 1.0 0.99 0.99 0.99
p1 and p, 1.0 0.99 0.96 0.95 0.95
Run time 1 min 120 min 120 min 120 min 120 min
Number ?f planned 5 7 7 7 7
1=10 DP actions
Detection probabilities 1.0 0.96 0.90 0.85 0.71
p, and p, 1.0 0.95 0.85 0.65 0.43
SPL Run time 1 min 120 min 120 min 120 min 120 min
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Number of planned

. 5 7 15 21 32

actions
Detection probabilities 1.0 0.96 0.97 0.98 0.99
p; and p, 1.0 0.95 0.95 0.95 0.95

Until termination at 120 min, the SPL algorithm plans more agent actions and re-
sults in higher detection probabilities than the DP algorithm for both values of sensor
sensitivity A and for all values of the false alarm rate a. For example, the dependence of
the detection probabilities on the run time for sensor sensitivity 4 = 15 and false alarm
rate @ = 0.25 is depicted in Figure 10.

Detection probability: SPL algorithm vs DP algorithm
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Figure 10. Dependence of the detection probabilities on the number of planned actions for the SPL
algorithm (solid line) and DP algorithm (dotted line); the sensor sensitivity is 4 = 15, the false alarm
rate is @ = 0.25, and the termination time is t = 120 min.

For the first 7 actions, the detection probabilities of both algorithms increase simi-
larly. Then, the DP algorithm does not plan additional actions in 120 min, while the SPL
algorithm results in more planned actions, and the detection probabilities for these actions
continue increasing until termination after 13 planned actions.

Finally, the dependence of the detection probabilities on the false alarm rate a at
termination after 120 min is depicted in Figure 11.

Detection probability: SPL algorithm vs DP algorithm
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Figure 11. Dependence of the detection probabilities on the false alarm rate a for sensor sensitivi-
ties A = 15 (dotted line) and A = 10 (dashed line). The probability 0.95 for the SPL algorithm and
all values of a is depicted by the solid line. The termination time is 120 min.

For a low false alarm rate a, the SPL algorithm results in the same detection proba-
bilities as the optimal DP algorithms, but for a higher false alarm rate a, the detection
probabilities obtained by the DP algorithms significantly decrease (to 0.68 and 0.43 for
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A =15 and 4 = 10, respectively), while the probability obtained by the SPL algorithm is
0.95 for any false alarm rate and both sensor sensitivities.

4.5. Run Times and Mean Squared Error for Different Sizes of Data Sets

Finally, we considered the dependence of the run time and mean squared error on
the size of the data set. The results of these simulations are summarized in Table 5.

Table 5. Run times and temporal difference errors with respect to the size of the data set.

Number of Nonzero

Domain Size . . Size of the Run Time for One Mean Squared
Weights in the Neural . .
n, xn, Data Set Epoch [Minutes] Error
Network

5000 4 0.13
10 x 10 42,009 10,000 8 012

5000 7 0.15
2020 648,009 10,000 14 0.13

5000 10 0.18
40 x 40 10,272,009 10,000 20 015

* The error was calculated over the temporal difference errors at the validation stage at epoch t =
30.

While the size of the domain and the number of links in the network exponentially
increase, the mean squared error increases very slowly and remains small. In addition, it
is seen that with an exponentially increasing domain size, the run time increases linearly,
and the computations require a reasonable time even on the previously described PC.
However, for realistic engineering and industrial problems with larger domains, it is rea-
sonable to use computation systems with greater GPU power.

5. Discussion

This paper presents a novel algorithm for the navigation of mobile agents detecting
static and moving hidden targets in the presence of false-positive and false-negative er-
rors. The suggested algorithm continues in the direction of previously developed proce-
dures [12,13] for seeking and detecting hidden targets. However, in contrast to these pro-
cedures, which follow an immediate one-step decision making process, the proposed
method implements the deep Q-learning approach and neural network techniques.

The suggested algorithm is implemented in two versions: a procedure that maxim-
izes the cumulative discounted expected information gain over the domain (Q-max algo-
rithm) and a procedure that minimizes the expected path length of the agent in detecting
all the targets (SPL algorithm). Formally, the first procedure is an extension of previously
developed techniques based on the expected information gain calculated over the local
neighborhood of the agent, while the second is a direct application of Q-learning tech-
niques to the required value of the agent’s path length.

The simulations show that after offline training of the neural network using the gen-
erated data set, the algorithm provides solutions that outperform the results obtained by
the previously developed procedures, both in terms of the cumulative information gain
and in terms of the agent’s path length. Moreover, the expected number of actions ob-
tained by the Q-max algorithm by maximizing the cumulative discounted expected infor-
mation gain is statistically equal to the number of actions obtained by the SPL algorithm
by minimizing the expected path length. This equivalence follows directly from the nature
of the problem: in terms of information, the detection of the targets means accumulating
as much information as possible about the targets’ locations, and in terms of the path
length, the detection of the targets means making as few movements as possible in order
to specify the exact target locations.
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6. Conclusions

This paper considered the detection problem for multiple static and moving targets
hidden in a domain, directly extending the classical Koopman search problem. Following
previously developed methods, we addressed detection with both false-positive and
false-negative detection errors.

In the exploration stage, the suggested algorithm implements the deep Q-learning
approach and applies neural network techniques for learning the probabilities of the tar-
gets’ locations and their motion patterns; then, in the exploitation stage, it chooses actions
based on the decisions made by the trained neural network.

The research suggested two possible procedures. In the first, called the model-free
procedure, the agent detects the targets in the environment and simultaneously, online,
learns the environment and trains a neural network that supports the agent’s decision-
making processes. In the second procedure, called the model-based procedure, the agent
begins detection only after offline learning and requires an exact model of the targets’
activity.

The results obtained by maximizing the discounted cumulative expected information
gain and by minimizing the expected length of the agent’s path demonstrate that the sug-
gested algorithm outperforms previously developed information-based procedures and
provides a nearly optimal solution even in cases in which the existing techniques require
an unreasonable computation time.

The proposed algorithms were implemented in the Python programming language
and can be used both for further development of the methods of probabilistic search and
detection and for practical applications in the appropriate fields.
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