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Abstract: Traders who instantly react to changes in the financial market and place orders in mil-
liseconds are called high-frequency traders (HFTs). HFTs have recently become more prevalent and
attracting attention in the study of market microstructures. In this study, we used data to track
the order history of individual HFTs in the USD/JPY forex market to reveal how individual HFTs
interact with the order book and what strategies they use to place their limit orders. Specifically, we
introduced an 8-dimensional multivariate Hawkes process that included the excitations due to the
occurrence of limit orders, cancel orders, and executions in the order book change, and performed
maximum likelihood estimations of the limit order processes for 134 HFTs. As a result, we found
that the limit order generation processes of 104 of the 134 HFTs were modeled by a multivariate
Hawkes process. In this analysis of the EBS market, the HFTs whose strategies were modeled by
the Hawkes process were categorized into three groups according to their excitation mechanisms:
(1) those excited by executions; (2) those that were excited by the occurrences or cancellations of limit
orders; and (3) those that were excited by their own orders.

Keywords: high-frequency trader; multivariate Hawkes process; econophysics; forex market

1. Introduction

To gain a deeper understanding of the mechanisms of financial markets, it is necessary
to clarify the order strategies of individual market participants. In financial markets, recent
developments in information technology have made it possible to track the transactions
of individual market participants in detail. These technological advances have led to the
analysis of the trading strategies of individual market participants and how these strategies
affect financial markets. For example, Odean [1], and Grinblatt and Keloharju [2], reported
the relationship between historical returns and market participants’ decisions to buy and
sell stocks. The position management strategies of individual market participants were
analyzed based on the data, which confirmed that these strategies actually affected market
prices in the near future [3]. Individual strategies for placing buy and sell orders in response
to market price changes were approximated using a simple mathematical model, and the
basic statistical properties of financial Brownian motion were theoretically derived based
on the kinetic theory in a manner parallel to traditional statistical physics [4–6].

In particular, high-frequency traders (HFTs) have recently attracted attention. HFTs
are algorithmic traders who can react to market changes in milliseconds and place or cancel,
buy and sell orders at high frequencies [7]. Because of the development of information
technology, they have a large presence in financial markets around the world. In fact, HFTs
accounted for 68.3% of the total trading volume in the stock market [8]. Furthermore, HFTs
currently account for the majority of orders shown in the order book [9–11]. The availability
of high-frequency trading data has triggered the academic study of HFTs [12,13]. Previous
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studies have generally agreed that HFTs make market spreads smaller and enhance market
liquidity [8,14,15]. As an indicator for predicting the short-term volatility of market prices
from the order book information, the volume-synchronized probability of informed trading
(VPIN) has been proposed and actively studied [16–20]. In addition, informed trading
using the advantage of information such as public news and confidential information has
been studied using high-frequency data [21–25]. We believe that it is crucial to gain a deep
understanding of their trading behavior in current financial markets, where HFTs provide
most of the liquidity.

In this study, we used a multivariate Hawkes process to investigate the processes
used by individual HFTs for generating sell and buy limit orders in the USD/JPY forex
market, and clarified when each HFT placed buy–sell limit orders. The Hawkes process is a
type of non-homogeneous Poisson process proposed by Hawkes [26]. As will be explained
later, it is characterized by an intensity function which determines the probability of the
occurrence of an event in a point process. It utilizes an excitation term that is affected
by past events, and can describe a point process associated with past events. Similar
ideas have been independently introduced for financial markets to explain the strong
correlation to past events, such as the “autoregressive conditional duration model” [27] and
“self-modulation processes” [28]. The Hawkes process is a useful model for interpreting
financial phenomena, in which many factors interact to produce complex aspects. In this
paper, we show that it is also useful for interpreting the behavior of HFTs. Specifically,
we introduced a multivariate Hawkes process in which the process of generating HFTs’
buy–sell limit orders is mutually excited by a total of eight events, such as the creation of
limit orders, the cancellation of limit orders, and execution in the order book, showing that
the order behaviors of many HFTs can be modeled by the Hawkes process.

Hawkes processes [29] have various applications in the financial field, such as those
related to volatility clustering [30], market activity and risk [31–33], and market impact [34].
In particular, the Hawkes process has been actively employed as an approach to the dy-
namic description of order books, where a set of order types is specified and a multivariate
Hawkes process is fitted to their timestamps [35–41]. However, there has been no study
that used a multivariate Hawkes process to investigate the order generation processes of
individual HFTs. In today’s financial markets, where the majority of order books are made
up of HFTs’ orders, our empirical results provide new information from a more micro-
scopic perspective. We believe that this study shed light on how HFTs provide liquidity to
the market.

The remainder of this paper is organized as follows. Section 2 explains the datasets
and describes the HFTs that were analyzed in this research. Section 3 introduces the
multivariate Hawkes process and describes the method used for parameter estimation.
In Section 4, a clustering analysis of 134 HFTs is introduced to categorize their strategies
based on the estimated Hawkes’ parameters. In Section 5, we discuss our results.

2. Data

First, we provide a basic description of the order data for the USD/JPY forex market
(EBS market), along with individual trader IDs (see Section 2.1). We then define the HFTs
in this market (see Section 2.2) and show some examples to explain how their buy–sell
limit order generation is linked to changes in the order book (see Section 2.3).

2.1. EBS Market Data Description

In this study, we used high-frequency data for the USD/JPY forex market provided
by the EBS. EBS is an interbank forex market and one of the largest financial platforms in
the world. Because it is an interbank market, most market participants are professional
traders from banks, hedge funds, and other financial institutions, and our forex dataset
contains their trading data. Our dataset contains information from five days (from 21:00
GMT on 5 June 2016 to 21:00 GMT on 10 June 2016), with a total of approximately 2.8
million orders and a transaction volume of USD 68 billion corresponding to this period.
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Table 1 shows an example of the raw data we used. The data for each of the 2.8 million
orders contained not only the order type, price, volume, and timestamp (in milliseconds),
but also an anonymized trader ID that could identify who submitted the order. Using
these trader IDs, we could track individual traders’ full orders in milliseconds. In addition,
the minimum price unit that a trader could submit was JPY 0.005, and the minimum
transmission volume was USD 1 million.

Table 1. Examples of raw data. Each order datum is tied to an anonymized trader ID.

Date Order Time Trader ID Order Type USD/JPY Volume Deal Time

5 June 2016 21:00:12.946 578 Sell limit 106.515 1 –
5 June 2016 21:01:13.647 HT6 Buy cancel 105.390 2 –
5 June 2016 21:02:20.148 JR1 Buy limit 105.405 1 21:02:20.499
5 June 2016 21:02:20.499 HSH Sell market 105.405 1 21:02:20.499
5 June 2016 21:03:00.950 7KP Bid market 106.470 1 –

...
...

...
...

...
...

...
10 June 2016 20:59:20.148 HT6 Buy Limit 107.405 3 20:59:29.072

The EBS market is open 24 h a day from Monday morning to Friday at midnight, and
trading is conducted via a double auction system in the order book. Figure 1 shows a
schematic of the trading in the order book, where the horizontal axis is the price and the
vertical axis is the volume. There are six order types for trading: buy/sell limit orders,
buy/sell cancel orders, and buy/sell market orders. Limit orders are submitted at the
trader’s desired price and remain in the order book until traded or cancelled. Cancel orders
are submitted by a trader to cancel a limit order that they previously submitted. Market
orders are submitted at the current best limit price. Transactions that are executed by buy
market orders are called hit sell transactions, and transactions executed by sell market
orders are called hit buy transactions (see Figure 1). If the best price worsens (e.g., the best
sell limit price becomes higher) before the market receives the market order at the best
price, the market order is automatically invalidated. In fact, this study found that 79.5% of
the market orders were invalidated without being executed.

Figure 1. Schematic of trading in order book. In the EBS market, even a sell (buy) limit order becomes
a hit buy (sell) if a buy (sell) limit order at the same price is already in the order book.

Figure 2a shows the average trading price per 10 min window over the 5 days we
analyzed. During this period, there are no market crashes or spikes. Figure 2b shows the
number of each type of order per day, which looks stable.



Entropy 2022, 24, 214 4 of 17

Figure 2. (a) Average trading price per 10 min window; (b) daily number of orders for the 6 types of
orders in unit of 105.

2.2. Definition of HFTs

“HFTs” is a general term for traders who place and cancel orders at high speed and
high frequency according to an algorithm, but there are various definitions. In this study,
we define an HFT as a trader who places both buy and sell limit orders and presents an
average of 500 or more limit orders per day following the previous report written by a
researcher from EBS [9]. Based on this definition, the number of HFTs was 134 out of the
1031 traders included in this 5-day data set. These 134 HFTs accounted for 89.6% of the
market’s total number of limit orders.

Figure 3a shows the histogram of the minimum time interval between orders for
each HFT. There is no description in the data to identify whether the ID is a human or a
computer; however, Figure 3a shows that most of the intervals are within 0.1 s, which are
difficult for a human to execute.

In Figure 3b, we plot the number of HFTs and non-HFTs participating in the market
every hour, indicating that the number of HFTs is relatively stable compared to non-HFTs.
Figure 3c shows the percentage of limit orders placed by HFTs every hour, demonstrating
that the majority of the limit orders are provided by the HFTs.

Figure 3. (a) Histogram of the minimum time intervals between orders for 134 HFTs individually;
(b) hourly changes in the number of HFTs and non-HFTs participating in trading; and (c) hourly
change of the percentage of limit orders provided by HFTs.

2.3. Basic Properties of HFTs

In this study, we focused on the limit order generation process of HFTs, which ac-
counted for the majority of limit orders in the order book. Naturally, the order strategies
(i.e., the processes used to submit limit orders) of HFTs differed from every algorithm.
However, it is natural for them to see the quotes in the order book when submitting their
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limit orders. Figure 4a,b plot the numbers of buy–sell limit orders per 10 min window for
three HFTs, respectively, and Figure 4c plots the numbers for six types of orders in the
order book. From Figure 4, we can observe that the numbers of buy–sell limit orders from
the three HFTs increased or decreased simultaneously and tended to be in sync. More
interestingly, the numbers of these HFTs’ buy–sell limit orders tend to be in sync with the
numbers for each type of order in the order book where all market participants’ orders are
submitted. Since the above synchronization phenomenon was confirmed for many HFTs,
we believe that many HFTs react instantaneously to some changes in the market when
submitting limit orders.

Figure 4. Numbers of (a) sell limit orders and (b) buy limit orders per 10 min window for three HFTs
(green: HFT with 4th highest order frequency; purple: HFT with 7th highest order frequency; yellow:
HFT with 10th highest order frequency). (c) Numbers for six types of orders per 10 min window in
the order book (red: sell limit order; blue: buy limit order; red dotted line: sell cancel; blue dotted
line: buy cancel; orange: hit sell; sky blue: hit buy). The vertical axis of each figure shows the number
of each type of order per 10 min window, and the horizontal axis shows the time from 0:00 to 18:00
on 6 June 2016.

3. Method

The preceding section showed that the limit order generation processes of the HFTs
tended to be in sync with traders’ orders or orders in the order book. To clarify how
134 HFTs’ buy–sell limit orders react to the other order events, their order processes are
modeled by the multivariate Hawkes process. In this section, we introduce the multivariate
Hawkes process that we used in this study (see Section 3.1) and explain the parameter
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estimation method based on maximum likelihood estimation (see Section 3.2). We then
describe the validity of the estimation results (see Section 3.3).

3.1. Model

This section presents an overview of the Hawkes process and introduces our model.

3.1.1. Mathematical Notation

Let us consider point process {ti}, which is a sequence of non-negative random
variables such that ∀i ∈ N, ti < ti+1. For point process {ti}, the conditional intensity
function is defined as follows [42]:

λ(t | Ht) = lim
∆t→0

P{N(t + ∆t)− N(t) = 1 | Ht}
∆t

(1)

where P{A|B} represents the probability of A under condition B, N(t) is the cumulative
number of event occurrences at time t (i.e., a counting process), and Ht is the history of
the process up to time t containing a sequence of event times {ti} (i.e., a filtration). As can
be seen from the definition, λ(t | Ht)∆t represents the probability of an event occurring in
time interval [t, t + ∆t). Here, we use the shorthand notation λ(t) ≡ λ(t | Ht), assuming
the history up to time t, and we call the Poisson parameter λ(t) an intensity function.

3.1.2. Overview of Hawkes Process

The Hawkes process is a point process in which the intensity function is affected
by the occurrence of past events. Let {ti} be a point process, and N(t) be the associated
counting process, and the intensity function of the generalized Hawkes process is defined
as follows [43]:

λ(t) = c +
∫ t

−∞
φ(t− s)dN(s) = c + ∑

ti<t
φ(t− ti) (2)

where c is a positive constant showing a base intensity, and φ(t) is a kernel function that
expresses the effect of event ti from the past on the current intensity [44]. There are various
types of kernel functions, and their properties have been well studied. In this study, we
applied an exponential kernel αe−βt, which is a popular kernel function that was originally
proposed by Hawkes [26]. We call this Hawkes process a univariate Hawkes process
because it is affected by its own events.

The Hawkes process can be extended to a multivariate model in which several types of
point processes interact with each other. Let {ti} ≡ {{t1,i}, {t2,i}, . . . , {tM,i}} be M-variable
point processes, and N(t) = {N1(t), N2(t), . . . , NM(t)} be the associated counting process,
the intensity function of a multivariate Hawkes process for point process {tn,i} is defined
as follows [43]:

λn(t) = cn +
M

∑
m=1

∫ t

−∞
φn,m(t− s)dNm(s) = cn +

M

∑
m=1

∑
tm,i<t

φn,m(t− tm,i) (3)

As in the case of the univariate Hawkes process, cn is a positive constant showing
a base intensity, and φn,m(t) is a kernel function that expresses the effect of event tm,i
from the past on the current intensity. In this case, φn,m(t) = αn,me−βn,mt, with positive
constant parameters αn,m and βn,m, and the intensity function for point process {tn,i} is
given as follows:

λn(t) = cn +
M

∑
m=1

∫ t

−∞
αn,me−βn,m(t−s)dNm(s)

= cn +
M

∑
m=1

∑
tm,i<t

αn,m exp(−βn,m(t− tm,i)) (4)
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Figure 5 is a schematic of this intensity function (Equation (4)). The intensity function,
λn(t), increases αnm at event time tn,i and exponentially decays with a time constant of
1/βnm. Thus, λn(t) is excited not only by its own events, but also by other events, and the
multivariate Hawkes process can represent such mutual interactions.

Figure 5. Schematic showing an example of the time evolution of the intensity function for a
multivariate Hawkes process with the exponential kernel φn,m(t) = αn,me−βn,mt.

The quantity, ρn,m, expressed in the following equation (Equation (5)) in the case of
an exponential kernel is called the branching ratio [45,46]. This is the expectation of the
number of occurrences of event n caused by the occurrence of event m. A larger value
for this number represents a greater impact of event m on event n, and this value is an
important quantity for interpreting the Hawkes process:

ρn,m ≡
αn,m

βn,m
=

∫ ∞

tm,i

αn,m exp(−βn,m(t− tm,i))dt (5)

3.1.3. Trader Model

In this study, the buy and sell limit order processes of 134 HFTs are modeled by
eight-variable Hawkes processes with exponential kernels that are excited by a total of
eight-point processes. These eight types were the target HFTs’ sell limit (TS) and buy limit
(TB), and six types of orders in the order book: sell limit (SL); buy limit (BL); sell cancel
(SC); buy cancel (BC); hit sell (HS); and hit buy (HB).

Let {ti} ≡ {{tTS,i}, {tTB,i}, {tSL,i}, {tBL,i}, {tSC,i}, {tBC,i}, {tHS,i}, {tHB,i}} be an eight-
variable point process, the intensity functions for {tTS,i} and {tTB,i} are given as follows:

λTS(t) = cTS + ∑
m∈M

∑
tm,i<t

αTS,m exp(−βTS,m(t− tm,i)) (6)

λTB(t) = cTB + ∑
m∈M

∑
tm,i<t

αTB,m exp(−βTB,m(t− tm,i)) (7)

where M ≡ {TS, TB, SL, BL, SC, BC, HS, HB}. We assume that the above intensity func-
tions (Equations (6) and (7)) represent the buy and sell limit order processes of each
HFT and examine which events affect their order generation processes. Hereafter, the
abbreviations listed in Table 2 are used for the order events.

Table 2. Abbreviations for eight types of order events. Note the six types of orders in the order book
do not include the orders of target HFTs. Therefore, {ti} differs for each HFT.

TS : Sell limit of the target HFT itself TB : Buy limit of the target HFT itself
SL : Sell limit in order book BL : Buy limit in order book
SC : Sell cancel in order book BC : Buy cancel in order book
HS : Hit sell HB : Hit buy
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3.2. Parameter Estimation Using Maximum Likelihood Estimation

For Equations (6) and (7), we apply the maximum likelihood estimation method for
the parameter estimation. Because the functional forms of the intensity functions are the
same for {tTS,i} and {tTB,i}, we solve the log-likelihood functions in the following manner.
For the point process {tTS,i}, the log-likelihood function in time interval [0, T] is given by
the following [47]:

log L(cTS, αTS, βTS) = −
∫ T

0
λTS(t)dt +

n

∑
i=1

log λTS(ti)

= −cTST + ∑
m∈M

αTS,m

βTS,m

 ∑
tm,i<T

{exp(−βTS,m(T − tm,i)− 1}


+

n

∑
i=1

log

cTS + ∑
m∈M

∑
tm,j<tTS,i

αTS,mexp(−βTS,m(tTS,i − tm,j))

 (8)

The same formulation is also applied for log L(cTB, αTB, βTB).
These log-likelihood functions are differentiable by each parameter, and we optimized

them by Adam [48], which is a type of gradient descent method, to obtain the maxi-
mum likelihood estimators. Here, the initial values are (cTS, αTS, βTS) = (cTB, αTB, βTB) =
(0.1, 0.1, 10), and the various parameters required for Adam are set following the values in
the original reference [48]. Here, αTS, βTS, αTB, and βTB are vectors of eight variables (e.g.,
αTS = (αTS,TS, αTS,TB, . . . , αTS,HS)).

It is also known that the computation of the gradients of the log-likelihood function
of the Hawkes process usually requires the computation of O(N2). However, using a
recursive formulation that can be used when the kernel function is an exponential function,
we perform maximum likelihood estimation with O(N) computational complexity (see
Ogata [49] for the recursive formulation).

In addition, the HFTs do not always continuously place orders. Therefore, if an
HFT did not place any orders for more than 15 min, we considered such period as not
participating in the trade and performed the maximum likelihood estimation for each
trader by ignoring such inactive periods.

3.3. Validity of Estimation Results

Based on a residual analysis [50], we assessed the goodness-of-fit of the point process
model. Let the intensity function for point process {ti} be λ(t), then the sequence, {τi},
of random variables, where each element is transformed by τi ≡

∫ ti
0 λ(t)dt, has the dis-

tribution of a stationary Poisson process with intensity 1, and the transformed residual
∆τi ≡ τi+1 − τi has an exponential distribution with the unit mean.

Therefore, if the estimated HFT intensities, λ̂TS(t) and λ̂TB(t), are good approxi-
mations of the true intensities, λTS(t) and λTB(t), respectively, then the transformed
residuals, ∆τ̂TS,i and ∆τ̂TB,i, are expected to follow the exponential distributions with the
unit mean. Here, the transformed residuals are defined as ∆τ̂TS,i ≡

∫ tTS,i+1
tTS,i

λ̂TS(t)dt and

∆τ̂TB,i ≡
∫ tTB,i+1

tTB,i
λ̂TB(t)dt, respectively, which can be derived in the case of ∆τ̂TS,i as an

example (Equation (9)) because the intensity function has the same form as described above:

∆τ̂TS,i = ĉTS∆tTS,i −∑m∈M ∑tm,i<tTS,i+1

α̂n,m
β̂n,m

(exp(−β̂TS,m(tTS,i+1 − tm,i))

−exp(−β̂TS,m(tTS,i − tm,i)))
(9)

Figure 6a shows the cumulative distribution of the three HFTs’ original residuals,
∆tTS,i, and Figure 6b shows the cumulative distribution of the same three HFTs’ trans-
formed residuals, ∆τ̂TS,i. We confirmed that the transformed residuals for the three HFTs
approximately followed the exponential distribution with the unit mean, which implied
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that the intensities of {tTS,i} were properly approximated. Because not all of the HFTs’
order generation processes could be modeled by the Hawkes process proposed here, the
above operations were performed for the sell and buy order processes of the 134 HFTs.

Figure 6. Cumulative distributions of ∆tTS,i (a) and ∆τ̂TS,i (b) for three typical HFTs (blue: HFT with
2nd highest order frequency; orange: HFT with 4th highest order frequency; and red: HFT with 7th
highest order frequency).

Here, we apply the Kullback–Leibler divergence between the distribution of the
transformed residuals and the exponential distribution with the unit mean as a criterion to
determine whether the approximations of the intensities of each HFTs’ {tTS,i} and {tTB,i}
are appropriate. Since we estimate the intensity functions of the two-point processes for
each trader, we calculate the sum of the respective Kullback–Leibler divergences (DKL

TS+TB),
as defined by Equation (10) below:

DKL
TS+TB = ∑

j
pj(∆τ̂TS,i) log

pj(∆τ̂TS,i)

qj(∆τ̂TS,i)
+ ∑

j
pj(∆τ̂TB,i) log

pj(∆τ̂TB,i)

qj(∆τ̂TB,i)
(10)

Here, qj(τ) is the discrete exponential distribution with the unit mean, and pj(τ) is
the sampling distribution. The bin size of the discrete distribution is assumed to be 1. The
threshold of accepting DKL

TS+TB error will be determined in the next section.

4. Results

In this section, we first show that the Hawkes process introduced here successfully
approximated the intensity of the limit order generation process for 104 of the 134 HFTs by
applying the method described in Section 3.3 (see Section 4.1). We then categorize the order
generation processes of the 104 successfully estimated HFTs into three groups according to
their excitation mechanisms, and explain how each group of HFTs places their orders (see
Section 4.2).

4.1. DKL
TS+TB Calculation Results for All HFTs

Figure 7 shows a histogram of the DKL
TS+TB values for the 134 HFTs. From the histogram,

there are many HFTs whose values of DKL
TS+TB are very close to 0 and the plots are scattered

for DKL
TS+TB > 0.05, so we set the threshold as 0.05. The 104 HFTs who fell into the range

of DKL
TS+TB < 0.05 were considered to be traders whose order generation processes were

well modeled, while the rest of the 30 HFTs who fell into the range of DKL
TS+TB ≥ 0.05 were

considered to be traders whose order generation processes were poorly modeled by the
Hawkes process introduced here.
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Figure 7. A histogram of DKL
TS+TB values for all 134 HFTs. Out of 134 HFTs, 104 fell within the

acceptable error threshold of 0.05, and the remaining 30 HFTs exceeded the threshold.

With the estimated parameters, the Hawkes process could be simulated using the
thinning method [51]. For example, Figure 8 compares the time series of the number
of orders per 10 min window for the real data of an HFT with DKL

TS+TB = 0.0238 and a
simulated time series. It can be confirmed that both sell limit orders (upper figure) and buy
limit orders (lower figure) successfully reproduce the behavior of the real data.

Figure 8. Comparison between simulations and real data of {tTS,i} and {tTB,i} for HFT with
DKL

TS+TB = 0.0238. The horizontal axis represents the time over a 24 h period, and the vertical
axis represents the number of order occurrences per 10 min window.

On the other hand, Figure 9 shows a comparison of the simulated and real data for an
HFT with DKL

TS+TB = 0.211, which was judged not to be properly estimated by the Hawkes
process. It can be seen that the deviations from the real data for both sell limit orders (upper
figure) and buy limit orders (lower figure) are larger than in the case of Figure 8. The
Hawkes process introduced here did not adequately explain the order generation process
for this trader with a large error, DKL

TS+TB. Because some traders could not be modeled by
the Hawkes process, in the following, we report the results of our clustering analysis of the
order generation processes of 104 HFTs after excluding 30 traders.
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Figure 9. Comparison between simulations and real data of {tTS,i} and {tTB,i} for HFT with
DKL

TS+TB = 0.211. The horizontal axis represents the time during a 24 h period, and the vertical
axis represents the number of order occurrences per 10 min window.

4.2. Results of Clustering Analysis

Here, we categorize the 104 HFTs whose limit order generation process was properly
estimated according to the similarity of their excitation mechanisms (the branching ratio),
and describe how each group of HFTs placed buy–sell limit orders and provided liquidity
to the market. As defined in Equation (5) in Section 3.3, the branching ratio, ρn,m, is an
absolute value that represents the expectation for the number of occurrences of event n
caused by the occurrence of event m. To evaluate the excitations of {tTS,i} and {tTB,i}
relative to each HFT, we introduced normalized branching ratios ρ̄TS,m and ρ̄TB,m, which
are defined by the following equations, so that the sum is equal to 1:

ρ̄TS,m ≡
ρTS,m

∑i∈M ρTS,i
(11a)

ρ̄TB,m ≡
ρTB,m

∑i∈M ρTB,i
(11b)

Because both {tTS,i} and {tTB,i} are 8-variable Hawkes processes, 16 normalized
branching rates were defined for each HFT. Figure 10 shows a dendrogram of the hierarchi-
cal clustering of the 104 HFTs using these 16 variables. For this hierarchical clustering, we
used the Ward method [52] to join clusters in the order of the decreasing sum of squares
after joining. The vertical axis in Figure 10 represents the distance between clusters with
an increase in the sum of squares when clusters A and B are joined, and is defined by the
following equation:

∆(A, B) = ∑
i∈A∪B

‖~xi − ~mA∪B‖2 − ∑
i∈A
‖~xi − ~mA‖2 −∑

i∈B
‖~xi − ~mB‖2 (12)

where ||d|| denotes the Euclidean distance, and ~mj is the center of cluster j.
Based on the distance between the clusters, we found it reasonable to categorize the

HFTs into three groups with the threshold distance around 3, as shown in Figure 10, and
designated them as Group A, Group B, and Group C. There were 77 HFTs in Group A, 12 in
Group B, and 15 in Group C. The number of clusters becomes larger for a lower threshold
distance, however, we confirmed that properties of any smaller groups are quite similar to
one of these three groups in the graphical representation of an interaction network to be
discussed in the following.

The remainder of this section explains the order events that excited the HFTs in each
group to place buy–sell limit orders based on the estimated Hawkes parameters.
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Figure 10. Dendrogram based on the Ward method of clustering for 104 HFTs that were successfully
modeled by the Hawkes process. The vertical axis represents the distance between the clusters, as
defined in Equation (12), and the horizontal axis shows the labels of the HFTs according to the order
frequency (red: Group A with 77 HFTs; blue: Group B with 12 HFTs; yellow: Group C with 15 HFTs).

4.2.1. Group A

Group A is comprised of 77 HFTs. The total number of limit orders in the 5 days was
approximately 850,000, which accounted for 62.5% of the total number of limit orders in
the market. Figure 11 shows the quartiles and means of the 16 normalized branching ratios
for these 77 HFTs, where (a) represents ρ̄TS,m and (b) represents ρ̄TB,m. From Figure 11a,
it can be seen that the generation of sell limit orders by the HFTs in Group A was most
excited by hit sell, which greatly exceeded the excitation from other events. In contrast,
Figure 11b shows that their buy limit order generation was most excited by hit buy, which
also greatly exceeded the excitation from other events.

Figure 11. Percentile plot of normalized branching ratios (a) ρ̄TS,m and (b) ρ̄TB,m for 77 HFTs in group
A. The vertical axis represents the normalized branching ratios by event m, and the horizontal axis
represents element m ∈M in both figures (top bar: 75th percentile; X symbol: median; bottom bar:
25th percentile;© symbol: the mean).

Figure 12 illustrates the network graph of the buy and sell limit orders of the HFTs
in Group A, along with all types of orders, using these normalized branching ratios.
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The size of the directed edges of the network is proportional to the mean value of the
normalized branching ratio, e.g., edges directed from HS to TS and from HB to TB represent
strong excitations.

Figure 12. Network graph of interaction between buy–sell limit orders of HFTs in Group A and all
types of orders in the order book.

In addition, because the kernel function of the Hawkes process is an exponential
function, the time constant, which is a measure of the response speed of one excitation at
a time, is given by β−1

n,m. The mean values of the estimated time constant for the HFTs in
Group A are summarized in Table 3. It is suggested that their reaction speed to an event is
approximately 0.1 s, which is reasonable for HFTs who trade at very high speeds.

Table 3. Mean values of the estimated time constant β̂−1
n,m (s) for the HFTs in Group A.

n
m TS TB SL BL SC BC HS HB

TS 0.102 0.295 0.076 0.087 0.081 0.069 0.110 0.404
TB 0.118 0.099 0.114 0.071 0.066 0.091 0.148 0.111

4.2.2. Group B

Group B is comprised of 12 HFTs. The total number of limit orders in the 5 days was
approximately 174,000, which accounted for 12.7% of the total number of limit orders in
the market. Figure 13 shows the quartiles and means of the 16 normalized branching ratios
for these 12 HFTs. From Figure 13a, we can see that their sell limit order generation was
excited by sell limit and cancel buy, and from Figure 13b, we can see that their buy limit
order generation was excited by buy limit and cancel sell. Unlike Group A, they did not
react to execution events but were excited by the generation and cancellation of limit orders
in the order book.

Figure 13. Percentile plot of normalized branching ratios (a) ρ̄TS,m and (b) ρ̄TB,m for 12 HFTs in
Group B. The vertical and horizontal axes are the same as those in Figure 10 (top bar: 75th percentile;
X symbol: median; bottom bar: 25th percentile;© symbol: the mean).



Entropy 2022, 24, 214 14 of 17

Figure 14 shows the interaction network of the buy and sell limit orders of the HFTs
in Group B, along with all types of orders, using the mean of the normalized branching
ratios, as in Figure 12.

Figure 14. Network graph of interaction between the buy–sell limit orders of HFTs in Group B and
all types of orders in the order book.

The mean values of the time constants for each event are summarized in Table 4. As
in the case of HFTs in Group A, these values suggest that the reaction speed to events were
to be measured in milliseconds.

Table 4. Sample means of 16 time constants, β−1
n,m(S), for HFTs in Group B.

n
m TS TB SL BL SC BC HS HB

TS 0.099 0.100 0.681 0.109 0.110 0.285 0.101 0.099
TB 0.099 0.100 0.259 0.373 0.558 0.105 0.099 0.101

4.2.3. Group C

Group C is comprised of 15 HFTs. Their total number of limit orders in the 5 days was
approximately 95,000, which accounted for 6.9% of the total number of limit orders in the
market. From Figure 15a, it can be seen that the sell limit order generation of the HFTs in
Group C was most strongly excited by their own buy limit, and was also excited by the
sell limit and cancel buy. On the other hand, Figure 15b shows that their buy limit order
generation was most strongly excited by their own sell limit, but was also excited by buy
limit and cancel buy.

Figure 15. Percentile plot of normalized branching ratios (a) ρ̄TS,m and (b) ρ̄TB,m for 15 HFTs in
Group C. The vertical and horizontal axes are the same as those in Figures 10 and 11 (top bar: 75th
percentile; X symbol: median; bottom bar: 25th percentile;© symbol: the mean).
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Figure 16 shows the interaction network of the buy–sell limit orders of the HFTs in
Group C, along with all types of orders, as in Figures 12 and 14. The HFTs’ sell/buy limit
orders interacted with each other.

Figure 16. Network graph of interaction between buy–sell limit orders of HFTs in Group C and all
types of orders in the order book.

The mean values of the time constants for each event are summarized in Table 5. The
time constants of the excitations from TS to TB and from TB to TS were larger than 10 s,
suggesting that the excitations were sustained for a very long time compared to those
previously observed.

Table 5. Sample means of 16 time constants, β−1
n,m(S), for HFTs in Group C.

n
m TS TB SL BL SC BC HS HB

TS 0.134 17.781 0.266 0.099 0.096 0.359 0.109 0.154
TB 11.201 0.098 0.269 0.258 0.355 0.094 0.132 0.103

5. Conclusions

In summary, we introduced a multivariate Hawkes process to model the limit order
generation processes of individual HFTs participating in the USD/JPY foreign exchange
market for 5 days and analyzed their limit order generation mechanisms. First, we con-
firmed that an eight-variable Hawkes process, which consisted of each HFTs’ own buy–sell
limit orders and the six types of orders in the order book, could adequately model the limit
order generation processes of 104 of the 134 HFTs. Then, we categorized the 104 properly
modeled HFTs into three categories based on the similarity of the excitation mechanisms
measured by the parameter values of the Hawkes process. As a result, we confirmed that
the majority of the HFTs in our dataset reacted to the execution of trades, while 12 of the
134 HFTs only reacted to limit orders and 15 of the 134 HFTs reacted to their orders. By
evaluating the time constants of the estimated excitations of individual HFTs, we found
that many HFTs responded to the most recent change in the order book in a very short
time, by placing or canceling new orders. Since HFTs currently account for the majority of
limit orders shown in the order book, the results of this analysis provide more microscopic
insight into the dynamics of the order book than previous studies.

The following issues will be studied in the future as a generalization of the present
work. The first goal is to clarify the limit order generation processes of the remaining
30 HFTs who could not be adequately modeled by the present analysis. The Hawkes
process adopted in this study only included the impact of the occurrence of a recent order
event and ignored important financial market influences such as the volume of orders,
market price fluctuations and trends, and the positions of the HFTs. We believe that the
information ignored in this study could contain variables that would explain their order
generation processes. Second, although this study only focused on the generation of limit
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orders by HFTs, it is also important to clarify the cancellation process for limit orders by
HFTs and the generation of market orders. Third, we did not pay attention to profit and loss;
however, practically, a key factor in an HFT strategy is the ability to make stable profits.

As the period of our data is very short, we did not observe any abnormal behavior in
the market; however, we cannot deny the possibility that HFTs may overreact and result
in serious synchronization during other periods or in other markets. Further studies of
the relations among Hawkes parameters and the case of crashes are needed to prevent the
excessive synchronization of biased orders of buy or sell. Our results are important since
the model we derived in this paper provides a foundation for performing such studies
through simulations. HFTs play a central role in providing liquidity to the market, and
further detailed analyses of HFT strategies will contribute to the development of modern
financial markets in general.
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