
entropy

Article

Entanglement-Structured LSTM Boosts Chaotic Time
Series Forecasting

Xiangyi Meng 1,2 and Tong Yang 3,*

����������
�������

Citation: Meng, X.; Yang, T.

Entanglement-Structured LSTM

Boosts Chaotic Time Series

Forecasting. Entropy 2021, 23, 1491.

https://doi.org/10.3390/e23111491

Academic Editor: Rosario Lo Franco

Received: 4 October 2021

Accepted: 6 November 2021

Published: 11 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Center for Complex Network Research and Department of Physics, Northeastern University,
Boston, MA 02115, USA; x.meng@neu.edu or xm@bu.edu

2 Department of Physics, Boston University, Boston, MA 02215, USA
3 Department of Physics, Boston College, Chestnut Hill, MA 02467, USA
* Correspondence: yangto@bc.edu

Abstract: Traditional machine-learning methods are inefficient in capturing chaos in nonlinear
dynamical systems, especially when the time difference ∆t between consecutive steps is so large
that the extracted time series looks apparently random. Here, we introduce a new long-short-
term-memory (LSTM)-based recurrent architecture by tensorizing the cell-state-to-state propagation
therein, maintaining the long-term memory feature of LSTM, while simultaneously enhancing the
learning of short-term nonlinear complexity. We stress that the global minima of training can be most
efficiently reached by our tensor structure where all nonlinear terms, up to some polynomial order,
are treated explicitly and weighted equally. The efficiency and generality of our architecture are
systematically investigated and tested through theoretical analysis and experimental examinations.
In our design, we have explicitly used two different many-body entanglement structures—matrix
product states (MPS) and the multiscale entanglement renormalization ansatz (MERA)—as physics-
inspired tensor decomposition techniques, from which we find that MERA generally performs better
than MPS, hence conjecturing that the learnability of chaos is determined not only by the number
of free parameters but also the tensor complexity—recognized as how entanglement entropy scales
with varying matricization of the tensor.

Keywords: quantum entanglement; recurrent neural networks; tensorization; chaotic dynamical
system; chaotic time series forecasting

1. Introduction

Time series forecasting [1], despite its undoubtedly tremendous potential in both
theoretical issues (e.g., mechanical analysis, ergodicity) and real-world applications [2]
(e.g., traffic, weather, and clinical records analysis), has long been known as an intricate
field. From classical work on statistics such as auto-regressive moving average (ARMA)
families [3] and basic hidden Markov models (HMM) [4,5] to contemporary machine-
learning (ML) methods [6–9] such as gradient boosted trees (GBT) and neural networks
(NN), the essential complexity in time series has been more and more frequently recog-
nized. In particular, forecasting models have extended their applicable range from linear,
Markovian cases to nonlinear, non-Markovian, and even more general situations [10].
Among all known methods, recurrent NN architectures [11], including plain recurrent
neural networks (RNN) [12] and long short-term memory (LSTM) [13], are the most capable
of capturing this complexity, as they admit the fundamental recurrent behavior of time
series data. LSTM has proved useful in speech recognition and video analysis tasks [14]
in which maintaining long-term memory is essential to the complexity. In relation to this
objective, novel architectures such as higher-order RNN/LSTM (HO-RNN/LSTM) [15]
have been introduced to capture long-term non-Markovianity explicitly, further improving
performance and leading to more accurate theoretical analysis.

Entropy 2021, 23, 1491. https://dx.doi.org/10.3390/e23111491 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5184-7648
https://orcid.org/0000-0002-3966-1362
https://dx.doi.org/10.3390/e23111491
https://dx.doi.org/10.3390/e23111491
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/e23111491
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23111491?type=check_update&version=1

Entropy 2021, 23, 1491 2 of 19

Still, another domain of complexity—chaos—has been far less understood [16,17].
Even though enormous theory/data-driven studies on forecasting chaotic time series by
means of recurrent NN have been conducted [18–25], there is still a lack of consensus on
which features play the most important roles in the forecasting methods. The notorious
indication of chaos,

|δxt| ≈ eλt|δx0| (1)

(where λ denotes the spectrum of Lyapunov exponents), suggests that the difficulty of fore-
casting chaotic time series is two-fold: first, any small error will propagate exponentially,
and thus multi-step-ahead predictions will be exponentially worse than one-step-ahead
ones; second, and more subtly, when the actual time difference ∆t between consecutive
steps increases, the minimum redundancy of model capacity needed for smoothly descend-
ing to the global minima (or sufficiently good local ones) during NN training also increases
exponentially. Most studies only address the first difficulty by improving the prediction
accuracy achievable at the global minima. Yet the latter is in fact more crucial, especially
when ∆t is so large that the time series looks apparently random and a trivial local mini-
mum would most likely be reached instead. Recently, tensorization has been introduced
in recurrent NN architectures [26,27]. A tensorized version of HO-RNN/LSTM, namely,
HOT-RNN/LSTM [28], has claimed an advantage in learning long-term nonlinearity in
Lorenz systems of small ∆t. On the one hand, we believe that the global minima of chaos
(where the dominance of linear dependence is absent) can be most efficiently reached
through tensorization approaches, where all nonlinear terms, up to some polynomial order,
are treated explicitly and weighted equally. On the other hand, for simple chaotic dynam-
ical systems, nonlinear complexity is only encoded in the short term, not the long term,
which HO/HOT models will not be efficient in capturing when ∆t is large. Hence, a new
tensorization-based recurrent NN architecture is desired so as to foster our understanding
of chaos in time series and to meet practical needs, e.g., the modeling of laminar flame
fronts and chemical oscillations [29–32].

In this paper, we introduce a new LSTM-based architecture by tensorizing the cell-
state-to-state propagation therein, retaining the long-term memory features of LSTM while
simultaneously enhancing the learning of short-term nonlinear complexity. Compared
with traditional LSTM architectures, including stacked LSTM [33] and other aforemen-
tioned statistics/ML-based forecasting methods, our model is shown to be a general and
outperforming approach for capturing chaos in almost every typical chaotic continuous-
time dynamical system and discrete-time map with controlled comparable NN training
conditions, justified by both our theoretical analysis and experimental results. Our model
is also tested on real-world time series datasets, where the improvements range up to 6.3%.

During the tensorization, we have explicitly embedded many-body quantum state
structures—a way of reducing the exponentially large degree of freedom of a tensor
(i.e., tensor decomposition)—popularly studied in condensed matter physics, which is not
unseen in NN design [34]. A many-body entangled state living in a tensor-product Hilbert
space is hardly separable. The same inseparability behavior also appears in nonlinear multi-
variate functions when crossing terms between different variables become too complex.
This similarity motivated us to adopt a special measure of tensor complexity, namely, the
entanglement entropy (EE) [35], which is commonly used in quantum physics and quantum
information [34]. For one-dimensional many-body states, two thoroughly studied, popular
but different structures exist—multiscale entanglement renormalization ansatz (MERA) [36]
and matrix product states (MPS) [37], of which the EE scales with the subsystem size or not
at all, respectively [35]. For most pertinent studies, MPS has been proven to be efficient
enough to be applicable to a variety of tasks [38–41]. However, our experiments show that,
regarding our entanglement-structured design of the new tensorized LSTM architecture,
LSTM-MERA performs even better than LSTM-MPS in general without increasing the
number of parameters. This finding leads to another interesting result. We conjecture

Entropy 2021, 23, 1491 3 of 19

that not only should tensorization be introduced, but the tensor’s EE has to scale with the
system size as well; hence, MERA is more efficient than MPS in learning chaos.

2. Recurrent Architecture and Tensorization
2.1. Formalism of LSTM Architecture

The formalism starts from an operator-theoretical perspective by defining two general
types of real operators,W and σ, through which most NN architectures can be represented.
W : X → G is simply a linear operator, but σ : G → G is a nonlinear operator that
σ(G) = (σ ◦ G) ∈ G given G ∈ G where ◦ stands for the entry-wise operator product.
All double-struck symbols (X,G, · · ·) used in this context are general real vector spaces
considered to be of covariant type, as W can be interpreted as a linear-map-induced 2-
contravariant bilinear form. Next, a state propagation function (i.e,. a gate) g(x, y, · · · ;W) =
σ(W(x ⊕ y⊕ · · ·)) is introduced, where x ⊕ y⊕ · · · stands for the tensor direct sum of
real vectors x, y, · · · . Following the formalism, an LSTM architecture can be expressed
as follows:

st = g(1, xt−1, st−1;Wo) ◦ σ(ct), xt = g(1, st;Wx),

ct = g(1, xt−1, st−1;W f) ◦ ct−1

+ g(1, xt−1, st−1;Wi) ◦ g(1, xt−1, st−1;Wm), (2)

where the four gates controlled byWi, Wm, W f , andWo are the input, memory, forget,
and output gates. The state st and the cell state ct are h-dimensional covectors, whereas the
input xt is a d-dimensional covector (Figure 1). Therefore,Wi (as well asWm,W f , andWo)
has a direct-sum contravariant realization as a matrix Wi ∈ M(h, 1)⊕M(h, d)⊕M(h, h)
that contains h(1 + d + h) free real parameters at most. During NN training, only these free
parameters of the linear operators are learnable, whereas all σ (i.e., activation functions)
are fixed to be tanh, sigmoid, or other nonlinear functions. The cell state ct is designed to
suffer less from the vanishing gradient problem and thus to capture long-term memory
better, whereas st tends to capture short-term dependence.

×

+×

×

xt-1

forget

input

memory

output

st-1

ct-1

ct

tanh expand tensorize linear tanh

st

h

h

h

h

h

h h

h

h

h P⨯L h

h

h

Figure 1. Architecture of a long short-term memory (LSTM) unit in the most common form of four
gates: input (i), memory (m), forget (f), and output (o), enhanced by tensorized state propagation with
four additional layers embedded (dashed rectangle): expand [Equation (4)], tensorize (Figure 2), linear,
and a tanh activation function. d is the input dimension of xt, and h is the hidden dimension of state
st and cell state ct. An h-dimensional vector tanh ct is first expanded into a P× L-dimensional matrix
where L and P are dubbed the physical length and physical degrees of freedom (DOF), respectively.
Then, the matrix is tensorized into an L-rank tensor of dimension PL and passed forward. The
effectiveness of this architecture is investigated in Section 4.3.

Entropy 2021, 23, 1491 4 of 19

2.2. Tensorized State Propagation

Our tensorized LSTM architecture (Figure 1) is exactly based on Equation (2), from
which the only change is:

st = g(1, xt−1, st−1;Wo) ◦ g(T (σ(ct));WT). (3)

g(T (σ(ct));WT) is coined a tensorized state propagation function, for whichWT : T → G
acts on as a covariant tensor

T (σ(ct)) =
⊗

l
(1⊕ qt,l) =

⊗
l
(1⊕Wl(σ(ct))). (4)

EachWl in Equation (4) maps from σ(ct) to a new covector qt,l ∈ Q. Here, Q is named a local
q-space, as, by way of analogy, considered as encoding the local degree of freedom in quantum
mechanics. Q can be extended to the complex number field if necessary. Mathematically,
Equation (4) offers the possibility of directly constructing orthogonal polynomials up to
order L from σ(ct) to build up nonlinear complexity. In fact, when L goes to infinity, T =
lim

L→∞
(1⊕Q)⊗L = 1⊕Q⊕Q⊗Q⊕ · · · becomes a tensor algebra (up to a multiplicative

coefficient), and T (σ(ct)) admits any nonlinear smooth function of σ(ct).

Full Tensorization

L vectors of dimension DI≡P each

outer product

L-rank tensor of dimension PL

(a)

Matrix Product State (MPS)

matrix product

L matrices of dimension DII⨯DII each

(b)
Multiscale Entanglement Renormalization Ansatz (MERA)

(c)

Notation

=
…×dμ×dν×…

…×dα×dβ×…
→μν

αβdisentangler:

=
…×dα×dβ×…

…×dμ'×…
→αβ

μ'
isometry:

=
…×dμ'×…

…×dα×dβ×…
→()μ'

αβinverse

isometry:

MERA

MPS

Level I (each of dimension DI)

Level II (DII)

Level III (DIII)

Level IV (DIV)

l

× × × ⋯ ×

l-rank tensor

(d)

Figure 2. Tensorize layer: quantum entanglement structures. (a) Full tensorization. (b) Matrix
product state (MPS). (c) Multiscale entanglement renormalization ansatz (MERA). The MPS and
MERA are tensor representations that are widely used for characterizing many-body quantum
entanglement in condensed matter physics. (d) Notations. A full tensor can be represented by
introducing multiple auxiliary and learnable tensors (e.g., disentanglers and isometries, as used
in MERA, and inverse isometries, as used in MPS) of different virtual dimensions {DI, DII, · · · }
labeled by different levels, rendered in different colors. The first-level virtual dimension is DI ≡ P,
the physical DOF by definition. Other virtual dimensions {DII, · · · } are free hyperparameters to be
chosen, the larger of which should better represent the full tensor. The numbers of applicable levels
in (a,b) are always constant (one and two, respectively), yet the number of applicable levels in c is
log2 L, depending on the physical length L.

Entropy 2021, 23, 1491 5 of 19

We now realize Equation (4) by choosing L independent realizations, Wl ∈ M(P−
1, h), l = 1, 2, · · · , L, which in total contain L(P− 1)h learnable parameters at most, each
mapping σ(ct) ≡ tanh ct to a (P− 1)-dimensional covector qt,l ,


[tanh ct]1
[tanh ct]2

...
[tanh ct]h

 −→



1

[qt]21
[qt]31

...
[qt]P1




1

[qt]22
[qt]32

...
[qt]P2


· · ·
· · ·
· · ·
. . .
· · ·


1

[qt]2L
[qt]3L

...
[qt]PL



. (5)

Following Equation (4), T (tanh ct) is simply the tensor product of all column vectors on
the right hand side of Equation (5).

From the realization of Equation (3), WT ∈ M(h, PL) [Figure 2a], however, a prob-
lem of exponential explosion (a.k.a. the “curse of dimensionality”) arises. Treating WT
maximally by training all hPL learnable parameters is very computationally expensive,
especially as L cannot be small because it governs the nonlinear complexity. To overcome
this “curse of dimensionality”, tensor decomposition techniques have to be exploited [39]
for the purpose of finding a much smaller subset T ⊂ M(h, PL) to which all possible WT
belong, without sacrificing any expressive power.

2.3. Many-Body Entanglement Structures

Below, we introduce the two many-body quantum state structures (MPS and MERA)
as efficient low-order tensor decomposition techniques for representing WT .

2.3.1. MPS

As one of the most commonly used tensor decomposition techniques, MPS is also
widely known as tensor-train decomposition [42] and takes the following form [Figure 2b]

[WT]hµ1···µL
=

DII

∑
{α}

[w0]
h
α1αL+1

(
[w†

1]
α1α2
µ1 [w†

2]
α2α3
µ2 · · · [w

†
L]

αLαL+1
µL

)
in our model, where w†

1 , w†
2 , · · · , w†

L are learnable 3-tensors (the symbol † denoting that they
are inverse isometries [35]). DII is an artificial dimension (the same for all α). w0 is no more
than a linear transformation that collects the boundary terms and maintains symmetry.
The above notations are used for consistency with quantum theory [35] and the following
MERA representation.

2.3.2. MERA

The best way to explain MERA is using graphical tools, e.g., tensor networks [35].
MERA differs from MPS in its hierarchical tree structure: within each level {I, II, · · · }, the
structure contains a layer of 4-tensor disentanglers of dimensions {D4

I , D4
II, · · · }, and then a

layer of 3-tensor isometries of dimensions {D2
I × DII, D2

II × DIII, · · · }, of which details can
be found in [36]. MERA is similar to the Tucker decomposition [43] but fundamentally
different because of the existence of disentanglers, which smear the inhomogeneity of
different tensor entries [36].

Figure 2c shows the reorganized version of MERA used in our model, where the
storage of independent tensors is maximally compressed before they are multiplied with
each other by tensor products, which allows more GPU acceleration during NN training.

Entropy 2021, 23, 1491 6 of 19

2.3.3. Scaling Behavior of EE

Now we take advantage of an important measure of tensor complexity: the entangle-
ment entropy (EE). Given an arbitrary tensor Wµ1···µL of dimension PL and a cut l so that
1 ≤ l � L, the EE is defined in terms of the α-Rényi entropy [35],

Sα(l) ≡ Sα(W(l)) =
1

1− α
log

∑Pl

i=1 σα
i (W(l))(

∑Pl
i=1 σi(W(l))

)α , (6)

assuming α ≥ 1. The Shannon entropy is recovered under α→ 1. σi(W(l)) in Equation (6)
is the i-th singular value of matrix W(l) = W(µ1×···×µl),(µl+1×···×µL)

, matricized from
Wµ1···µL . How S(l) scales with l determines how much redundancy exists in Wµ1···µL ,
which in turn reveals how efficient at most a tensor decomposition technique can be. For
one-dimensional gapped low-energy quantum states (ground states), their EE is saturated
even as l increases, i.e., Sα(l) = Θ(1). Thus, their low-entanglement characteristics can
be efficiently represented via MPS, of which the EE does not scale with l either and is
bounded by Sα(l) ≤ S1(l) ≤ 2 log DII [35]. By contrast, a non-trivial scaling behavior
Sα(l) = Θ(log l) corresponds to gapless low-energy states and can only be efficiently rep-
resented by MERA, of which Sα(l) ≤ S1(l) ≤ C + ∑

log2 l
level=1 log Dlevel ≈ C + C′ log l scales

logarithmically [36]. The bounds of both MPS and MERA have also been proven to be
tight [35,36].

The different EE scaling behaviors of MERA and MPS have hence provided an appar-
ent geometric advantage of MERA, i.e., its quasi-two-dimensional structure [Figure 2c],
enlarging which will increase not only the width but also the depth of NN as the number
of applicable levels scales logarithmically with L, offering even more power for model
generalization on the already-inherited LSTM architecture [11]. Such an advantage is
further confirmed by Equation (9) and then in Section 4.1, in which tensorized LSTMs with
the two different representations LSTM-MPS and LSTM-MERA are tested.

3. Theoretical Analysis
3.1. Expressive Power

First, we prove the following theorem that links the variations of ct and st:

Theorem 1. Given an LSTM architecture [Equation (2)], to which the input is a chaotic dynamical
system xt, characterized by a matrix λ of which the spectrum is the Lyapunov exponent(s), so that
any variation δxt propagates exponentially [Equation (1)], then, up to the first order (i.e., δxt−1),

|δst| ≥ Ceλ|δct|, (7)

where C ∝ 1/‖W‖2
∞ and ‖ · ‖p=∞ is the operator norm.

Proof. From Equation (2), one has δxt = (∂g(1, st;Wx)/∂st)δst where the first-order deriva-
tive is bounded by ‖∂g(1, st;Wx)/∂st‖∞ ≤ ‖Wx‖∞‖σ′‖L∞

µ
≤ ‖Wx‖∞, since the derivative

of the active function supported on (−∞, ∞) satisfies ‖σ′‖L∞
µ
≡ ‖1/ cosh2 ‖L∞

µ
≤ 1. On the

other hand, one has

δct =
[
ct−1 ◦ ∂g(1, xt−1, st−1;W f)/∂xt−1 + ∂(g(1, xt−1, st−1;Wi)

◦ g(1, xt−1, st−1;Wm))/∂xt−1]δxt−1 + O(δxt−2) + · · · ,

and thus
|δct| ≤ ‖W f ‖∞|ct−1| ◦ δ|xt−1|+ (‖Wi‖∞ + ‖Wm‖∞)δ|xt−1|,

which yields Equation (7), where w.l.o.g. all linear maps are assumed to be around the same
magnitude ∼ ‖W‖∞. Note that |ct−1| is also bounded because |g(1, xt−1, st−1;W f)| ≤ 1,
which means ct is stationary.

Entropy 2021, 23, 1491 7 of 19

Equation (7) suggests that the state propagation from ct to st carries the chaotic
behavior. In fact, to preserve the long-term memorization in LSTM, ct has to depend on
ct−1 with a linear behavior and thus cannot carry chaos itself. This is further experimentally
verified in Section 4.3. Nevertheless, note that Equation (1) is a necessary condition of
chaos, not a sufficient condition.

Now, we look into the expressive power of our introduced tensorized state propaga-
tion function,WT T (σ(ct)). One of the advantages of tensorizing the state propagation
function in the form of Equation (4) is the well-behaved polynomial space constructed
by the tensor product, by virtue of which the approximation ofWT T to any (k-Sobolev)
function f can always be bounded, as proven by the following theorem:

Theorem 2. Let f ∈ Hk
µ(Λ) be a target function living in the k-Sobolev space, Hk

µ(Λ) ={
f ∈ L2

µ(Λ)
∣∣∣∑|i|≤k ‖∂(i) f ‖L2

µ(Λ) < ∞
}

, where ∂(i) f ∈ L2
µ(Λ) is the i-th weak derivative of f ,

up to order k ≥ 0, square-integrable on support Λ = (−1, 1)h with measure µ. WT T (σ(ct)) can
approximate f (σ(ct)) with an L2

µ(Λ) error at most

‖ f −WT T ‖L2
µ(Λ) ≤ C min(L, bL(P− 1)/hc)−k‖ f ‖Hk

µ(Λ) (8)

provided that (h− 1)hPL ≥ (h1+min(L,bL(P−1)/hc) − 1). ‖ f ‖Hk
µ(Λ) = ∑|i|≤k ‖∂(i) f ‖L2

µ(Λ) is
the Sobolev norm and C is a finite constant.

Proof. The Hölder-continuous spectral convergence theorem [44] states that ‖ f − PN f ‖L2
µ(Λ) ≤

CN−k‖ f ‖Hk
µ(Λ), in which PN : L2

µ(Λ) → PN is an orthogonal projection that maps f to

PN f . σ(c(t)) ∈ Λ is guaranteed as σ ≡ tanh. The Sobolev space PN ⊂ L2
µ(Λ) is spanned

by polynomials of a degree of at most N. Next, note that in the realization of T (σ(ct))
each Wl is independent [Equation (4)], and thus PN = span(T (σ(ct))) is possible, where
N is determined by L, P, and h. When P − 1 ≥ h, the maximum polynomial order is
guaranteed L; when P− 1 < h, dim{Q} < dim{G}, and hence T (σ(ct)) can only fully
cover a polynomial order of up to bL(P− 1)/hc. Finally, Equation (8) is proven based on
the fact thatWT T maximally admits PN f as long as hPL ≥ ∑N

i=0 hi = (hN+1 − 1)/(h− 1),
the latter of which is the size of the maximum orthogonal polynomial basis admitted
by PN .

Equation (8) can be used to estimate how L scales with the chaos the dynamical system
possesses. In particular, Equation (7) suggests that ∂(1) f ∼ eλ∆t, where ∆t is the actual time
difference between consecutive steps. Therefore, to persevere the error bound [Equation (8)]
one at least expects that L−1 ∼ e−λ∆t, i.e., L has to increase exponentially with respect to
λ∆t. To achieve this, tensorization is undoubtedly the most efficient approach, especially
when ∆t is large.

3.2. Worst-Case Bound by EE

The above analysis offers an intuitive bound on the expressive power ofWT T . Unfor-
tunately, Equation (8) is valid only when all hPL degrees of freedom ofWT are independent.
A low-order tensor decomposition may therefore impact the expressive power.

Below, we compare the two different entanglement structures, MPS and MERA, which
have major differences in their EE scaling behaviors. We proceed via the following theorem,
relating the tensor approximation error to entanglement scaling:

Entropy 2021, 23, 1491 8 of 19

Theorem 3. Given a tensor [WT]µ1···µL and its tensor decomposition WT , the worst-case p-norm
(p ≥ 1) approximation error is bounded from below by

min
{WT }

‖WT −WT ‖p = min
{WT }

max
l≥1
‖WT (l)−WT (l)‖p

≥ min
{WT }

max
l≥1

∣∣∣∣e 1−p
p Sp(WT (l))‖WT ‖1 − e

1−p
p Sp(WT (l))‖WT ‖1

∣∣∣∣, (9)

where Sα≡p(W(l)) is the α-Rényi entropy [Equation (6)].

Proof. Equation (9) is easily proven by noting the Minkowski inequality ‖A + B‖p ≤
‖A‖p + ‖B‖p and that (1− α)Sα(l) = α log ‖WT (l)‖α − α log ‖WT (l)‖1 when α ≡ p ≥ 1
[Equation (6)].

The worst-case bound [Equation (9)] is optimized whenever Sp(WT (l)) scales the
same way as Sp(WT (l)) does. Assuming Sp(WT (l)) = C + C′ log l, then an MPS-type
WT cannot efficiently approximate WT unless DII increases with log l too, from which
the total number of free parameters ∼ PLD2

II [Figure 2b], however, becomes unbounded.
By contrast, a MERA-type WT matches the scaling, by which the total number of free
parameters ∼ (D4 + D3)L (where D ≡ DII, · · · = exp C′) is efficient enough for any
worst-case l.

It is unknown how quantitatively the failure to approximate WT may impact the
expressive power given in Equation (8). The disappearance of the worst-case bound in
Equation (9) is a necessary condition for Equation (8) to be valid.

4. Results

We investigated the accuracy of LSTM-MERA and its generalization ability on different
chaotic time series datasets by evaluating the root mean squared error (RMSE) of its one-
step-ahead predictions against target values. The benchmark for comparison was chosen
to be a vanilla LSTM, of which the hidden dimension h was arbitrarily chosen in advance.
LSTM-MERA (and other architectures if present) was built upon the benchmark.

Each time series dataset for training/testing consisted of a set of NX time series,
{Xi|i = 1, 2, · · · , NX}. Each time series Xi = {xi

t|t ∈ Ti} is of fixed length |Ti| =
input steps + 1 so that all but the last step of Xi were inputs, whereas the last step was the
one-step-ahead target to be predicted. The dataset {Xi}was divided into two subsets—one
for testing and one for training, which was further randomly split into a plain training set
and a validation set by 80% : 20%. Complete details are given in Appendix C.

All models were trained using Mathematica 12.0 on its NN infrastructure, Apache
MXNet, using an ADAM optimizer with β1 = 0.9, β2 = 0.999, and ε = 10−5. The learning
rate = 10−2 and batch size = 64 were chosen a priori. The NN parameters producing the
lowest validation loss during the entire training process were accepted.

4.1. Comparison of LSTM-Based Architectures

When evaluating the advantages of LSTM-MERA, a controlled comparison is essential
to confirm that the architecture of LSTM-MERA is inherently better than that of other
architectures, not just because the increase of the number of free and learnable parameters
(even though more parameters do not necessarily mean more learning power). Here, we
studied different architectures (Figure 3) that were all built upon the LSTM benchmark and
shared nearly the same number of parameters (param. #). A “wider” LSTM was simply
built by increasing h. A “deeper” LSTM was built by stacking two LSTM units as one unit.
In particular, LSTM-MPS and LSTM-MERA were built and compared.

Entropy 2021, 23, 1491 9 of 19

(a) (b)

h L P {Di} param. # RMSE h L P {Di} param. # RMSE

Benchmark 7 – – – 332 0.307 2 – – – 35 0.259
“Wider” 11 – – – 696 0.279 16 – – – 1169 0.187
“Deeper” 7 – – – 640 0.105 11 – – – 1156 0.204

MPS 7 23 2 {P, 4} 663 0.088 2 23 2 {P, 9} 1231 0.181
MERA 7 23 2 {P, 2, 3} 640 0.066 2 23 2 {P, 4, 4} 1053 0.010

Figure 3. Comparison of different LSTM-based architectures. (a) The Lorenz system is a three-
dimensional continuous-time dynamical system notable for its chaotic behavior. Discretization:
∆t = 0.5. Input steps = 8, training : validation : test = 2400 : 600 : 2000, and number of
epochs = 120 for all models. (b) Logistic “cubed” map, i.e., a logistic map re-sampled every three
steps. Input steps = 1, training : validation : test = 8000 : 2000 : 500, and number of epochs = 200
for all models. Note that unlike continuous-time dynamical systems, chaos in discrete maps is
generally harder to learn.

4.1.1. Lorenz System

Figure 3a describes the forecasting task on the Lorenz system and shows the training
results of the LSTM-based models. ∆t = 0.5 was chosen for discretization, which was large
enough that the resultant time series hardly exhibited any pattern without the help of a
phase line [Figure 3a, input 1–8].

In general, non-tensorized LSTM models performed worse than tensorized LSTM
models. After the number of free parameters increased from 332 (benchmark) to 668± 28,
both the “wider” and “deeper” LSTMs showed signs of overfitting. The “deeper” LSTM
yielded lower RMSE than the “wider” LSTM, confirming the common sense that a deep NN
is more suitable for generalization than a wide NN [45]. Both LSTM-MPS and LSTM-MERA
yielded better RMSE and showed no sign of overfitting. However, LSTM-MERA was more
powerful, showing an improvement of ∼25% over LSTM-MPS in RMSE [Figure 3a].

4.1.2. Logistic Map

Figure 3b describes a specific forecasting task on the simplest one-dimensional discrete-
time map—the logistic map: predicting the target given only a three-step-behind input.
Different LSTM models yielded very different results when learning this complex task.
After the number of free parameters increased from 35 (benchmark) to 1142± 89, all LSTM
models yielded lower RMSE than the benchmark. Only LSTM-MERA was able to reach
a much lower RMSE (presumably a global minimum) with a remarkable improvement
of ∼94% over LSTM-MPS [Figure 3b]. We infer that the local minima reached by the
other LSTM models might correspond to the infinite numbers of unstable quasi-periodic
cycles in the chaotic phases. In fact, as shown in Figure 3b, Prediction 3, the benchmark
fit the target better than LSTM-MERA for this specific example of a quasi-period-2 cycle.
However, LSTM-MERA learned the full chaotic behavior and thus performed much better
on general examples.

The learning process for the logistic map task was indeed very random, and different
realizations yielded very different results. In many realizations, non-tensorized LSTM
models did not even learn any patterns at all. By contrast, tensorized LSTM models were
more stable in learning.

Entropy 2021, 23, 1491 10 of 19

4.2. Comparison with Statistical/ML Models

We compared LSTM-MERA with more general models, including traditional statisical
and ML models, including RNN-based architectures (Figure 4). Specifically, we looked
into HOT-RNN/LSTM, which is also claimed to be able to learn chaotic dynamics (e.g.,
the Lorenz system) through tensorization [28]. Furthermore, for each model we fed its
one-step-ahead predictions back so as to make predictions for the second step, and kept
feeding back and so on. In theory, the prediction error at the t-th step should increase
exponentially with t for chaotic dynamics [Equation (1)].

■

■ ■

■

■

■

■
■

■

■ ■

■ ■

■ ■
■

■ Target ■ Benchmark

2 4 6 8

-0.5
0.0
0.5

■

■ ■

■

■

■

■
■

■

■ ■

■

■

■

■
■

■ Target ■ LSTM-MERA

2 4 6 8

-0.5
0.0
0.5

■

■ ■

■

■

■

■
■

■

■
■

■
■

■

■
■

■ Target ■ HO-RNN

2 4 6 8

-0.5
0.0
0.5

■

■ ■

■

■

■

■
■

■

■
■

■
■

■
■

■

■ Target ■ HO-LSTM

2 4 6 8

-0.5
0.0
0.5

■

■ ■

■

■

■

■
■

■

■

■
■

■
■

■

■

■ Target ■ HOT-RNN

2 4 6 8

-0.5
0.0
0.5

■

■ ■

■

■

■

■
■

■

■ ■

■

■

■ ■

■

■ Target ■ HOT-LSTM

2 4 6 8

-0.5
0.0
0.5

■

■ ■

■

■

■

■
■

■

■ ■

■ ■
■ ■

■

■ Target ■ Deep NN

2 4 6 8

-0.5
0.0
0.5

■

■ ■

■

■

■

■
■

■

■

■
■

■
■ ■

■

■ Target ■ GBT

2 4 6 8

-0.5
0.0
0.5

■

■ ■

■

■

■

■
■

■ ■ ■ ■ ■ ■ ■ ■

■ Target ■ ARMA

2 4 6 8

-0.5
0.0
0.5

number of steps aheadnumber of steps aheadnumber of steps ahead

ou
tp
ut

ou
tp
ut

ou
tp
ut

Model param. # RMSE (×10−2)
1 step 2 steps 4 steps

Benchmark 35 1.54 7.63 32.03
LSTM-MERA 89 0.19 0.89 13.77
HO-RNN 23 11.91 23.16 27.69
HO-LSTM 83 2.96 14.50 47.99
HOT-RNN 81 12.04 23.76 29.61
HOT-LSTM 315 1.39 6.40 26.83

Deep NN 17950 0.81 3.66 23.49

GBT – 3.15 16.25 31.37

ARMA – 24.95 24.93 23.54

Figure 4. Comparison of different statistical/ML models on Gauss “cubed” map, i.e., a Gauss iterated map re-sampled
every three steps. Note that the Gauss iterated map is a one-dimensional chaotic map of which the dynamics is smoother
than the logistic map and should be easier to learn. Input steps = 8. For RNN-based models, h = 2, L = 22, P = 2,
{DI, DII, · · · } = {P, 2}, training : validation : test = 8000 : 2000 : 500, and number of epochs = 200. The explicit “history”
length used in HO-RNN/LSTM [15] and HOT-RNN/LSTM [28] is also L, and the tensor-train ranks are all DII. Deep NN:
depth = 8 (= input steps). GBT: maximum depth = 8. ARMA family: ARMA(3, 4).

Gauss Iterated Map

We tested the one-step-ahead learning task on the Gauss “cubed” map on plain HO-
RNN/LSTM [15] and its tensorized version HOT-RNN/LSTM [28]. The explicit “history”
length was chosen to be equal to our physical Length L. The tensor-train ranks were all
chosen to be equal to DII, as when we built the MPS structure in LSTM-MPS.

Figure 4 shows that neither HO-RNN nor HO-LSTM performed better than the bench-
mark, suggesting that introducing explicit non-Markovian dependence (Appendix B.1)
is not helpful for capturing chaotic dynamics where the existing nonlinear complexity is
never long-term. HOT-LSTM was better than the benchmark because of its MPS structure,
suggesting that tensorization, on the other hand, is indeed helpful for forecasting chaos.
LSTM-MERA was still the best, with an improvement of ∼88% over the benchmark. Inter-
estingly, the benchmark itself as a vanilla LSTM was already much better than plain RNN
architectures (HO-/HOT-RNN).

Entropy 2021, 23, 1491 11 of 19

The learning task was next tested on fully connected deep NN architectures of depth≤
8 (equal to the input steps). At each depth three units were connected in series: a linear layer,
a scaled exponential linear unit, and a dropout layer. Hyperparameters were determined
by means of an optimal search. The best model having the lowest validation loss consisted
of 17, 950 free parameters. The task was also tested on GBT of maximum depth = 8, as well
as on the ARMA family (ARMA, ARIMA, FARIMA, and SARIMA), among which the best
statistical model selected by Kalman filtering was ARMA(3, 4).

With enough parameters, the deep NN became the second best (Figure 4). All RMSE
values increased when making longer-step-ahead predictions, and for the four-step-ahead
task the deep NN and LSTM-MERA were the only models that did not overfit and still
performed better than the statistical model, ARMA, which made no learning progress but
only trivial predictions.

4.3. Comparison with LSTM-MERA Alternatives

Here we tested the ability of LSTM-MERA in the learning of short-term nonlinear
complexity by changing its NN topology (Figure 5). We expected to see that, to achieve the
best performance, our tensorization (dashed rectangle in Figure 1) should indeed act on
the state propagation path ct → st, not on st−1 → st or ct−1 → ct.

×

+×

×

xt

forget

input

memory

output

st-1

ct-1

tanh

ct

st

A

B

C

D

Thomas’ cyclically symmetric dynamical system

Model Site RMSE (×10−1)

Benchmark 1.13

LSTM-MERA A 0.45

Alternatives B 1.12
C 1.10
D 0.73

Figure 5. Comparison of LSTM-MERA (where the additional layers from Figure 1 are located at
Site A) with its alternatives (where the additional layers are instead located at Sites B, C or D), tested
on Thomas’ cyclically symmetric system, a three-dimensional chaotic dynamical system known for
its cyclic symmetry Z/3Z under change of axes. Discretization: ∆t = 1.0. Input steps = 8, h = 4,
L = 24, P = 4, {DI, DII, · · · } = {P, 2, 2, 4}, training : validation : test = 2400 : 600 : 2000, and
number of epochs = 40.

Thomas’ Cyclically Symmetric System

We investigated different LSTM-MERA alternatives on Thomas’ cyclically symmetric
system (Figure 5) in order to see if the short-term complexity could still be efficiently
learned. The embedded layers, in addition to being located at Site A (the proper NN
topology of LSTM-MERA), were also located alternatively at Site B, C or D for comparison.
The benchmark was a vanilla LSTM with no embedded layers.

Entropy 2021, 23, 1491 12 of 19

As expected, the lowest RMSE was produced by the proper LSTM-MERA but not its
alternatives (Figure 5). The improvement of the proper LSTM-MERA over the benchmark
was ∼60%. Interestingly, two alternatives (Site B, Site C) performed barely better than the
benchmark even with more free learnable parameters. In fact, in the case in which the
state propagation path ct−1 → ct is tensorized (Site B), the long-term gradient propagation
along cell states is interfered and the performance of LSTM is deterred; when the path
st−1 → st is tensorized (Site C), the improvement is the same as just on a plain RNN and is
thus also limited. Hence, proper LSTM-MERA NN topology is critical for improving the
performance of learning short-term complexity.

4.4. Generalization and Parameter Dependence of LSTM-MERA

The inherent advantage of LSTM-MERA and its ability to learn chaos have been
shown. Hereafter investigated are its parameter dependence, as well as its generalization
ability (Figure 6). Each following model (benchmark versus LSTM-MERA) was sufficiently
trained through the same number of epochs so that it could reach the lowest stable RMSE.
In-between check points were chosen during training, in which models were tested a
posteriori on the test data to confirm that an RMSE minimum had eventually been reached.

52%
63% 71%

76%

62%

14%

Benchmark

MERA

0.5 1 2 5 10 20

10-2

10-1

100
Rössler system

Δt

R
M
S
E

(a)

0.49%

41%

35% 48%
27% 29% 79% 58%

Benchmark

MERA

1 2 3 4 5 6 7 8

10-2

10-1

100
Hénon map (skipping every other step)

input steps

R
M
S
E

(b)

1%
16%

30% 34%

Benchmark

MERA

4 8 16 32
0.1

0.2

0.3
0.4
0.5

Duffing oscillator system

physical length L

R
M
S
E

(c)

41% 39%

56%

35%
43%

Benchmark

MERA

2 4 8 16 32
10-1

100

Chirikov standard map

physical degree of freedom P

R
M
S
E

(d)

6.3%

5%

2.6%

-0.91%

1.6%
Benchmark

MERA

4 8 16 32 64

0.2

0.3
0.4
0.5
0.6
0.7

Pressure

prediction window length

R
M
S
E

(e)

6.2%
2.8% 2.1% 1.6%

Benchmark

MERA

1 2 4 8

0.6

0.7

0.8

0.9
1

Mean wind speed

prediction window length

R
M
S
E

(f)

Figure 6. Generalization and parameter dependence of LSTM-MERA. (a) Rössler system, another
three-dimensional chaotic dynamical system similar to the Lorenz system. Discretization: varying
∆t. Input steps = 4, h = 4, L = 24, P = 2, and {DI, DII, · · · } = {P, 2, 2, 4}. (b) One-dimensional,
second-order Hénon map, re-sampled by skipping every other step. h = 4, L = 23, P = 2, and
{DI, DII, · · · } = {P, 2, 4}, whereas the input steps varied. (c) Duffing oscillator system. Discretization:
∆t = 10.0. Input steps = 8, h = 4, P = 4, and {DI, DII, · · · } = {P, 3, 3, · · · } of which the length varies
with L. (d) Chirikov standard map. Input steps = 2, h = 2, L = 23, and {DI, DII, · · · } = {P, 4, 4}
where P varies. (e) Pressure, sampled every eight minutes. Input steps = 16, h = 4, L = 24, P = 4,
{DI, DII, · · · } = {P, 2, 2, 4}, and training : validation : test = 6400 : 1600 : (&13,800). (f) Mean
wind speed, daily sampled. Input steps = 16, h = 4, L = 23, P = 4, {DI, DII, · · · } = {P, 2, 2}, and
training : validation : test = 128 : 32 : (&7000).

Entropy 2021, 23, 1491 13 of 19

4.4.1. Rössler System

In theory, a chaotic time series of larger ∆t should be harder to learn [Equation (1)].
This is confirmed in Figure 6a, in which a larger ∆t corresponds to a larger RMSE for both
models. The greatest improvement of LSTM-MERA over the benchmark was∼76%, observed
at ∆t = 5. The improvement was less when ∆t increased, possibly because the time series
became too random to preserve any feasible pattern even for LSTM-MERA. The improvement
was also less when ∆t was small, as the time series was smooth enough and the first-order
(linear) time-dependence predominated, which a vanilla LSTM could also learn.

4.4.2. Hénon Map

In view of the fact that the time-dependence is second-order [Figure 6b], there was
no explicit and exact dependence between the input and target in the time series dataset.
Different input steps were chosen for comparison. When input steps = 1, there was no
sufficient information to be learned other than a linear dependence between the input and
target, and thus both the benchmark and LSTM-MERA performed the same [Figure 6b].
When input steps > 1, however, the time-dependence could be learned implicitly and
“bidirectionally” given enough history in length. LSTM-MERA constantly exhibited an
average improvement of 45.3%, the fluctuation of which was mostly due to the learning
instability not of LSTM-MERA but of the benchmark.

4.4.3. Duffing Oscillator System

Based on Figure 6d, it was clearly observed that larger L yielded better RMSE values.
The improvement related to L was significant. This result is not unexpected, since L
determines the depth of the MERA structure, with a larger depth corresponding to better
generalization ability.

4.4.4. Chirikov Standard Map

As Figure 6d shows, by choosing different P, the greatest improvement of LSTM-
MERA over the benchmark was ∼56%, observed at P = 8. In general, there was no strong
dependence on P.

4.4.5. Real-World Data: Weather Forecasting

The advantage of LSTM-MERA was also tested on real-world weather forecasting
tasks [Figure 6e,f]. Unlike for the synthetic time series, here we removed the first-layer
translational symmetry [Equation (A1)] previously imposed on LSTM-MERA so that
presumed non-stationarity in real-world time series could be better addressed. To perform
practical multi-step forecasting, we kept the one-step-ahead prediction architecture of
LSTM, yet regrouped the original time series by choosing different prediction window
lengths (Appendix C.3).

The improvement of LSTM-MERA over the benchmark was less significant. The aver-
age improvement was ∼3.0%, whereas the greatest improvement was ∼6.3%, considering
that the prediction window length was small and reflecting that LSTM-MERA is better at
capturing short-term nonlinear complexity rather than long-term non-Markovianity. Note
that, in the second dataset [Figure 6f], we deliberately used a very small number (=128) of
training data to test the overfitting resistibility of the models. Interestingly, LSTM-MERA
did not generally perform worse than vanilla LSTM even with more parameters, probably
due to the deep architecture of LSTM-MERA.

5. Discussion and Conclusions

The limitations of our model mostly come from the fact that it is only better than
traditional LSTM at capturing short-term nonlinearity but not long-term non-Markovianity,
and thus its improvement on long-term tasks such as sequence prediction would be limited.
That being said, the advantages of tensorizing state propagation in LSTM are evident,
including: (1) Tensorization is the most suitable method for the forecasting of nonlinear

Entropy 2021, 23, 1491 14 of 19

chaos since nonlinear terms are treated explicitly and weighted equally by polynomials.
(2) Theoretical analysis is conductible since an orthogonal polynomial basis on k-Sobolev
space is always available. (3) Tensor decomposition techniques (in particular, from quantum
physics) are applicable, which in turn can identify chaos from a different perspective, i.e.,
tensor complexity (tensor ranks, entropies, etc.).

Our tensorized LSTM model not only offers a general and efficient approach for captur-
ing chaos—as demonstrated by both theoretical analysis and experimental results, showing
great potential in unraveling real-world time series—but also brings out a fundamental
question of how tensor complexity is related to the learnability of chaos. Our conjecture
that a tensor complexity of Sα(l) = Θ(log l) in terms of α-Rényi entropy [Equation (6)]
generally performs better than Sα(l) = Θ(1) in chaotic time series forecasting will be
further investigated and formalized in the near future.

Author Contributions: Methodology: X.M. and T.Y.; numerical experiments: X.M.; conceptualization:
T.Y.; validation: X.M. and T.Y.; formal analysis: X.M.; draft preparation: X.M.; review and editing:
X.M. and T.Y.; funding acquisition: X.M. All authors have read and agreed to the published version
of the manuscript.

Funding: X.M. was supported by the NetSeed: Seedling Research Award of the Network Science
Institute of Northeastern University.

Acknowledgments: The authors would like to thank H. Eugene Stanley (Boston University), Jan
Engelbretch (Boston College), Jing Ma (Boston University), Xu Yang (Ohio State University), and
Bowen Zhao (Boston University) for helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ML Machine Learning
NN Neural Network
RNN Recurrent Neural Network
LSTM Long Short Term Memory
HO- Higher-Order-
HOT- Higher-Order-Tensorized-
MPS Matrix Product State
MERA Multiscale Entanglement Renormalization Ansatz
EE Entanglement Entropy
DOF Degree Of Freedom
RMSE Root Mean Squared Error
ARMA Auto-Regressive Moving Average
GBT Gradient Boosted Trees
HMM Hidden Markov Models

Appendix A. Variants of LSTM-MERA

Appendix A.1. Translational Symmetry

In condensed matter physics, the many-body states studied are usually translational
invariant in L, which puts additional constraints on their many-body state structures (MPS,
MERA, etc.). Inspired by this, a variant of LSTM-MERA can be constructed by imposing
such constraints on the MERA structure too, i.e., by forcing the disentanglers belonging
to the same level to be equal to each other. For example, at the first level of the MERA
structure [Level I, red in Figure 2d], a constraint

[u(i)
I]

αβ
µν ≡ [uI]

αβ
µν, i = 1, 2, · · · , L/2 (A1)

can be imposed on the weights of the L/2 disentanglers. Such a constraint can also be
imposed on isometries/inverse isometries, as well as higher levels. When testing LSTM-

Entropy 2021, 23, 1491 15 of 19

MERA on synthetic time series, we have added such a partial translational symmetry
constraint on and only on Level I for the purpose of controlling the number of free learnable
parameters in our model.

Appendix A.2. Dilational Symmetry

A dilational symmetry constraint is exclusive for MERA, since it has been used in
condensed matter physics for representing scaling invariant quantum states. A variant of
LSTM-MERA can thus be introduced by imposing the same constraint, i.e., by forcing all
disentanglers even from different levels to be equal to each other,

[u(i)
I]

αβ
µν ≡ [uI]

αβ
µν ≡ [u(j)

II]
αβ
µν ≡ [uII]

αβ
µν ≡ · · · ,

i = 1, 2, · · · , L/2; j = 1, 2, · · · , L/4; · · · , (A2)

as well as isometries. This variant of LSTM-MERA may greatly decrease the number of
free learnable parameters but may also reduce expressive power.

Appendix A.3. Normalization/Unitarity

Another subtle fact concerning many-body state structures is that the represented
states must be normalized. In fact, normalization layers are also widely used in NN
architectures, especially for deep NNs, in which the training may suffer from the vanishing
gradient problem. In light of this, we have added normalization layers between different
LSTM-MERA layers. No extra freedom has been introduced because the “norm” is already
a degree of freedom implicitly given by the weights of the disentanglers/isometries.

Similarly, the unitarity of the disentanglers [36] is no longer required. The additional
degrees of freedom do not affect the essential MERA structure but may significantly speed
up our training.

Appendix B. Common LSTM Architectures

Appendix B.1. HO- and HOT-RNN/LSTM

HO-RNN/LSTM [15] were first introduced to address the problem of explicitly cap-
turing long-term dependence, by changing all gates in LSTM [Equation (2)] into

g(xt−1, 1⊕ st−1 ⊕ st−2 ⊕ · · · ⊕ st−L;W). (A3)

Equation (A3) only includes linear (first-order polynomial) terms. As higher-order improve-
ments, HOT-RNN/LSTM [28] were later introduced to include nonlinear (higher-order
polynomial) terms as tensor products for the entire non-Markovian dependence,

g(xt−1, (1⊕ st−1 ⊕ st−2 ⊕ · · · ⊕ st−L)
⊗P;W). (A4)

The weight tensor W can be further approximated by means of the tensor-train tech-
nique [28], which is the same as MPS.

Note that L in Equations (A3) and (A4) is not a virtual dimension but the true time
lag. Therefore, to increase the tensorization complexity one has to explicitly increase the
time lag dependence. As a comparison, in LSTM-MERA, L is an artificial dimension that
can be freely adjusted to reflect the true short-term nonlinear complexity.

Appendix C. Preparation of Time Series Datasets

Appendix C.1. Discrete-Time Maps

Each time series dataset for discrete-time maps was constructed as follows: first, two
arrays were produced by the discrete-time map, one with initial conditions (training) and
the other one with initial conditions (testing); next, for both arrays, a time window of
fixed length (input steps + 1) moved from the beginning to the end, step by step, and thus
extracted a sub-array of length (input steps + 1) at each step; each extracted sub-array was

Entropy 2021, 23, 1491 16 of 19

a time series. All time series (from both the training array and the testing array) made up
the entire time series dataset and served for training and testing, respectively. The initial
conditions for training and testing were made different on purpose in order to test the
generalization ability of the models, yet they were chosen to belong to the same chaotic
regime so that the generality of their subsequent chaotic dynamics was always guaranteed
by ergodicity. We investigated four different dynamical systems:

Logistic map: xn+1 = rxn(1− xn);

Gauss iterated map: xn+1 = exp
(
−αx2

n

)
+ β;

Hénon map: xn+1 = 1− ax2
n + bxn−1;

Chirikov standard map: pn+1 = (pn + K sin θn) mod 2π,

θn+1 = (θn + pn+1) mod 2π.

Details of the above systems are listed in Table A1.

Table A1. Discrete-time maps in chaotic phases. λ1,2 are the Lyapunov exponents.

Logistic Gauss Hénon Chirikov

Dimension 1 1 1 2

Parameters r = 4 α = 6.2 a = 1.4 K = 2.0
β = −0.55 b = 0.3

Initial condition x0 = 0.61 x0 = 0.31 x0 = 0.2 p0 = 0.777
(training) x1 = 0.3 θ0 = 0.555

Initial condition x0 = 0.11 x0 = 0.91 x0 = 0.5 p0 = 0.333
(testing) x1 = 0.6 θ0 = 0.999

λ1 ln 2 0.37 0.42 0.45
λ2 – – −1.62 −0.45

Appendix C.2. Continuous-Time Dynamical Systems

Each time series dataset for continuous-time dynamical systems was constructed
differently than in Appendix C.1: only one array was produced by discretizing the dy-
namical system by ∆t given the initial conditions; then the array was standardized; a time
window still moved from the beginning to the end and extracted a sub-array of length
(input steps + 1) at each step; each extracted sub-array was a time series. All time series
made up the entire time series dataset, which was then randomly divided into two subsets,
one for testing and one for training. Four different dynamics were investigated:

Lorentz system:
dx
dt

= σ(y− x),
dy
dt

= x(ρ− z)− y,
dz
dt

= xy− βz;

Thomas’ cyclically symmetric system:
dx
dt

= sin y− bx,
dy
dt

= sin z− by,
dz
dt

= sin x− bz;

Rössler system:
dx
dt

= −y− z,
dy
dt

= x + ay,
dz
dt

= b + z(x− c);

Duffing oscillator system:

d2x
dt2 + δ

dx
dt

+ αx + βx3 = γ cos(ωt).

Details of the above systems are listed in Table A2.

Entropy 2021, 23, 1491 17 of 19

Table A2. Continuous-time dynamical systems in chaotic phases. Tmax is the maximum solution
range, and λ1,2,3 are the Lyapunov exponents.

Lorentz Thomas Rössler Duffing

Dimension 3 3 3 1

α = 1.0
ρ = 28 a = 0.1 β = 5.0

Parameters σ = 10.0 b = 0.1 b = 0.1 δ = 0.02
β = 8/3 c = 14 γ = 8.0

ω = 0.5

x0 = 0 x0 = 0 x0 = 0 x0 = 0
Initial condition y0 = 1 y0 = 1 y0 = 1 ẋ0 = 1

z0 = 0 z0 = 0 z0 = 0

λ1 0.91 0.06 0.07 0.01
λ2 0 0 0 0
λ3 −14.57 −0.36 −11.7 −0.03

Tmax [0, 2500] [0, 5000] [0, 100,000] [0, 50,000]

Appendix C.3. Real-World Time Series: Weather

The data were retrieved using Mathematica’s WeatherData function, https://reference.
wolfram.com/language/note/WeatherDataSourceInformation.html (Figure A1) (accessed
on 1 September 2021), and detailed information about the data has been provided in
Table A3. Missing data points in the raw time series were reconstructed via linear in-
terpolation. The raw time series was then regrouped by choosing different prediction
window lengths, for example, a prediction window length = 4 means that every four
consecutive steps in the time series are regrouped together as a one-step four-dimensional
vector. Then, the dataset was constructed from the regrouped time series the same way as
in Appendix C.2 using a moving window on it after standardization.

May 2012 Aug 2012 Nov 2012 Feb 2013 May 2013 Aug 2013 Nov 2013 Feb 2014 May 2014

990

1000

1010

1020

1030

1040
May 2012 Aug 2012 Nov 2012 Feb 2013 May 2013 Aug 2013 Nov 2013 Feb 2014 May 2014

M
ill
ib
ar

Pressure (KABQ)

(a)

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0

10

20

30

40

50

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

km
/h

Mean wind speed (KBOS)

(b)
Figure A1. Weather time series. (a) Pressure (every eight minutes) before standardization. (b) Mean
wind speed (daily) before standardization.

https://reference.wolfram.com/language/note/WeatherDataSourceInformation.html
https://reference.wolfram.com/language/note/WeatherDataSourceInformation.html

Entropy 2021, 23, 1491 18 of 19

Table A3. Details of weather datasets used in the main article.

Pressure Mean Wind Speed

Location ICAO:KABQ ICAO:KBOS

Span 05/01/2012–05/01/2014 05/01/1994–05/01/2014

Frequency 8 min 1 day

Total length 22,426 7299

References
1. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. Statistical and machine learning forecasting methods: Concerns and ways

forward. PLoS ONE 2018, 13, e0194889. [CrossRef] [PubMed]
2. Cheng, Y.; Anick, P.; Hong, P.; Xue, N. Temporal relation discovery between events and temporal expressions identified in clinical

narrative. J. Biomed. Inform. 2013, 46, S48–S53. [CrossRef] [PubMed]
3. Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; Wiley: Hoboken, NJ, USA, 2015.
4. Rabiner, L.; Juang, B. An introduction to hidden Markov models. IEEE ASSP Mag. 1986, 3, 4–16. [CrossRef]
5. Hong, P.; Huang, T.S. Automatic temporal pattern extraction and association. In Proceedings of the 2002 IEEE International

Conference on Acoustics, Speech, and Signal Processing, Orlando, FL, USA, 13–17 May 2002; Volume 2, pp. II–2005–II–2008.
6. Ahmed, N.K.; Atiya, A.F.; Gayar, N.E.; El-Shishiny, H. An empirical comparison of machine learning models for time series

forecasting. Econom. Rev. 2010, 29, 594–621. [CrossRef]
7. Osogami, T.; Kajino, H.; Sekiyama, T. Bidirectional learning for time-series models with hidden units. In Proceedings of the 34th

International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2711–2720.
8. Borovykh, A.; Bohte, S.; Oosterlee, C.W. Conditional time series forecasting with convolutional neural networks. arXiv 2018,

arXiv:1703.04691v5.
9. Ding, D.; Zhang, M.; Pan, X.; Yang, M.; He, X. Modeling extreme events in time series prediction. In Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019;
pp. 1114–1122.

10. Bar-Yam, Y. Dynamics Of Complex Systems (Studies in Nonlinearity); CRC Press: New York, NY, USA, 1999.
11. Jozefowicz, R.; Zaremba, W.; Sutskever, I. An empirical exploration of recurrent network architectures. In Proceedings of the

32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2342–2350.
12. Giles, C.L.; Sun, G.Z.; Chen, H.H.; Lee, Y.C.; Chen, D. Higher order recurrent networks and grammatical inference. In Proceedings

of Neural Information Processing Systems, Denver, CO, USA, 27–30 November 1989; pp. 380–387.
13. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
14. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
15. Soltani, R.; Jiang, H. Higher order recurrent neural networks. arXiv 2016, arXiv:1605.00064.
16. Haruna, T.; Nakajima, K. Optimal short-term memory before the edge of chaos in driven random recurrent networks. Phys. Rev.

E 2019, 100, 062312. [CrossRef]
17. Feng, L.; Lai, C.H. Optimal machine intelligence near the edge of chaos. arXiv 2019, arXiv:1909.05176.
18. Kuo, J.M.; Principle, J.C.; de Vries, B. Prediction of chaotic time series using recurrent neural networks. In Proceedings of the

Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop, Helsingoer, Denmark, 31 Augest–2 September
1992; pp. 436–443.

19. Zhang, J.S.; Xiao, X.C. Predicting chaotic time series using recurrent neural network. Chinese Phys. Lett. 2000, 17, 88–90. [CrossRef]
20. Han, M.; Xi, J.; Xu, S.; Yin, F.L. Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans.

Signal Process. 2004, 52, 3409–3416. [CrossRef]
21. Ma, Q.L.; Zheng, Q.L.; Peng, H.; Zhong, T.W.; Xu, L.Q. Chaotic time series prediction based on evolving recurrent neural

networks. In Proceedings of the 2007 International Conference on Machine Learning and Cybernetics, Hong Kong, China, 19–22
August 2007; Volume 6, pp. 3496–3500.

22. Domino, K. The use of the Hurst exponent to predict changes in trends on the Warsaw stock exchange. Phys. A 2011, 390, 98–109.
[CrossRef]

23. Li, Q.; Lin, R. A new approach for chaotic time series prediction using recurrent neural network. Math. Probl. Eng. 2016,
2016, 3542898. [CrossRef] [PubMed]

24. Vlachas, P.R.; Byeon, W.; Wan, Z.Y.; Sapsis, T.P.; Koumoutsakos, P. Data-driven forecasting of high-dimensional chaotic systems
with long short-term memory networks. Proc. R. Soc. A 2018, 474, 20170844. [CrossRef] [PubMed]

25. Domino, K. Multivariate cumulants in outlier detection for financial data analysis. Phys. A 2020, 558, 124995. [CrossRef]
26. Yang, Y.; Krompass, D.; Tresp, V. Tensor-train recurrent neural networks for video classification. In Proceedings of the 34th

International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 3891–3900.

http://dx.doi.org/10.1371/journal.pone.0194889
http://www.ncbi.nlm.nih.gov/pubmed/29584784
http://dx.doi.org/10.1016/j.jbi.2013.09.010
http://www.ncbi.nlm.nih.gov/pubmed/24076508
http://dx.doi.org/10.1109/MASSP.1986.1165342
http://dx.doi.org/10.1080/07474938.2010.481556
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1103/PhysRevE.100.062312
http://dx.doi.org/10.1088/0256-307X/17/2/004
http://dx.doi.org/10.1109/TSP.2004.837418
http://dx.doi.org/10.1016/j.physa.2010.04.015
http://dx.doi.org/10.1155/2016/3542898
http://www.ncbi.nlm.nih.gov/pubmed/27731583
http://dx.doi.org/10.1098/rspa.2017.0844
http://www.ncbi.nlm.nih.gov/pubmed/29887750
http://dx.doi.org/10.1016/j.physa.2020.124995

Entropy 2021, 23, 1491 19 of 19

27. Schlag, I.; Schmidhuber, J. Learning to reason with third order tensor products. In Proceedings of the Neural Information
Processing Systems 2018, Montreal, QC, Canada, 3–8 December 2018; Volume 31, pp. 9981–9993.

28. Yu, R.; Zheng, S.; Anandkumar, A.; Yue, Y. Long-term forecasting using higher order tensor RNNs. arXiv 2019, arXiv:1711.00073v3.
29. Raissi, M. Deep hidden physics models: Deep learning of nonlinear partial differential equations. J. Mach. Learn. Res. 2018,

19, 1–24.
30. Pathak, J.; Hunt, B.; Girvan, M.; Lu, Z.; Ott, E. Model-free prediction of large spatiotemporally chaotic systems from data: A

reservoir computing approach. Phys. Rev. Lett. 2018, 120, 024102. [CrossRef]
31. Jiang, J.; Lai, Y.C. Model-free prediction of spatiotemporal dynamical systems with recurrent neural networks: Role of network

spectral radius. Phys. Rev. Res. 2019, 1, 033056. [CrossRef]
32. Qi, D.; Majda, A.J. Using machine learning to predict extreme events in complex systems. Proc. Natl. Acad. Sci. USA 2020,

117, 52–59. [CrossRef]
33. Graves, A. Generating sequences with recurrent neural networks. arXiv 2014, arXiv:1308.0850v5.
34. Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L. Machine learning and the

physical sciences. Rev. Mod. Phys. 2019, 91, 045002. [CrossRef]
35. Eisert, J.; Cramer, M.; Plenio, M.B. Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys. 2010, 82, 277–306.

[CrossRef]
36. Vidal, G. Class of quantum many-body states that can be efficiently simulated. Phys. Rev. Lett. 2008, 101, 110501. [CrossRef]
37. Verstraete, F.; Cirac, J.I. Matrix product states represent ground states faithfully. Phys. Rev. B 2006, 73, 094423. [CrossRef]
38. Zhang, Y.H. Entanglement entropy of target functions for image classification and convolutional neural network. arXiv 2017,

arXiv:1710.05520.
39. Khrulkov, V.; Novikov, A.; Oseledets, I.V. Expressive power of recurrent neural networks. In Proceedings of the 6th International

Conference on Learning Representations (ICLR 2018), Vancouver, British Columbia, Canada, 30 April–3 May 2018.
40. Bhatia, A.S.; Saggi, M.K.; Kumar, A.; Jain, S. Matrix product state based quantum classifier. Neural Comput. 2019, 31, 1499–1517.

[CrossRef]
41. Jia, Z.A.; Wei, L.; Wu, Y.C.; Guo, G.C.; Guo, G.P. Entanglement area law for shallow and deep quantum neural network states.

New J. Phys. 2020, 22, 053022. [CrossRef]
42. Bigoni, D.; Engsig-Karup, A.P.; Marzouk, Y.M. Spectral tensor-train decomposition. SIAM J. Sci. Comput. 2016, 38, A2405–A2439.

[CrossRef]
43. Grasedyck, L. Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 2010, 31, 2029–2054. [CrossRef]
44. Canuto, C.; Quarteroni, A. Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 1982, 38, 67–86.

[CrossRef]
45. Dehmamy, N.; Barabási, A.L.; Yu, R. Understanding the representation power of graph neural networks in learning graph

topology. arXiv 2019, arXiv:1907.05008.

http://dx.doi.org/10.1103/PhysRevLett.120.024102
http://dx.doi.org/10.1103/PhysRevResearch.1.033056
http://dx.doi.org/10.1073/pnas.1917285117
http://dx.doi.org/10.1103/RevModPhys.91.045002
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/PhysRevLett.101.110501
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1162/neco_a_01202
http://dx.doi.org/10.1088/1367-2630/ab8262
http://dx.doi.org/10.1137/15M1036919
http://dx.doi.org/10.1137/090764189
http://dx.doi.org/10.1090/S0025-5718-1982-0637287-3

	Introduction
	Recurrent Architecture and Tensorization
	Formalism of LSTM Architecture
	Tensorized State Propagation
	Many-Body Entanglement Structures
	MPS
	MERA
	Scaling Behavior of EE

	Theoretical Analysis
	Expressive Power
	Worst-Case Bound by EE

	Results
	Comparison of LSTM-Based Architectures
	Lorenz System
	Logistic Map

	Comparison with Statistical/ML Models
	Comparison with LSTM-MERA Alternatives
	Generalization and Parameter Dependence of LSTM-MERA
	Rössler System
	Hénon Map
	Duffing Oscillator System
	Chirikov Standard Map
	Real-World Data: Weather Forecasting

	Discussion and Conclusions
	Variants of LSTM-MERA
	Translational Symmetry
	Dilational Symmetry
	Normalization/Unitarity

	Common LSTM Architectures
	HO- and HOT-RNN/LSTM

	Preparation of Time Series Datasets
	Discrete-Time Maps
	Continuous-Time Dynamical Systems
	Real-World Time Series: Weather

	References

