Pricing Interval European Option with the Principle of Maximum Entropy
Abstract
1. Introduction
2. The Interval Maximum Entropy Model
2.1. Interval European Option
2.2. Model Setting
2.3. Solution of the Model
3. Empirical Analyses
3.1. β Equal to 0 or 1
3.2. β Belonging to [0, 1]
3.2.1. China SSE 50 ETF Option Pricing
3.2.2. US Boeing Stock Option Pricing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fang, S.C.; Rajasekera, J.R.; Tsao, H.S.J. Entropy Optimization and Mathematical Programming; Springer: New York, NY, USA, 1997. [Google Scholar]
- Zhou, R.X.; Cai, R.; Tong, G.Q. Applications of entropy in finance: A Review. Entropy 2013, 15, 4909–4931. [Google Scholar] [CrossRef]
- He, X.J.; Zhu, S.P. Pricing European options with stochastic volatility under the minimal entropy martingale measure. Eur. J. Appl. Math. 2015, 27, 233–247. [Google Scholar] [CrossRef]
- Brody, D.C.; Buckley, L.R.C.; Constantinou, I.C. Option price calibration from Rényi entropy. Phys. Lett. A 2007, 366, 298–307. [Google Scholar] [CrossRef]
- Yu, X.S.; Xie, X.K. Pricing American options: RNMs-constrained entropic least-squares approach. N. Am. J. Econ. Financ. 2015, 31, 155–173. [Google Scholar] [CrossRef]
- Feunou, B.; Okou, C. Good volatility, bad volatility and option pricing. J. Financial Quant. Anal. 2019, 54, 695–727. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.P.; Zhou, R.J. Entropy value-based pursuit projection cluster for the teaching quality evaluation with interval number. Entropy 2019, 21, 203. [Google Scholar] [CrossRef]
- Hernando, A.; Plastino, A.; Plastino, A.R. MaxEnt and dynamical information. Eur. Phys. J. B 2012, 85, 147. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Zambrano, E.; Hernando, A.; Fernández Bariviera, A.; Hernando, R.; Plastino, A. Thermodynamics of firms’ growth. J. Royal Soc. Interface 2015, 12, 20150789. [Google Scholar] [CrossRef]
- Hu, Z.J.; Guo, K.; Jin, S.L.; Pan, H.H. The influence of climatic changes on distribution pattern of six typical Kobresia, species in Tibetan Plateau based on MaxEnt model and geographic information system. Theor. Appl. Climatol. 2018, 135, 375–390. [Google Scholar] [CrossRef]
- Raney, P.A.; Leopold, D.J. Fantastic Wetlands and Where to Find Them: Modeling Rich Fen Distribution in New York State with Maxent. Wetlands 2017, 38, 81–93. [Google Scholar] [CrossRef]
- Cozzolino, J.M.; Zahner, M.J. The maximum entropy distribution of the future market price of a stock. Oper. Res. 1973, 21, 1200–1211. [Google Scholar] [CrossRef]
- Bartiromo, R. Maximum entropy distribution of stock price fluctuations. Phys. A 2013, 392, 1638–1647. [Google Scholar] [CrossRef][Green Version]
- Jackwerth, J.C.; Rubinstein, M. Recovering probability distributions from option prices. J. Financ. 1996, 51, 1611–1631. [Google Scholar] [CrossRef]
- Buchen, P.W.; Kelly, M. The maximum entropy distribution of an asset inferred from option prices. J. Financ. Quant. Anal. 1996, 31, 143–159. [Google Scholar] [CrossRef]
- Borwein, J.; Choksi, R.; MarEchal, P. Probability distributions of assets inferred from option prices via the principle of maximum entropy. SIAM J. Optim. 2003, 14, 464–478. [Google Scholar] [CrossRef]
- Rompolis, L.S. Retrieving risk neutral densities from European option prices based on the principle of maximum entropy. J. Empir. Financ. 2010, 17, 918–937. [Google Scholar] [CrossRef]
- Neri, C.; Schneider, L. Maximum entropy distributions inferred from option portfolios on an asset. Financ. Stoch. 2012, 16, 293–318. [Google Scholar] [CrossRef]
- Neri, C.; Schneider, L. A family of maximum entropy densities matching call option prices. Appl. Math. Financ. 2013, 20, 548–577. [Google Scholar] [CrossRef]
- Gulko, L. The entropic market hypothesis. Int. J. Theor. Appl. Financ. 1999, 2, 293–329. [Google Scholar] [CrossRef]
- Gulko, L. The entropy theory of stock option pricing. Int. J. Theor. Appl. Financ. 1999, 2, 331–355. [Google Scholar] [CrossRef]
- Tapiero, O.J. A maximum (non-extensive) entropy approach to equity options bid-ask spread. Phys. A 2013, 392, 3051–3060. [Google Scholar] [CrossRef]
- Liu, X.W.; Da, Q.L. A satisfactory solution for interval number linear programming. J. Syst. Eng. 1999, 2, 21–26. [Google Scholar]
- Zhou, R.X.; Liu, X.; Yu, M.; Li, J. Pricing option of Shanghai 50ETF based on the methods of maximum entropy and minimum cross-entropy. Math. Pract. Theory 2018, 48, 10–19. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Zhang, H.M.; Watada, J. An analysis of the arbitrage efficiency of the Chinese SSE 50ETF options market. Int. Rev. Econ. Financ. 2019, 59, 474–489. [Google Scholar] [CrossRef]
- Wang, J.Z.; Chen, S.J.; Tao, Q.Z.; Zhang, T. Modelling the implied volatility surface based on Shanghai 50ETF options. Econ. Model 2017, 64, 295–301. [Google Scholar] [CrossRef]
50ETF June Call Option | 50ETF September Call Option | |||||||
---|---|---|---|---|---|---|---|---|
Strike Price | Highest | Lowest | Strike Price | Highest | Lowest | Strike Price | Highest | Lowest |
1.80 | 0.3627 | 0.3400 | 2.25 | 0.0530 | 0.0436 | 1.80 | 0.3688 | 0.3502 |
1.85 | 0.3150 | 0.2928 | 2.30 | 0.0390 | 0.0321 | 1.85 | 0.3184 | 0.3160 |
1.90 | 0.2683 | 0.2492 | 2.35 | 0.0291 | 0.0241 | 1.90 | 0.2850 | 0.2737 |
1.95 | 0.2271 | 0.2066 | 2.40 | 0.0207 | 0.0162 | 1.95 | 0.2529 | 0.2415 |
2.00 | 0.1886 | 0.1684 | 2.45 | 0.0146 | 0.0115 | 2.00 | 0.2202 | 0.2072 |
2.05 | 0.1525 | 0.1329 | 2.50 | 0.0108 | 0.0085 | 2.05 | 0.1902 | 0.1793 |
2.10 | 0.1193 | 0.1061 | 2.55 | 0.0076 | 0.0061 | 2.10 | 0.1645 | 0.1501 |
2.15 | 0.0936 | 0.0801 | 2.60 | 0.0054 | 0.0045 | 2.15 | 0.1430 | 0.1266 |
2.20 | 0.0708 | 0.0605 | 2.65 | 0.0045 | 0.0036 | 2.20 | 0.1190 | 0.1105 |
2.25 | 0.1010 | 0.0966 | ||||||
2.30 | 0.0855 | 0.0750 |
Strike Price | 2.50 | 2.55 | 2.60 | 2.65 | 2.70 | 2.75 | 2.80 | 2.85 | 2.90 | 2.95 | 3.00 | 3.10 | 3.20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Call option | Highest | 0.5309 | 0.4822 | 0.4350 | 0.3870 | 0.3425 | 0.2962 | 0.2520 | 0.2107 | 0.1740 | 0.1410 | 0.1122 | 0.0685 | 0.0400 |
Lowest | 0.4927 | 0.4455 | 0.3988 | 0.3502 | 0.3067 | 0.2624 | 0.1900 | 0.1765 | 0.1405 | 0.1100 | 0.0842 | 0.0471 | 0.0262 | |
Put option | Highest | 0.0062 | 0.0070 | 0.0088 | 0.0112 | 0.0143 | 0.0189 | 0.0254 | 0.0349 | 0.0481 | 0.0669 | 0.0901 | 0.1522 | 0.2287 |
Lowest | 0.0047 | 0.0051 | 0.0068 | 0.0086 | 0.0104 | 0.0144 | 0.0200 | 0.0279 | 0.0401 | 0.0550 | 0.0750 | 0.1308 | 0.2031 |
β | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
K | ||||||||||||
2.50 | 0.0032 | 0.0034 | 0.0060 | 0.0038 | 0.0042 | 0.0058 | 0.0042 | 0.0071 | 0.0052 | 0.0061 | 0.0054 | |
2.55 | 0.0042 | 0.0044 | 0.0079 | 0.0050 | 0.0055 | 0.0075 | 0.0055 | 0.0093 | 0.0068 | 0.0080 | 0.0070 | |
2.60 | 0.0053 | 0.0057 | 0.0099 | 0.0064 | 0.0070 | 0.0095 | 0.0070 | 0.0116 | 0.0087 | 0.0102 | 0.0088 | |
2.65 | 0.0069 | 0.0074 | 0.0122 | 0.0083 | 0.0090 | 0.0117 | 0.0092 | 0.0141 | 0.0111 | 0.0131 | 0.0108 | |
2.70 | 0.0090 | 0.0099 | 0.0148 | 0.0111 | 0.0117 | 0.0143 | 0.0121 | 0.0170 | 0.0145 | 0.0167 | 0.0134 | |
2.75 | 0.0121 | 0.0131 | 0.0180 | 0.0151 | 0.0152 | 0.0175 | 0.0155 | 0.0202 | 0.0189 | 0.0209 | 0.0165 | |
2.80 | 0.0159 | 0.0169 | 0.0219 | 0.0202 | 0.0195 | 0.0213 | 0.0198 | 0.0241 | 0.0247 | 0.0258 | 0.0207 | |
2.85 | 0.0211 | 0.0221 | 0.0275 | 0.0269 | 0.0258 | 0.0270 | 0.0268 | 0.0304 | 0.0326 | 0.0334 | 0.0284 | |
2.90 | 0.0295 | 0.0308 | 0.0367 | 0.0370 | 0.0364 | 0.0372 | 0.0385 | 0.0411 | 0.0434 | 0.0455 | 0.0405 | |
2.95 | 0.0412 | 0.0432 | 0.0497 | 0.0518 | 0.0515 | 0.0530 | 0.0550 | 0.0560 | 0.0599 | 0.0627 | 0.0585 | |
3.00 | 0.0566 | 0.0596 | 0.0673 | 0.0723 | 0.0706 | 0.0736 | 0.0769 | 0.0754 | 0.0840 | 0.0849 | 0.0813 | |
3.10 | 0.1044 | 0.1094 | 0.1176 | 0.1256 | 0.1244 | 0.1301 | 0.1356 | 0.1321 | 0.1436 | 0.1453 | 0.1414 | |
3.20 | 0.1612 | 0.1686 | 0.1782 | 0.1889 | 0.1905 | 0.1993 | 0.2054 | 0.2015 | 0.2145 | 0.2189 | 0.2120 | |
RMSE | 0.0156 | 0.0129 | 0.0086 | 0.0045 | 0.0044 | 0.0025 | 0.0018 | 0.0038 | 0.0062 | 0.0080 | 0.0046 | |
E | 3.0366 | 3.0265 | 3.0133 | 3.0082 | 2.9911 | 2.9774 | 2.9704 | 2.9749 | 2.9587 | 2.9515 | 2.9633 |
β | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
K | ||||||||||||
2.50 | 0.0042 | 0.0044 | 0.0079 | 0.0050 | 0.0055 | 0.0075 | 0.0055 | 0.0093 | 0.0068 | 0.0080 | 0.0070 | |
2.55 | 0.0053 | 0.0057 | 0.0099 | 0.0064 | 0.0070 | 0.0095 | 0.0070 | 0.0116 | 0.0087 | 0.0102 | 0.0088 | |
2.60 | 0.0069 | 0.0074 | 0.0122 | 0.0083 | 0.0090 | 0.0117 | 0.0092 | 0.0141 | 0.0111 | 0.0131 | 0.0108 | |
2.65 | 0.0090 | 0.0099 | 0.0148 | 0.0111 | 0.0117 | 0.0143 | 0.0121 | 0.0170 | 0.0145 | 0.0167 | 0.0134 | |
2.70 | 0.0121 | 0.0131 | 0.0180 | 0.0151 | 0.0152 | 0.0175 | 0.0155 | 0.0202 | 0.0189 | 0.0209 | 0.0165 | |
2.75 | 0.0159 | 0.0169 | 0.0219 | 0.0202 | 0.0195 | 0.0213 | 0.0198 | 0.0241 | 0.0247 | 0.0258 | 0.0207 | |
2.80 | 0.0211 | 0.0221 | 0.0275 | 0.0269 | 0.0258 | 0.0270 | 0.0268 | 0.0304 | 0.0326 | 0.0334 | 0.0284 | |
2.85 | 0.0295 | 0.0308 | 0.0367 | 0.0370 | 0.0364 | 0.0372 | 0.0385 | 0.0411 | 0.0434 | 0.0455 | 0.0405 | |
2.90 | 0.0412 | 0.0432 | 0.0497 | 0.0518 | 0.0515 | 0.0530 | 0.0550 | 0.0560 | 0.0599 | 0.0627 | 0.0585 | |
2.95 | 0.0566 | 0.0596 | 0.0673 | 0.0723 | 0.0706 | 0.0736 | 0.0769 | 0.0754 | 0.0840 | 0.0849 | 0.0813 | |
3.00 | 0.0783 | 0.0821 | 0.0901 | 0.0972 | 0.0950 | 0.0994 | 0.1042 | 0.1012 | 0.1122 | 0.1127 | 0.1094 | |
3.10 | 0.1324 | 0.1386 | 0.1474 | 0.1564 | 0.1566 | 0.1638 | 0.1697 | 0.1659 | 0.1780 | 0.1812 | 0.1760 | |
3.20 | 0.1909 | 0.1993 | 0.2099 | 0.2226 | 0.2255 | 0.2360 | 0.2424 | 0.2382 | 0.2522 | 0.2578 | 0.2490 | |
RMSE | 0.0130 | 0.0097 | 0.0059 | 0.0035 | 0.0025 | 0.0055 | 0.0081 | 0.0076 | 0.0134 | 0.0154 | 0.0115 | |
E | 3.0366 | 3.0265 | 3.0133 | 3.0082 | 2.9911 | 2.9774 | 2.9704 | 2.9749 | 2.9587 | 2.9515 | 2.9633 |
Strike Price | 3.425 | 3.450 | 3.500 | 3.550 | 3.575 | 3.600 | 3.625 | 3.650 | 3.675 | 3.700 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Call option | Highest | 0.1720 | 0.1615 | 0.1241 | 0.0900 | 0.0720 | 0.0610 | 0.0490 | 0.0395 | 0.0305 | 0.0231 |
Lowest | 0.1615 | 0.1351 | 0.0991 | 0.0697 | 0.0575 | 0.0470 | 0.0385 | 0.0296 | 0.0225 | 0.0165 | |
Put option | Highest | 0.0261 | 0.0316 | 0.0463 | 0.0700 | 0.0780 | 0.0925 | 0.1075 | 0.1195 | 0.1335 | 0.1606 |
Lowest | 0.0170 | 0.0205 | 0.0315 | 0.0479 | 0.0585 | 0.0690 | 0.0855 | 0.0985 | 0.1203 | 0.1323 |
β | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
K | ||||||||||||
3.425 | 0.0152 | 0.0150 | 0.0157 | 0.0173 | 0.0157 | 0.0147 | 0.0117 | 0.0010 | 0.0010 | 0.0010 | 0.0011 | |
3.450 | 0.0197 | 0.0194 | 0.0203 | 0.0224 | 0.0204 | 0.0191 | 0.0152 | 0.0033 | 0.0033 | 0.0035 | 0.0038 | |
3.500 | 0.0305 | 0.0301 | 0.0313 | 0.0343 | 0.0311 | 0.0291 | 0.0241 | 0.0126 | 0.0130 | 0.0139 | 0.0153 | |
3.550 | 0.0436 | 0.0431 | 0.0448 | 0.0485 | 0.0442 | 0.0423 | 0.0372 | 0.0281 | 0.0294 | 0.0314 | 0.0345 | |
3.575 | 0.0510 | 0.0505 | 0.0525 | 0.0565 | 0.0520 | 0.0506 | 0.0462 | 0.0386 | 0.0404 | 0.0432 | 0.0472 | |
3.600 | 0.0591 | 0.0587 | 0.0608 | 0.0651 | 0.0607 | 0.0601 | 0.0569 | 0.0507 | 0.0534 | 0.0570 | 0.0616 | |
3.625 | 0.0679 | 0.0678 | 0.0700 | 0.0746 | 0.0706 | 0.0713 | 0.0695 | 0.0642 | 0.0679 | 0.0722 | 0.0775 | |
3.650 | 0.0777 | 0.0779 | 0.0804 | 0.0851 | 0.0820 | 0.0840 | 0.0834 | 0.0787 | 0.0834 | 0.0882 | 0.0942 | |
3.675 | 0.0885 | 0.0893 | 0.0921 | 0.0971 | 0.0953 | 0.0983 | 0.0986 | 0.0944 | 0.1001 | 0.1054 | 0.1118 | |
3.700 | 0.1006 | 0.1021 | 0.1054 | 0.1108 | 0.1106 | 0.1144 | 0.1151 | 0.1114 | 0.1182 | 0.1236 | 0.1307 | |
RMSE | 0.0171 | 0.0168 | 0.0149 | 0.0115 | 0.0131 | 0.0118 | 0.0133 | 0.0212 | 0.0172 | 0.0144 | 0.0116 | |
E | 3.5598 | 3.5515 | 3.5415 | 3.5296 | 3.5253 | 3.5170 | 3.5131 | 3.5131 | 3.5025 | 3.4948 | 3.4862 |
β | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
K | ||||||||||||
3.425 | 0.0368 | 0.0363 | 0.0378 | 0.038 | 0.0372 | 0.0352 | 0.0300 | 0.0196 | 0.0204 | 0.0218 | 0.0240 | |
3.450 | 0.0436 | 0.0431 | 0.0448 | 0.0485 | 0.0442 | 0.0423 | 0.0372 | 0.0281 | 0.0294 | 0.0314 | 0.0345 | |
3.500 | 0.0591 | 0.0587 | 0.0608 | 0.0601 | 0.0607 | 0.0601 | 0.0569 | 0.0507 | 0.0534 | 0.0570 | 0.0616 | |
3.550 | 0.0777 | 0.0779 | 0.0804 | 0.0801 | 0.0820 | 0.0840 | 0.0834 | 0.0787 | 0.0834 | 0.0882 | 0.0942 | |
3.575 | 0.0885 | 0.0893 | 0.0921 | 0.0914 | 0.0953 | 0.0983 | 0.0986 | 0.0944 | 0.1001 | 0.1054 | 0.1118 | |
3.600 | 0.1006 | 0.1021 | 0.1054 | 0.1058 | 0.1106 | 0.1144 | 0.1151 | 0.1114 | 0.1182 | 0.1236 | 0.1307 | |
3.625 | 0.1141 | 0.1164 | 0.1205 | 0.1127 | 0.1278 | 0.1322 | 0.1331 | 0.1299 | 0.1376 | 0.1433 | 0.1509 | |
3.650 | 0.1290 | 0.1321 | 0.1371 | 0.1411 | 0.1462 | 0.1510 | 0.1523 | 0.1495 | 0.1580 | 0.1641 | 0.1721 | |
3.675 | 0.1451 | 0.1488 | 0.1550 | 0.1552 | 0.1654 | 0.1706 | 0.1724 | 0.1702 | 0.1794 | 0.1859 | 0.1942 | |
3.700 | 0.1619 | 0.1664 | 0.1737 | 0.1744 | 0.1853 | 0.1911 | 0.1933 | 0.1918 | 0.2017 | 0.2085 | 0.2170 | |
RMSE | 0.0096 | 0.0109 | 0.0145 | 0.0149 | 0.0200 | 0.0232 | 0.0236 | 0.0212 | 0.0276 | 0.0324 | 0.0387 | |
E | 3.5598 | 3.5515 | 3.5415 | 3.5296 | 3.5253 | 3.5170 | 3.5131 | 3.5131 | 3.5025 | 3.4948 | 3.4862 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhou, R.; Xiong, Y.; Yang, Y. Pricing Interval European Option with the Principle of Maximum Entropy. Entropy 2019, 21, 788. https://doi.org/10.3390/e21080788
Liu X, Zhou R, Xiong Y, Yang Y. Pricing Interval European Option with the Principle of Maximum Entropy. Entropy. 2019; 21(8):788. https://doi.org/10.3390/e21080788
Chicago/Turabian StyleLiu, Xiao, Rongxi Zhou, Yahui Xiong, and Yuexiang Yang. 2019. "Pricing Interval European Option with the Principle of Maximum Entropy" Entropy 21, no. 8: 788. https://doi.org/10.3390/e21080788
APA StyleLiu, X., Zhou, R., Xiong, Y., & Yang, Y. (2019). Pricing Interval European Option with the Principle of Maximum Entropy. Entropy, 21(8), 788. https://doi.org/10.3390/e21080788