Next Issue
Volume 2, December
Previous Issue
Volume 2, June
 
 
entropy-logo

Journal Browser

Journal Browser

Entropy, Volume 2, Issue 3 (September 2000) – 5 articles , Pages 81-171

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
27 KiB  
Article
Entropy In the Universe: A New Approach
by Antonio Alfonso-Faus
Entropy 2000, 2(3), 168-171; https://doi.org/10.3390/e2030168 - 07 Sep 2000
Cited by 2 | Viewed by 5627
Abstract
We propose a new definition of entropy for any mass m, based on gravitation and through the concept of a gravitational cross section. It turns out to be proportional to mass, and therefore extensive, and to the age of the Universe. It is [...] Read more.
We propose a new definition of entropy for any mass m, based on gravitation and through the concept of a gravitational cross section. It turns out to be proportional to mass, and therefore extensive, and to the age of the Universe. It is a Machian approach. It is also the number of gravity quanta the mass has emitted through its age. The entropy of the Uni-verse is so determined and the cosmological entropy problem solved. Full article
270 KiB  
Article
Additive Cellular Automata and Volume Growth
by Thomas B. Ward
Entropy 2000, 2(3), 142-167; https://doi.org/10.3390/e2030142 - 24 Aug 2000
Cited by 10 | Viewed by 6538
Abstract
A class of dynamical systems associated to rings of S-integers in rational function fields is described. General results about these systems give a rather complete description of the well-known dynamics in one-dimensional additive cellular automata with prime alphabet, including simple formulæ for the [...] Read more.
A class of dynamical systems associated to rings of S-integers in rational function fields is described. General results about these systems give a rather complete description of the well-known dynamics in one-dimensional additive cellular automata with prime alphabet, including simple formulæ for the topological entropy and the number of periodic configurations. For these systems the periodic points are uniformly distributed along some subsequence with respect to the maximal measure, and in particular are dense. Periodic points may be constructed arbitrarily close to a given configuration, and rationality of the dynamical zeta function is characterized. Throughout the emphasis is to place this particular family of cellular automata into the wider context of S-integer dynamical systems, and to show how the arithmetic of rational function fields determines their behaviour. Using a covering space the dynamics of additive cellular automata are related to a form of hyperbolicity in completions of rational function fields. This expresses the topological entropy of the automata directly in terms of volume growth in the covering space. Full article
218 KiB  
Article
Inquiries into the Nature of Free Energy and Entropy in Respect to Biochemical Thermodynamics
by Clinton D. Stoner
Entropy 2000, 2(3), 106-141; https://doi.org/10.3390/e2030106 - 09 Aug 2000
Cited by 9 | Viewed by 10538
Abstract
Free energy and entropy are examined in detail from the standpoint of classical thermodynamics. The approach is logically based on the fact that thermodynamic work is mediated by thermal energy through the tendency for nonthermal energy to convert spontaneously into thermal energy and [...] Read more.
Free energy and entropy are examined in detail from the standpoint of classical thermodynamics. The approach is logically based on the fact that thermodynamic work is mediated by thermal energy through the tendency for nonthermal energy to convert spontaneously into thermal energy and for thermal energy to distribute spontaneously and uniformly within the accessible space. The fact that free energy is a Second-Law, expendable energy that makes it possible for thermodynamic work to be done at finite rates is emphasized. Entropy, as originally defined, is pointed out to be the capacity factor for thermal energy that is hidden with respect to temperature; it serves to evaluate the practical quality of thermal energy and to account for changes in the amounts of latent thermal energies in systems maintained at constant temperature. With entropy thus operationally defined, it is possible to see that TDS° of the Gibbs standard free energy relation DG°= DH°-TDS° serves to account for differences or changes in nonthermal energies that do not contribute to DG° and that, since DH° serves to account for differences or changes in total energy, complete enthalpy-entropy (DH° - TDS°) compensation must invariably occur in isothermal processes for which TDS° is finite. A major objective was to clarify the means by which free energy is transferred and conserved in sequences of biological reactions coupled by freely diffusible intermediates. In achieving this objective it was found necessary to distinguish between a 'characteristic free energy' possessed by all First-Law energies in amounts equivalent to the amounts of the energies themselves and a 'free energy of concentration' that is intrinsically mechanical and relatively elusive in that it can appear to be free of First-Law energy. The findings in this regard serve to clarify the fact that the transfer of chemical potential energy from one repository to another along sequences of biological reactions of the above sort occurs through transfer of the First-Law energy as thermal energy and transfer of the Second-Law energy as free energy of concentration. Full article
Show Figures

Figure 1

53 KiB  
Article
Approach to a Quantitative Description of Social Systems Based on Thermodynamic Formalism
by Josip Stepanic, Jr., Hrvoje Stefancic, Mislav Stjepan Zebec and Kresimir Perackovic
Entropy 2000, 2(3), 98-105; https://doi.org/10.3390/e2030098 - 28 Jul 2000
Cited by 15 | Viewed by 7557
Abstract
Certain statistical aspects of social systems are described by appropriately defined quantities named social potentials. Relations between social potentials are postulated by drawing an analogy with thermodynamics relations between thermodynamic potentials, thus obtaining a toy model of some of the statistical properties of [...] Read more.
Certain statistical aspects of social systems are described by appropriately defined quantities named social potentials. Relations between social potentials are postulated by drawing an analogy with thermodynamics relations between thermodynamic potentials, thus obtaining a toy model of some of the statistical properties of social systems. Within this model, an interpretation of a socially relevant acting (acting as opposed to action, see ref. [1]) that does not invoke structural changes in social systems, is given in terms of social po-tentials. Full article
57 KiB  
Article
The Complex Information Process
by Edwina Taborsky
Entropy 2000, 2(3), 81-97; https://doi.org/10.3390/e2030081 - 24 Jul 2000
Cited by 7 | Viewed by 5122
Abstract
This paper examines the semiosic development of energy to information within a dyadic reality that operates within the contradictions of both classical and quantum physics. These two realities are examined within the three Peircean modal categories of Firstness, Secondness and Thirdness. The paper [...] Read more.
This paper examines the semiosic development of energy to information within a dyadic reality that operates within the contradictions of both classical and quantum physics. These two realities are examined within the three Peircean modal categories of Firstness, Secondness and Thirdness. The paper concludes that our world cannot operate within either of the two physical realities but instead filiates the two to permit a semiosis or information-generation of complex systems. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop