Seeing Is Believing: The Impact of AI Magic Mirror on Consumer Purchase Intentions in Medical Aesthetic Services
Abstract
1. Introduction
2. Literature Review
2.1. AI in E-Commerce
2.2. AI in Medical Aesthetics
2.3. Perceived Value and Perceived Risk
2.4. Fit Uncertainty
3. Hypotheses Development
3.1. AI Magic Mirror and Purchase Intention
3.2. Mediation by Perceived Value
3.3. Mediation by Perceived Risk
3.4. Moderation by Fit Uncertainty
3.5. Moderation by Procedure Popularity
4. Materials and Methods
4.1. Study 1: Secondary Data Analysis
4.1.1. Data Collection Variable Measurement
4.1.2. Empirical Models and Results
4.2. Study 2: Experimental Study
4.2.1. Study 2 Design
4.2.2. Study 2 Results
4.3. Study 3: Experimental Study
4.3.1. Study 3 Design
4.3.2. Study 3 Results
5. General Discussion
5.1. Findings
5.2. Theoretical Contributions
5.3. Managerial Implications
5.4. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
Appendix A
Variable | Category | Frequency | Percentage (%) |
---|---|---|---|
Gender | Male | 104 | 26.33 |
Female | 291 | 73.67 | |
Age Group (years) | ≤20 | 19 | 4.81 |
21–30 | 203 | 51.39 | |
31–40 | 146 | 36.96 | |
41–50 | 19 | 4.81 | |
51–60 | 7 | 1.77 | |
>60 | 1 | 0.25 | |
Education Level | High school/Vocational school | 9 | 2.28 |
Associate degree | 39 | 9.87 | |
Bachelor’s degree | 275 | 69.62 | |
Master’s degree | 68 | 17.22 | |
Doctoral degree | 4 | 1.01 | |
Occupation | Student | 68 | 17.22 |
State-owned enterprise employee | 43 | 10.89 | |
Public institution employee | 30 | 7.59 | |
Civil servant | 17 | 4.3 | |
Private enterprise employee | 212 | 53.67 | |
Foreign-invested enterprise employee | 15 | 3.8 | |
Freelancer/Self-employed | 6 | 1.52 | |
Other | 4 | 1.01 | |
Consumer Experience | No | 160 | 40.51 |
Yes | 235 | 59.49 |
Variable | Item | Factor Loading | Cronbach’s α |
---|---|---|---|
Purchase Intention | PurchaseIntent1 | 0.927 | 0.896 |
PurchaseIntent2 | 0.917 | ||
PurchaseIntent3 | 0.890 | ||
Perceived Value | PerceivedValue1 | 0.865 | 0.884 |
PerceivedValue2 | 0.850 | ||
PerceivedValue3 | 0.891 | ||
PerceivedValue4 | 0.849 | ||
Perceived Risk | PerceivedRisk1 | 0.840 | 0.912 |
PerceivedRisk2 | 0.895 | ||
PerceivedRisk3 | 0.909 | ||
PerceivedRisk4 | 0.900 | ||
PerceivedRisk5 | 0.750 |
Variable | Square Sum | Freedom | F Value | p |
---|---|---|---|---|
AI Magic Mirror | 45.333 | 1 | 35.381 *** | <0.001 |
Procedure Type | 6.358 | 1 | 4.962 * | 0.027 |
Gender | 0.419 | 1 | 0.327 | 0.568 |
Age | 14.401 | 5 | 2.248 * | 0.049 |
Education | 5.895 | 4 | 1.150 | 0.333 |
Occupation | 9.809 | 7 | 1.094 | 0.366 |
Consumer experience | 35.636 | 1 | 27.813 *** | <0.001 |
Adj R2 | 0.245 | |||
N | 395 |
Variable | Coefficient | Standard Error | t-Value | p-Value | 95% Confidence Interval |
---|---|---|---|---|---|
Constant | 2.9350 *** | 0.5416 | 5.4191 | 0.0000 | [1.8702, 3.9999] |
AI Magic Mirror | 1.3019 *** | 0.1637 | 7.9507 | 0.0000 | [0.9799, 1.6238] |
Product Popularity | 0.8462 *** | 0.1720 | 4.9183 | 0.0000 | [0.5079, 1.1844] |
AI Magic Mirror × Product Popularity | −1.0751 *** | 0.2275 | −4.7254 | 0.0000 | [−1.5224, −0.6278] |
ΔR2 | 0.0414 *** | 0.0000 | |||
Low Product Popularity | 1.3019 *** | 0.1637 | 7.9507 | 0.0000 | [0.9799, 1.6238] |
High Product Popularity | 0.2268 | 0.1598 | 1.4191 | 0.1567 | [−0.0874, 0.5411] |
References
- Gregory, R.W.; Henfridsson, O.L.A.; Kaganer, E.; Kyriakou, S.H. The role of artificial intelligence and data network effects for creating user value. Acad. Manag. Rev. 2021, 46, 534–551. [Google Scholar] [CrossRef]
- Schilling, M.A. Toward a General Modular Systems Theory and Its Application to Interfirm Product Modularity. Acad. Manag. Rev. 2000, 25, 312–334. [Google Scholar] [CrossRef]
- Meyer, G.; Adomavicius, G.; Johnson, P.E.; Elidrisi, M.; Rush, W.A.; Sperl-Hillen, J.M.; O’Connor, P.J. A Machine Learning Approach to Improving Dynamic Decision Making. Inf. Syst. Res. 2014, 25, 239–263. [Google Scholar] [CrossRef]
- Artificial Intelligence Market Report in E-Commerce Global. Available online: https://www.thebusinessresearchcompany.com/report/artificial-intelligence-in-e-commerce-global-market-report (accessed on 20 July 2025).
- Hsieh, Y.-C.; Chiu, H.-C.; Chiang, M.-Y. Maintaining a committed online customer: A study across search-experience-credence products. J. Retail. 2005, 81, 75–82. [Google Scholar] [CrossRef]
- Dulleck, U.; Kerschbamer, R. On Doctors, Mechanics, and Computer Specialists: The Economics of Credence Goods. J. Econ. Lit. 2006, 44, 5–42. [Google Scholar] [CrossRef]
- Kerschbamer, R.; Neururer, D.; Sutter, M. Credence goods markets, online information and repair prices: A natural field experiment. J. Public Econ. 2023, 222, 104891. [Google Scholar] [CrossRef]
- Li, J.; Kang, J. Less stress, fewer delays: The role of sophisticated AI in mitigating decision fatigue and purchase postponement in luxury retail. J. Retail. Consum. Serv. 2025, 85, 104268. [Google Scholar] [CrossRef]
- Zhang, K.Z.K.; Zhao, S.J.; Cheung, M.K.; Lee, M.K.O. Examining the influence of online reviews on consumers’ decision-making: A heuristic–systematic model. Decis. Support Syst. 2014, 67, 78–89. [Google Scholar] [CrossRef]
- Li, H.; Peng, J.; Li, X.; Stallaert, J. When More Can Be Less: The Effect of Add-On Insurance on the Consumption of Professional Services. Inf. Syst. Res. 2023, 34, 363–382. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, Y.; Tan, Y. An Empirical Study of Free Product Sampling and Rating Bias. Inf. Syst. Res. 2019, 30, 260–275. [Google Scholar] [CrossRef]
- Tan, Y.-C.; Chandukala, S.R.; Reddy, S.K. Augmented Reality in Retail and Its Impact on Sales. J. Mark. 2022, 86, 48–66. [Google Scholar] [CrossRef]
- Ryan, M. In AI We Trust: Ethics, Artificial Intelligence, and Reliability. Sci. Eng. Ethics 2020, 26, 2749–2767. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.; Haenlein, M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- Meinhart, W.A. Artificial Intelligence, Computer Simulation of Human Cognitive and Social Processes, and Management Thought. Acad. Manag. J. 1966, 9, 294–307. [Google Scholar] [CrossRef]
- Sangaiah, A.K.; Rezaei, S.; Javadpour, A.; Zhang, W. Explainable AI in big data intelligence of community detection for digitalization e-healthcare services. Appl. Soft Comput. 2023, 136, 110119. [Google Scholar] [CrossRef]
- Xie, Z.; Yu, Y.; Zhang, J.; Chen, M. The searching artificial intelligence: Consumers show less aversion to algorithm-recommended search product. Psychol. Mark. 2022, 39, 1902–1919. [Google Scholar] [CrossRef]
- Longoni, C.; Cian, L. Artificial Intelligence in Utilitarian vs. Hedonic Contexts: The “Word-of-Machine” Effect. J. Mark. 2022, 86, 91–108. [Google Scholar] [CrossRef]
- Pizzi, G.; Vannucci, V.; Mazzoli, V.; Donvito, R. I, chatbot! the impact of anthropomorphism and gaze direction on willingness to disclose personal information and behavioral intentions. Psychol. Mark. 2023, 40, 1372–1387. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, C.; Wang, S. Social anxiety as a moderator in consumer willingness to accept AI assistants based on utilitarian and hedonic values. J. Retail. Consum. Serv. 2022, 65, 102878. [Google Scholar] [CrossRef]
- Yeo, S.F.; Tan, C.L.; Kumar, A.; Tan, K.H.; Wong, J.K. Investigating the impact of AI-powered technologies on Instagrammers’ purchase decisions in digitalization era–A study of the fashion and apparel industry. Technol. Forecast. Soc. Change 2022, 177, 121551. [Google Scholar] [CrossRef]
- Bawack, R.E.; Wamba, S.F.; Carillo, K.D.A. Exploring the role of personality, trust, and privacy in customer experience performance during voice shopping: Evidence from SEM and fuzzy set qualitative comparative analysis. Int. J. Inf. Manag. 2021, 58, 102309. [Google Scholar] [CrossRef]
- Kang, W.; Shao, B. The impact of voice assistants’ intelligent attributes on consumer well-being: Findings from PLS-SEM and fsQCA. J. Retail. Consum. Serv. 2023, 70, 103130. [Google Scholar] [CrossRef]
- Klaus, P.; Zaichkowsky, J.L. The convenience of shopping via voice AI: Introducing AIDM. J. Retail. Consum. Serv. 2022, 65, 102490. [Google Scholar] [CrossRef]
- Dellaert, B.G.C.; Shu, S.B.; Arentze, T.A.; Baker, T.; Diehl, K.; Donkers, B.; Fast, N.J.; Häubl, G.; Johnson, H.; Karmarkar, U.R.; et al. Consumer decisions with artificially intelligent voice assistants. Mark. Lett. 2020, 31, 335–347. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, L.; Wang, X.; Wu, A. The influence of AI word-of-mouth system on consumers’ purchase behaviour: The mediating effect of risk perception. Syst. Res. Behav. Sci. 2022, 39, 516–530. [Google Scholar] [CrossRef]
- Yu, X.; Xu, Z.; Song, Y.; Liu, X. The cuter, the better? The impact of cuteness on intention to purchase AI voice assistants: A moderated serial-mediation model. Front. Psychol. 2022, 13, 1036848. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kamboj, S.; Bag, S. Role of Risks in the Development of Responsible Artificial Intelligence in the Digital Healthcare Domain. Inf. Syst. Front. 2021, 25, 2257–2274. [Google Scholar] [CrossRef]
- Elder, A.; Ring, C.; Heitmiller, K.; Gabriel, Z.; Saedi, N. The role of artificial intelligence in cosmetic dermatology—Current, upcoming, and future trends. J. Cosmet. Dermatol. 2021, 20, 48–52. [Google Scholar] [CrossRef]
- Rokhshad, R.; Keyhan, S.O.; Yousefi, P. Artificial intelligence applications and ethical challenges in oral and maxillo-facial cosmetic surgery: A narrative review. Maxillofac. Plast. Reconstr. Surg. 2023, 45, 14. [Google Scholar] [CrossRef]
- Lim, B.; Seth, I.; Kah, S.; Sofiadellis, F.; Ross, R.J.; Rozen, W.M.; Cuomo, R. Using Generative Artificial Intelligence Tools in Cosmetic Surgery: A Study on Rhinoplasty, Facelifts, and Blepharoplasty Procedures. J. Clin. Med. 2023, 12, 6524. [Google Scholar] [CrossRef]
- Koseki, K.; Kawasaki, H.; Atsugi, T.; Nakanishi, M.; Mizuno, M.; Naru, E.; Ebihara, T.; Amagai, M.; Kawakami, E. Assessment of skin barrier function using skin images with topological data analysis. NPJ Syst. Biol. Appl. 2020, 6, 40. [Google Scholar] [CrossRef]
- Rew, J.; Kim, H.; Hwang, E. Hybrid segmentation scheme for skin features extraction using dermoscopy images. Comput. Mater. Contin. 2021, 69, 801–817. [Google Scholar] [CrossRef]
- Gerlich, M. Exploring Motivators for Trust in the Dichotomy of Human—AI Trust Dynamics. Soc. Sci. 2024, 13, 251. [Google Scholar] [CrossRef]
- Zeithaml, V.A. Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence. J. Mark. 1988, 52, 2–22. [Google Scholar] [CrossRef]
- Sweeney, J.C.; Soutar, G.N. Consumer perceived value: The development of a multiple item scale. J. Retail. 2001, 77, 203–220. [Google Scholar] [CrossRef]
- Bauer, R.A. Consumer Behavior as Risk Taking; Allyn, Bacon: Boston, MA, USA, 1969; pp. 119–127. [Google Scholar]
- Roehl, W.S.; Fesenmaier, D.R. Risk Perceptions and Pleasure Travel: An Exploratory Analysis. J. Travel Res. 1992, 30, 17–26. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Wu, Y.; Lai, K.-h.; Vogel, D. Exploring the inhibitors of online health service use intention: A status quo bias perspective. Inf. Manag. 2017, 54, 987–997. [Google Scholar] [CrossRef]
- Yang, F.; Ying, T.; Liu, X. Echoes of Innovation: Exploring the Use of Voice Assistants to Boost Hotel Reputation. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 46. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, P.; Cheng, H.; Hasan, N.; Chiong, R. Impact of AI-generated virtual streamer interaction on consumer purchase intention: A focus on social presence and perceived value. J. Retail. Consum. Serv. 2025, 85, 104290. [Google Scholar] [CrossRef]
- Mahajan, A.; Sharma, S.; Agrawal, V.; Nikalje, V. Influence of artificial intelligence on consumers’ lifestyle product choices and the key to driving sustainable behaviour. Young Consum. 2025. forthcoming. [Google Scholar] [CrossRef]
- Bawack, R.E.; Bonhoure, E.; Mallek, S. Why would consumers risk taking purchase recommendations from voice assistants? Inf. Technol. People 2025, 38, 1686–1711. [Google Scholar] [CrossRef]
- Dimoka, A.; Hong, Y.; Pavlou, P.A. On Product Uncertainty in Online Markets: Theory and Evidence. MIS Q. 2012, 36, 395–426. [Google Scholar] [CrossRef]
- Hong, Y.; Pavlou, P.A. Product Fit Uncertainty in Online Markets: Nature, Effects, and Antecedents. Inf. Syst. Res. 2014, 25, 328–344. [Google Scholar] [CrossRef]
- Matt, C.; Hess, T. Product fit uncertainty and its effects on vendor choice: An experimental study. Electron. Mark. 2016, 26, 83–93. [Google Scholar] [CrossRef]
- Yan, R.; Gong, X. Mitigating property quality uncertainty and property fit uncertainty in online peer-to-peer accommodation platforms: An uncertainty reduction theory perspective. Int. J. Contemp. Hosp. Manag. 2023, 35, 302–320. [Google Scholar] [CrossRef]
- Sun, C.; Fang, Y.; Kong, M.; Chen, X.; Liu, Y. Influence of augmented reality product display on consumers’ product attitudes: A product uncertainty reduction perspective. J. Retail. Consum. Serv. 2022, 64, 102828. [Google Scholar] [CrossRef]
- Chen, X.; Shen, J.; Wei, S. What reduces product uncertainty in live streaming e-commerce? From a signal consistency perspective. J. Retail. Consum. Serv. 2023, 74, 103441. [Google Scholar] [CrossRef]
- Nugroho, A.; Wang, W.-T. Credibility of Youtube product reviews and customers’ product return intention: A product fit uncertainty perspective. Inf. Technol. People 2024, 37, 1560–1586. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Davison, R.M.; Liu, Y. The impact of imitation on Chinese social commerce buyers’ purchase behavior: The moderating role of uncertainty. Int. J. Inf. Manag. 2021, 56, 102262. [Google Scholar] [CrossRef]
- Luo, P.; Ma, X.; Zhang, X.; Liu, J.; He, H. How to make money with credit information? Information processing on online accommodation-sharing platforms. Tour. Manag. (1982) 2021, 87, 104384. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, X.; Song, R.; Zhang, X.; Guo, F. Not just for the money? An examination of the motives behind physicians’ sharing of paid health information. J. Inf. Sci. 2023, 49, 145–163. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Guo, F.; Lai, K.-H. Nonlinearities in personalization-privacy paradox in mHealth adoption: The mediating role of perceived usefulness and attitude. Technol. Health Care 2014, 22, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Pappas, I.O.; Kourouthanassis, P.E.; Giannakos, M.N.; Chrissikopoulos, V. Explaining online shopping behavior with fsQCA: The role of cognitive and affective perceptions. J. Bus. Res. 2016, 69, 794–803. [Google Scholar] [CrossRef]
- Baker, M.J. Dictionary of Marketing & Advertising, 2nd ed.; Nichols Pub: London, UK, 1990. [Google Scholar]
- Peter, J.P.; Tarpey, L.X. A Comparative Analysis of Three Consumer Decision Strategies. J. Consum. Res. 1975, 2, 29–37. [Google Scholar] [CrossRef]
- Bonnin, G. The roles of perceived risk, attractiveness of the online store and familiarity with AR in the influence of AR on patronage intention. J. Retail. Consum. Serv. 2020, 52, 101938. [Google Scholar] [CrossRef]
- Grigsby, J.L.; Michelsen, M.; Zamudio, C. Service ads in the era of generative AI: Disclosures, trust, and intangibility. J. Retail. Consum. Serv. 2025, 84, 104231. [Google Scholar] [CrossRef]
- Rains, S.A.; Tukachinsky, R. Information Seeking in Uncertainty Management Theory: Exposure to Information About Medical Uncertainty and Information-Processing Orientation as Predictors of Uncertainty Management Success. J. Health Commun. 2015, 20, 1275–1286. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, C.; Shi, D.; Li, K.; Zhang, X. Evaluating the social value of online health information for third-party patients: Is uncertainty always bad? Inf. Process. Manag. 2020, 57, 102259. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, T.; Teng, L.; Zhang, H.; Xie, C. The impact of online review variance of new products on consumer adoption intentions. J. Bus. Res. 2021, 136, 209–218. [Google Scholar] [CrossRef]
- Luan, J.; Shan, W.; Wang, Y.; Xiao, J. How easy-to-process information influences consumers over time: Online review vs. brand popularity. Comput. Hum. Behav. 2019, 97, 193–201. [Google Scholar] [CrossRef]
- Goedegebure, R.P.G.; van Herpen, E.; van Trijp, H.C.M. Using product popularity to stimulate choice for light products in supermarkets: An examination in virtual reality. Food Qual. Prefer. 2020, 79, 103786. [Google Scholar] [CrossRef]
- Tucker, C.; Zhang, J. How Does Popularity Information Affect Choices? A Field Experiment. Manag. Sci. 2011, 57, 828–842. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, F.; Zhang, X.; Ma, X. Are Multiple information sources better? The effect of multiple physicians in online medical teams on patient satisfaction. Inf. Process. Manag. 2025, 62, 103889. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, K.; Gu, B.; Guo, X. Engaging physicians with introductory incentives: The role of online and offline references. MIS Q. 2025. forthcoming. [Google Scholar] [CrossRef]
- Chiu, Y.-T.H.; Lee, W.-I.; Chen, T.-H. Environmentally responsible behavior in ecotourism: Antecedents and implications. Tour. Manag. 2014, 40, 321–329. [Google Scholar] [CrossRef]
- Tseng, S.-Y.; Wang, C.-N. Perceived risk influence on dual-route information adoption processes on travel websites. J. Bus. Res. 2016, 69, 2289–2296. [Google Scholar] [CrossRef]
- Plotkina, D.; Saurel, H. Me or just like me? The role of virtual try-on and physical appearance in apparel M-retailing. J. Retail. Consum. Serv. 2019, 51, 362–377. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988. [Google Scholar]
- Zhang, X.; Lai, K.-h.; Guo, X. Promoting China’s mHealth market: A policy perspective. Health Policy Technol. 2017, 6, 383–388. [Google Scholar] [CrossRef]
- Zhou, C.; Li, K.; Zhang, X. Why do I take deviant disclosure behavior on internet platforms? An explanation based on the neutralization theory. Inf. Process. Manag. 2022, 59, 102785. [Google Scholar] [CrossRef]
- Guo, F.; Zhou, A.; Zhang, X.; Xu, X.; Liu, X. Fighting rumors to fight COVID-19: Investigating rumor belief and sharing on social media during the pandemic. Comput. Hum. Behav. 2023, 139, 107521. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Lai, K.H.; Yin, C.; Meng, F. From offline healthcare to online health service: The role of offline healthcare satisfaction and habits. J. Electron. Commer. Res. 2017, 18, 138–154. [Google Scholar]
- Chen, S.; Lai, K.-h.; Guo, X.; Zhang, X. The influence of digital health technology on the allocation of regional medical resources in China. Health Policy Technol. 2025, 14, 101013. [Google Scholar] [CrossRef]
- Wang, L.; Wu, T.; Guo, X.; Zhang, X.; Li, Y.; Wang, W. Exploring mHealth monitoring service acceptance from a service characteristics perspective. Electron. Commer. Res. Appl. 2018, 30, 159–168. [Google Scholar] [CrossRef]
- Zhang, X.; Pu, J.; Lu, Y.; Guo, F. Team Makes You Better: Evidence from Online Medical Consultation Platforms. Inf. Syst. Res. 2025. forthcoming. [Google Scholar] [CrossRef]
- Tan, H.; Zhang, X.; Yang, Y. Satisfaction or gratitude? Exploring the disparate effects of physicians’ knowledge sharing on patients’ service evaluation in online medical consultations. Inf. Syst. J. 2023, 33, 1186–1211. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, C.; Guo, X.; Lai, K.-H. The Role of Previous Affective Responses in the Continuance of mHealth Monitoring Services: A Longitudinal Investigation. IEEE Trans. Eng. Manag. 2024, 71, 6982–6994. [Google Scholar] [CrossRef]
Variable | Description | N | Mean | Min | Max | SD |
---|---|---|---|---|---|---|
LogSales | Log of procedure sales | 31,386 | 3.299 | 0.693 | 9.935 | 1.581 |
AI | Equals 1 if the procedure can be simulated using the AI Magic Mirror and 0 otherwise | 31,386 | 0.648 | 0 | 1 | 0.478 |
PAveScore | Average rating of procedure | 31,386 | 4.767 | 0 | 5 | 0.845 |
ProPrice | Price of the procedure | 31,386 | 4022 | 1 | 228,900 | 8432 |
ReRatio | Platform return rate for unused procedure | 31,386 | 0.304 | 0 | 1 | 0.439 |
DRating | Rating of the doctor | 31,386 | 3.017 | 0 | 4.550 | 1.691 |
DServNum | Procedure sales of the doctor | 31,386 | 1240 | 0 | 16,259 | 2423 |
DTitle | Equals 1 if the doctor is a doctor, 2 if attending doctor, 3 if associate chief doctor, 4 if chief doctor | 31,386 | 1.711 | 1 | 4 | 0.837 |
DoctorNum | The number of doctors in a hospital | 31,386 | 7.511 | 0 | 30 | 6.642 |
ReputNum | The number of reputations in a hospital | 31,386 | 1.921 | 1 | 2 | 0.269 |
HosFollow | The number of followers in a hospital | 31,386 | 4659 | 0 | 30,000 | 6540 |
PRevNum | The number of procedure reviews | 31,386 | 16.54 | 0 | 106 | 24.81 |
FRevTime | Duration until the first review | 31,386 | 22,244 | 21,258 | 22,807 | 437.9 |
FitUncer | Dummy variable: 1 for high-uncertainty procedure, and 0 for low-uncertainty procedure | 31,386 | 0.253 | 0 | 1 | 0.435 |
ProPop | Dummy variable: 1 for high-popularity procedure, and 0 for low-popularity procedure | 31,386 | 0.157 | 0 | 1 | 0.364 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
OLS | OLS robust | Negative binomial | Centered | PSM | |
AI | 0.308 *** | 0.308 *** | 0.098 *** | 0.308 *** | 0.306 *** |
(22.57) | (21.84) | (21.06) | (21.84) | (21.67) | |
PAveScore | 0.023 ** | 0.023 ** | 0.010 *** | 0.023 ** | 0.023 ** |
(2.97) | (2.84) | (3.45) | (2.84) | (2.85) | |
ProPrice | −0.000 *** | −0.000 *** | −0.000 *** | −0.000 *** | −0.000 *** |
(−37.76) | (−21.99) | (−22.85) | (−21.99) | (−21.87) | |
ReRatio | 0.169 *** | 0.169 *** | 0.055 *** | 0.169 *** | 0.168 *** |
(11.11) | (10.72) | (11.58) | (10.72) | (10.64) | |
DRating | 0.005 | 0.005 | 0.002 | 0.005 | 0.005 |
(1.31) | (1.34) | (1.21) | (1.34) | (1.35) | |
DServNum | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** |
(7.69) | (6.67) | (6.81) | (6.67) | (6.59) | |
DTitle | 0.045 *** | 0.045 *** | 0.016 *** | 0.045 *** | 0.045 *** |
(5.70) | (5.69) | (6.31) | (5.69) | (5.69) | |
DoctorNum | 0.015 *** | 0.015 *** | 0.004 *** | 0.015 *** | 0.016 *** |
(12.73) | (11.94) | (11.87) | (11.94) | (12.01) | |
ReputNum | 0.447 *** | 0.447 *** | 0.182 *** | 0.447 *** | 0.439 *** |
(18.10) | (20.27) | (19.88) | (20.27) | (19.82) | |
HosFollow | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** |
(6.03) | (6.18) | (6.64) | (6.18) | (6.09) | |
PRevNum | 0.032 *** | 0.032 *** | 0.007 *** | 0.032 *** | 0.032 *** |
(110.31) | (87.16) | (90.64) | (87.16) | (86.40) | |
FRevTime | −0.001 *** | −0.001 *** | −0.000 *** | −0.001 *** | −0.001 *** |
(−51.79) | (−49.49) | (−52.45) | (−49.49) | (−49.29) | |
_cons | 20.142 *** | 20.142 *** | 6.319 *** | 16.843 *** | 20.103 *** |
(54.21) | (51.72) | (54.93) | (43.25) | (51.56) | |
N | 31386 | 31386 | 31386 | 31386 | 31310 |
R2 | 0.483 | 0.483 | 0.483 | 0.482 |
Variable | (1) | (2) |
---|---|---|
LogSales | LogSales | |
AI | 0.106 *** | 0.433 *** |
(6.83) | (29.03) | |
AI × FitUncer | 0.562 *** | |
(34.93) | ||
AI × ProPop | −0.592 *** | |
(−33.60) | ||
PAveScore | 0.024 ** | 0.020 * |
(3.10) | (2.56) | |
ProPrice | −0.000 *** | −0.000 *** |
(−22.43) | (−22.33) | |
ReRatio | 0.159 *** | 0.169 *** |
(10.22) | (10.87) | |
DRating | 0.004 | 0.006 |
(0.95) | (1.48) | |
DServNum | 0.000 *** | 0.000 *** |
(6.76) | (6.14) | |
DTitle | 0.041 *** | 0.039 *** |
(5.28) | (4.99) | |
DoctorNum | 0.013 *** | 0.015 *** |
(10.25) | (11.49) | |
ReputNum | 0.421 *** | 0.399 *** |
(19.39) | (17.96) | |
HosFollow | 0.000 *** | 0.000 *** |
(5.53) | (6.00) | |
PRevNum | 0.030 *** | 0.031 *** |
(83.54) | (84.86) | |
FRevTime | −0.001 *** | −0.001 *** |
(−44.38) | (−46.64) | |
_cons | 18.427 *** | 19.132 *** |
(47.13) | (49.40) | |
N | 31386 | 31386 |
R2 | 0.500 | 0.496 |
Variable | Category | Freq | Perce (%) | Variable | Category | Freq | Perce (%) |
---|---|---|---|---|---|---|---|
Age | ≤20 | 13 | 3.39 | Gender | Male | 104 | 27.08 |
21–30 | 192 | 50.00 | Female | 280 | 72.92 | ||
31–40 | 142 | 36.98 | Occupation | Student | 60 | 15.62 | |
41–50 | 27 | 7.03 | State-owned enterprise employee | 41 | 10.68 | ||
51–60 | 9 | 2.34 | Public institution employee | 28 | 7.29 | ||
>60 | 1 | 0.26 | Civil servant | 19 | 4.95 | ||
Education Level | Private enterprise employee | 206 | 53.65 | ||||
High school/ Vocational school | 9 | 2.34 | Foreign-invested enterprise employee | 22 | 5.73 | ||
Associate degree | 36 | 9.38 | Freelancer/Self-employed | 7 | 1.82 | ||
Bachelor’s degree | 268 | 69.79 | Other | 1 | 0.26 | ||
Master’s degree | 64 | 16.67 | Prior Experience | No | 158 | 41.15 | |
Doctoral degree | 7 | 1.82 | Yes | 226 | 58.85 |
Scale | Items | Factor Loading | Cronbach’s α |
---|---|---|---|
Perceived Value [68] |
| 0.925 | 0.908 |
0.924 | |||
0.915 | |||
0.873 | |||
Perceived Risk [69] |
| 0.825 | 0.873 |
0.869 | |||
0.848 | |||
0.879 | |||
0.897 | |||
Purchase Intention [70] |
| 0.902 | 0.916 |
0.889 | |||
0.758 |
Variable | Square Sum | Freedom | F Value | p |
---|---|---|---|---|
AI Magic Mirror | 89.087 | 1 | 74.682 *** | 0.000 |
Procedure Type | 3.534 | 1 | 2.962 | 0.086 |
Gender | 0.017 | 1 | 0.014 | 0.906 |
Age | 17.291 | 5 | 2.899 * | 0.014 |
Education | 1.108 | 4 | 0.232 | 0.920 |
Occupation | 33.782 | 7 | 4.046 *** | 0.000 |
Consumer experience | 12.382 | 1 | 10.380 ** | 0.001 |
Adj R2 | 0.273 | |||
N | 384 |
Variable | Coefficient | Std. Error | t-Value | p-Value | 95% Confidence Interval |
---|---|---|---|---|---|
Constant | 5.1657 *** | 0.5419 | 9.5330 | 0.0000 | [4.1002, 6.2312] |
AI Magic Mirror | −0.0248 | 0.3395 | −0.0731 | 0.9418 | [−0.6923, 0.6427] |
Fit Uncertainty | −0.5408 *** | 0.1544 | −3.5024 | 0.0005 | [−0.8444, −0.2372] |
AI × Fit Uncertainty | 0.6227 ** | 0.2183 | 2.8528 | 0.0046 | [0.1935, 1.0518] |
ΔR2 | 0.0144 ** | 0.0046 | |||
Low Fit Uncertainty | 0.5979 *** | 0.1510 | 3.9602 | 0.0001 | [0.3010, 0.8947] |
High Fit Uncertainty | 1.2205 *** | 0.1601 | 7.6239 | 0.0000 | [0.9057, 1.5353] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, C.; Shen, T.; Chen, X. Seeing Is Believing: The Impact of AI Magic Mirror on Consumer Purchase Intentions in Medical Aesthetic Services. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 205. https://doi.org/10.3390/jtaer20030205
Li Y, Zhang C, Shen T, Chen X. Seeing Is Believing: The Impact of AI Magic Mirror on Consumer Purchase Intentions in Medical Aesthetic Services. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(3):205. https://doi.org/10.3390/jtaer20030205
Chicago/Turabian StyleLi, Yu, Chujun Zhang, Tian Shen, and Xi Chen. 2025. "Seeing Is Believing: The Impact of AI Magic Mirror on Consumer Purchase Intentions in Medical Aesthetic Services" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 3: 205. https://doi.org/10.3390/jtaer20030205
APA StyleLi, Y., Zhang, C., Shen, T., & Chen, X. (2025). Seeing Is Believing: The Impact of AI Magic Mirror on Consumer Purchase Intentions in Medical Aesthetic Services. Journal of Theoretical and Applied Electronic Commerce Research, 20(3), 205. https://doi.org/10.3390/jtaer20030205