Topic Editors

Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, 70569 Stuttgart, Germany
Department of Wind Energy, Technical University of Denmark, DK2800 Lyngby, Denmark

Advances in Wind Energy Technology: 2nd Edition

Abstract submission deadline
30 June 2026
Manuscript submission deadline
30 September 2026
Viewed by
268

Topic Information

Dear Colleagues,

The popularity of wind energy has increased considerably in recent decades due to the awareness of clean energy sources and the motivation to minimize the effects of global warming. This raises challenges in the continuous and consistent development of wind turbine technology, ranging from blade design, logistical efficiency, and maintenance to the measurement and numerical tools being used for the holistic evaluation of wind turbine performance. We invite submissions for a Topic that addresses research, development, and industrial implementations, and perspectives focusing on, though not limited to, the following fields:

  • Large wind turbines;
  • Innovative wind turbine aerodynamic and structural designs;
  • Nonconventional wind turbine technology;
  • Wind turbine and wind farm control;
  • Grid and system integration;
  • The development of advanced measurement systems;
  • Improved numerical prediction tools for wind energy analysis;
  • Improved wind turbine maintenance, scheduling, lifetime assessment and health monitoring;
  • Multidisciplinary approaches in wind energy socio-eco-technical aspects;
  • Usage of data-driven approaches.

Dr. Galih Bangga
Dr. Martin Otto Laver Hansen
Topic Editors

Keywords

  • renewable energy
  • power generation
  • economic growth
  • energy potential
  • electrical and mechanical systems health monitoring and lifetime assessment
  • signal and image processing
  • fault diagnosis
  • wind turbine modeling

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.5 5.5 2011 19.8 Days CHF 2400 Submit
Clean Technologies
cleantechnol
4.7 8.3 2019 33.7 Days CHF 1600 Submit
Electronics
electronics
2.6 6.1 2012 16.8 Days CHF 2400 Submit
Energies
energies
3.2 7.3 2008 16.2 Days CHF 2600 Submit
Journal of Marine Science and Engineering
jmse
2.8 5.0 2013 15.6 Days CHF 2600 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (1 paper)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
24 pages, 7794 KiB  
Article
Icing Monitoring of Wind Turbine Blade Based on Fiber Bragg Grating Sensors and Strain Ratio Index
by Yadi Tian, Zhaohui Zhang, Xiaojing Wang, Wanheng Li and Yang Xu
Energies 2025, 18(16), 4295; https://doi.org/10.3390/en18164295 - 12 Aug 2025
Abstract
In cold regions, the power generation efficiency of wind turbines is affected by blade icing. Heavy icing on blades will change the aerodynamic configuration of the blades and can even cause blades to crack or break. Therefore, monitoring and deicing technologies are important [...] Read more.
In cold regions, the power generation efficiency of wind turbines is affected by blade icing. Heavy icing on blades will change the aerodynamic configuration of the blades and can even cause blades to crack or break. Therefore, monitoring and deicing technologies are important for the safe operation of wind turbines. This study proposes a novel strain ratio index based on mechanical analysis of icing, which causes the neutral axis shift and different strain ratio change between waving and shimmy directions. Data from the 5 kW wind turbine blade model in a low-temperature laboratory and the 1.5 MW full-scale field wind turbine monitoring over 1 year are used to validate the effectiveness of the proposed method. The proposed strain ratio index and icing detection criteria are derived from mechanical analysis with clear interpretability while reducing ambiguity from structural damage. The relationship between the strain ratio index and ice thickness is quantified through laboratory tests and validated by field applications, demonstrating the effectiveness and robustness under complex real-world service scenarios. Full article
(This article belongs to the Topic Advances in Wind Energy Technology: 2nd Edition)
Show Figures

Figure 1

Back to TopTop