Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = zinc–aluminum alloy coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6934 KiB  
Article
In Situ High-Resolution Optical Microscopy Survey of the Initial Reactivity of Multiphase ZnAlMgSi Coating on Steel
by Guilherme Adinolfi Colpaert Sartori, Oumayma Gabsi, Tiago Machado Amorim, Viacheslav Shkirskiy and Polina Volovitch
Metals 2025, 15(8), 821; https://doi.org/10.3390/met15080821 - 23 Jul 2025
Viewed by 282
Abstract
The initial reactivity of a multiphase ZnAlMgSi coating with an Al content > 30 wt.% was studied by in situ reflective microscopy under alternating applied potentials +50 mV/−50 mV vs. open-circuit potential in 5 wt.% NaCl and 5 wt.% Na2SO4 [...] Read more.
The initial reactivity of a multiphase ZnAlMgSi coating with an Al content > 30 wt.% was studied by in situ reflective microscopy under alternating applied potentials +50 mV/−50 mV vs. open-circuit potential in 5 wt.% NaCl and 5 wt.% Na2SO4 aqueous solutions. In both environments, galvanic coupling between different coating phases and the anodic behavior decreased in the order binary ZnAl > binary Zn/Zn2Mg > Zn2Mg > Al(Zn); dendrites were evidenced for the coating exposed alone as well as in galvanic coupling with steel. Contrary to the observations known for Zn-rich ZnAlMg coatings, pure Zn2Mg was less reactive than the pure ZnAl phase, underlining the importance of the microstructure for reactivity. Si-needles were systematically cathodic, and Al(Zn) dendrites have shown cathodic behavior in some couplings. In the configuration of coupling with steel, corrosion started at the interfaces “binary ZnAl/steel substrate” or “binary ZnAl/Si particle”. The distribution and nature of the corrosion products formed during the experiment were assessed using X-ray microanalysis in scanning electron microscopy and confocal Raman microscopy. In the sulfate environment, a homogenous and stable corrosion product layer formed from the first steps of the degradation; this was in contrast to the chloride environment, where no surface film formed on the dendrites. Full article
Show Figures

Figure 1

24 pages, 7632 KiB  
Article
Quantitative Microstructure of Multiphase Al-Zn-Si-(Mg) Coatings and Their Effects on Sacrificial Protection for Steel
by Guilherme Adinolfi Colpaert Sartori, Blandine Remy, Tiago Machado Amorim and Polina Volovitch
Metals 2025, 15(5), 476; https://doi.org/10.3390/met15050476 - 23 Apr 2025
Cited by 1 | Viewed by 511
Abstract
A new combined analysis of SEM-BSE and EDX images using AphelionTM software was proposed to describe the quantitative microstructure (quantity and neighborhood of sacrificial phases) of Al-Zn-Si-(Mg) coatings on steel. Three materials with different Al/Zn ratios and Mg content were analyzed. The [...] Read more.
A new combined analysis of SEM-BSE and EDX images using AphelionTM software was proposed to describe the quantitative microstructure (quantity and neighborhood of sacrificial phases) of Al-Zn-Si-(Mg) coatings on steel. Three materials with different Al/Zn ratios and Mg content were analyzed. The quantitative microstructure allowed us to describe their corrosion behaviors in a chloride environment and understand their ranking for sacrificial protection of steel in accelerated corrosion tests. For the analyses, interdendritic Zn-rich or Mg-rich phases were expected to be more sacrificial to steel than Al-rich dendrites. Without Mg (AZ coating), Al-rich dendrites created a percolating network, but interdendritic phases did not, suggesting their sacrificial protection to steel to be very limited. Additionally, significant Zn gradients inside dendrites led to a premature coating consumption on the surface, creating new zones of naked steel. In the coatings with Mg (AZM), sacrificial interdendritic phases created a percolating network, which is expected to improve long-time sacrificial protection and contribute to a more uniform formation of Zn corrosion products. For Al content between 30 wt.% and 45 wt.%, a lowering of the Al/Zn ratio (L-AZM) increased the connectivity of the sacrificial interdendritic phases, which is expected to improve the long-term sacrificial effect. Accelerated corrosion tests of scratches in the steel coatings validated the hypotheses. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Graphical abstract

18 pages, 3943 KiB  
Article
The Potential Application of AZ31-Mg(OH)2/CeO2 as Temporary Medical Implants: Evaluation of the Corrosion Resistance and Biocompatibility Properties
by Edgar Onofre-Bustamante, Rosa M. Lozano, María L. Escudero, Ana C. Espíndola-Flores and Sandra E. Benito-Santiago
Coatings 2025, 15(4), 450; https://doi.org/10.3390/coatings15040450 - 10 Apr 2025
Viewed by 818
Abstract
Magnesium-based alloys are considered to be promising materials for the fabrication of temporary bone repair medical implants. The AZ31 magnesium-based (AZ31-Mg) alloy contains 3% aluminum and 1% zinc in its microstructure, which gives it mechanical strength and corrosion resistance. Nonetheless, the corrosion rate [...] Read more.
Magnesium-based alloys are considered to be promising materials for the fabrication of temporary bone repair medical implants. The AZ31 magnesium-based (AZ31-Mg) alloy contains 3% aluminum and 1% zinc in its microstructure, which gives it mechanical strength and corrosion resistance. Nonetheless, the corrosion rate is high, which can lead to implant failure due to rapid degradation, which triggers the release of harmful metal ions. In the present work, a passive layer was obtained on the AZ31-Mg alloy, and subsequently, a cerium oxide (CeO2) coating was deposited through a chemical conversion treatment using 0.01 M CeO2 as a precursor. Based on X-ray photoelectron spectroscopy, the calculated amount of Ce(IV) and Ce(III) present in AZ31-Mg(OH)2/CeO2 was 93.6% and 6.4%, respectively. AZ31-Mg(OH)2/CeO2 showed improved corrosion resistance compared with the bare sample. The in vitro assessment of MC3T3-E1 pre-osteoblast cell viability showed that AZ31-Mg(OH)2/CeO2 was biocompatible after incubation for 24 and 72 h. The results revealed that the CeO2 coating confers greater electrochemical stability and biocompatibility properties, mostly due to the presence of Ce4+ ions. Full article
(This article belongs to the Special Issue Electrochemistry and Corrosion Science for Coatings)
Show Figures

Figure 1

32 pages, 7537 KiB  
Review
Hydrogen Embrittlement of Galvanized Press-Hardened Steels: A Review
by Tomáš Kročil, Nikola Macháčková, Tomáš Prošek, Thomas Steck and Reza Sharif
Metals 2024, 14(11), 1285; https://doi.org/10.3390/met14111285 - 12 Nov 2024
Cited by 1 | Viewed by 2237
Abstract
Press-hardened steels (PHS), as an alternative to traditional steels and aluminum alloys, combine great mechanical performance with low manufacturing costs. PHS are martensitic steels with ultimate tensile strength (UTS) up to 2000 MPa. These steels are commonly coated with zinc-based coatings (PHS GI) [...] Read more.
Press-hardened steels (PHS), as an alternative to traditional steels and aluminum alloys, combine great mechanical performance with low manufacturing costs. PHS are martensitic steels with ultimate tensile strength (UTS) up to 2000 MPa. These steels are commonly coated with zinc-based coatings (PHS GI) consisting of multiple Zn–Fe phases to enhance corrosion resistance. However, similar to all high-strength steels, PHS are known for their elevated susceptibility to hydrogen embrittlement (HE). Absorption of atomic hydrogen into the steel lattice can lead to a transition from a ductile to a brittle fracture mechanism and decrease the stress necessary for fracture initiation. This review examines the microstructure of PHS GI with a focus on how the manufacturing process influences key parameters of the coating. The material’s susceptibility to HE is discussed in the following sections, along with the potential for hydrogen introduction through corrosion in atmospheric environments. The relationship between the content of hydrogen and its effects on fracture behavior is discussed, along with the corrosion behavior of PHS GI. The potential areas for future research and development of PHS GI with increased HE resistance are proposed. Full article
(This article belongs to the Special Issue Recent Advances in High-Performance Steel)
Show Figures

Figure 1

22 pages, 5942 KiB  
Article
Models for the Design and Optimization of the Multi-Stage Wiredrawing Process of ZnAl15% Wires for Spray Metallization
by Juan Carlos del Rey, Guillermo Guerrero-Vacas, Francisco Comino and Oscar Rodríguez-Alabanda
Materials 2024, 17(21), 5307; https://doi.org/10.3390/ma17215307 - 31 Oct 2024
Cited by 1 | Viewed by 1084
Abstract
Metallization, a process for applying anti-corrosion coatings, has advantages over hot-dip galvanizing, such as reduced thermal stress and the ability to work “in situ”. This process consists of the projection of a protective metal as coating from a wire as application material, and [...] Read more.
Metallization, a process for applying anti-corrosion coatings, has advantages over hot-dip galvanizing, such as reduced thermal stress and the ability to work “in situ”. This process consists of the projection of a protective metal as coating from a wire as application material, and this wire is obtained by multi-stage wiredrawing. For the metallization process, a zinc–aluminum alloy wire obtained by this process is used. This industrial process requires multiple stages/dies of diameter reduction, and determining the optimal sequence is complex. Thus, this work focuses on developing models with the aim of designing and optimizing the wiredrawing process of zinc–aluminum (ZnAl) alloys, specifically ZnAl15%, used for anti-corrosion applications. Both analytical models and numerical models based on the finite element method (FEM) and implemented by computer-aided engineering (CAE) software Deform 2D/3D v.12, enabled the prediction of the drawing stress and drawing force in each drawing stage, producing values consistent with experimental measurements. Key findings include the modeling of the material behavior when ZnAl15% wires were subjected to the tensile test at different speeds, with strain rate sensitivity coefficient m = 0.0128, demonstrating that this type of alloy is especially sensitive to the strain rate. In addition, the optimal friction coefficient (µ) for the drawing process of this material was experimentally identified as µ = 0.28, the ideal drawing die angle was determined to be 2α = 10°, and the alloy’s deformability limit has been established by a reduction ratio r ≤ 22.5%, which indicates good plastic deformation capacity. The experimental results confirmed that the development of the proposed models can be feasible to facilitate the design and optimization of industrial processes, improving the efficiency and quality of ZnAl15% alloy wire production. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

14 pages, 4069 KiB  
Article
Electroless ZnO Deposition on Mg-Al Alloy for Improved Corrosion Resistance to Marine Environments
by Luis Chávez, Lucien Veleva and Andrea Castillo-Atoche
Coatings 2024, 14(9), 1192; https://doi.org/10.3390/coatings14091192 - 15 Sep 2024
Cited by 1 | Viewed by 1136
Abstract
Electroless ZnO (≈900 nm) was deposited on the surface of an Mg-Al alloy (AM60) to reduce its degradation in the marine environment. Uncoated and coated ZnO samples were exposed to an SME simulated marine solution for up to 30 days. The AFM and [...] Read more.
Electroless ZnO (≈900 nm) was deposited on the surface of an Mg-Al alloy (AM60) to reduce its degradation in the marine environment. Uncoated and coated ZnO samples were exposed to an SME simulated marine solution for up to 30 days. The AFM and optical images revealed that the corrosion attack on the ZnO-AM60 surface was reduced due to an increase in the surface hydrophobicity of the ZnO coating (contact angle of ≈91.6°). The change in pH to more alkaline values over time was less pronounced for ZnO-AM60 (by ≈13%), whereas the release of Mg2+ ions was reduced by 34 times, attributed to the decrease in active sites on the Mg-matrix provided by the electroless ZnO coating. The OCP (free corrosion potential) of ZnO-AM60 shifted towards less negative values of ≈100 mV, indicating that electroless ZnO may serve as a good barrier for AM60 in a marine environment. The calculated polarization resistance (Rp), based on EIS data, was ≈3 times greater for ZnO-AM60 than that of the uncoated substrate. Full article
(This article belongs to the Special Issue Surface Modification of Magnesium, Aluminum Alloys, and Steel)
Show Figures

Figure 1

17 pages, 108569 KiB  
Article
The Enhancement Discharge Performance by Zinc-Coated Aluminum Anode for Aluminum–Air Battery in Sodium Chloride Solution
by Ruly Bayu Sitanggang, Syarifa Nur’aini, Susanto Susanto, Widiyastuti Widiyastuti and Heru Setyawan
Appl. Sci. 2024, 14(14), 6263; https://doi.org/10.3390/app14146263 - 18 Jul 2024
Cited by 6 | Viewed by 2019
Abstract
The main drawback of seawater batteries that use the aluminum (Al)–air system is their susceptibility to anode self-corrosion during the oxygen evolution reaction, which, in turn, affects their discharge performance. This study consist of an electrochemical investigation of pure Al, 6061 Al alloy, [...] Read more.
The main drawback of seawater batteries that use the aluminum (Al)–air system is their susceptibility to anode self-corrosion during the oxygen evolution reaction, which, in turn, affects their discharge performance. This study consist of an electrochemical investigation of pure Al, 6061 Al alloy, and both types coated with zinc as an anode in a 3.5% sodium chloride (NaCl) electrolyte. The electrolyte solution used for the deposition of zinc metal contained citrate, with and without EDTA as a complexing agent. Subsequently, the performance of the anode was tested in a seawater battery, using a carbon@MnO2 cathode and a 3.5% NaCl electrolyte. The performance of Al–air batteries has been significantly enhanced by applying a process of electrodepositing zinc (Zn) with a citrate deposition electrolyte solution in both pure aluminum and alloy 6061. The performance of the battery was further enhanced by adding EDTA as a chelating agent to the citrate-based electrolyte solution. The Al–air battery with aluminum alloy 6061 with Zn electrodeposition with an additional EDTA as the anode, carbon@MnO2 as the cathode, and NaCl 3.5% solution as the electrolyte has the highest battery performance, with a specific discharge capacity reaching 414.561 mAh.g1 and a specific energy density reaching 0.255 mWh.g1, with stable voltage at 0.55 V for 207 h. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

17 pages, 16914 KiB  
Article
Experimental Investigation of Corrosion Behavior of Zinc–Aluminum Alloy-Coated High-Strength Steel Wires under Stress Condition
by Kun Fang, Xiaoyong Liu, Pei Chen, Xianfu Luo, Zhenliang Liu, Xiaoqin Zha, Xinyao Zhang and Jianfei Zhai
Coatings 2024, 14(7), 890; https://doi.org/10.3390/coatings14070890 - 17 Jul 2024
Cited by 1 | Viewed by 1394
Abstract
To cope with harsh working conditions, new corrosion-resistant coated steel wires with higher tensile strength have been developed. This study investigates the corrosion characteristics of a new zinc–aluminum alloy-coated steel wire under stress conditions. The particulate corrosion products generated by the oxidation of [...] Read more.
To cope with harsh working conditions, new corrosion-resistant coated steel wires with higher tensile strength have been developed. This study investigates the corrosion characteristics of a new zinc–aluminum alloy-coated steel wire under stress conditions. The particulate corrosion products generated by the oxidation of the coating in the initial stage of corrosion are converted into layer-structured corrosion products at the early stage of corrosion. Moreover, high-stress conditions have a significant influence on the critical conversion time from the coating corrosion stage to the iron matrix corrosion stage. Thus, the uniform corrosion depth (i.e., the mass loss rate) could be fitted with a continuous power function model rather than the previously used two-stage model owing to an ambiguous moment of conversion under stress conditions. The pitting corrosion depth could be fitted with a lognormal distribution in this study. The probability distributions for the aspect ratios of corrosion pits under different stress conditions tended to be consistent. Finally, the block’s maximum pitting factor followed a Gumbel distribution with a scale parameter that changed linearly with the stress level and a location parameter related to the square of the stress level. Full article
(This article belongs to the Special Issue Micro- and Nano- Mechanical Testing of Coatings and Surfaces)
Show Figures

Figure 1

20 pages, 5465 KiB  
Article
Fatigue Behavior and Fracture Surface Analysis of Corroded High-Strength Bridge Cable Wires
by Zhongxiang Liu, Tong Guo, Wenjie Li, Qinghua Zhang, Bin Cheng and José Correia
Materials 2024, 17(8), 1724; https://doi.org/10.3390/ma17081724 - 9 Apr 2024
Cited by 2 | Viewed by 1544
Abstract
Bridge cable wires suffer from alternating stress and environmental erosion, leading to premature failure prior to its design life. This paper investigates the fatigue and mechanical behaviors of corroded bridge cable wires with a zinc–aluminum (Zn-Al) alloy coating. Based on the salt spray [...] Read more.
Bridge cable wires suffer from alternating stress and environmental erosion, leading to premature failure prior to its design life. This paper investigates the fatigue and mechanical behaviors of corroded bridge cable wires with a zinc–aluminum (Zn-Al) alloy coating. Based on the salt spray corrosion test and microstructure analysis, the anti-corrosion resistance and corrosion appearance characteristics of the Zn-Al alloy coating and galvanized coating were investigated. The Zn-Al alloy coating was superior in resistance to corrosion fatigue for the improvement in toughness and the generation of anti-corrosion Zn-Al and Fe-Zn-Al phases. Equations of the accelerated corrosion depth of the steel wires had been regressed to roughly estimate the corrosion life of the Zn-Al alloy coating, which can reach 29.1 years with a thickness of 70 μm. The fatigue and mechanical properties of the bare wires after the salt spray test were further studied based on tensile tests and fatigue tests. The fatigue properties of the bridge cable wire would decrease with the corrosion degree due to the deterioration and embrittlement of materials, where ductility characterized by the elongation rate was the most affected. Fracture surfaces of the wires were captured and analyzed based on a method for recognizing graphical contours. Insufficient fatigue life may occur in the steel wires after corrosion and increase with the degree of corrosion. The pit depth logarithmically weakened the fatigue life of steel wires for the weakening of fatigue toughness and the bearing area. The flat fracture was more common with a single fatigue source, while multiple fatigue sources led to step-like fractures for the generation of multiple dispersed crack propagation regions. Corrosion fatigue was more sensitive to the existence of fatigue sources than the reduction. Multiple initiation sources significantly reduced the fatigue life due to the cracking facilitation of the joint effect of multiple pits. The electrochemical reactions of corrosion can lead to material embrittlement and a reducing effect on the fracture toughness of the steel wires. Full article
Show Figures

Figure 1

22 pages, 3878 KiB  
Review
Biodegradable Magnesium Alloys for Biomedical Implants: Properties, Challenges, and Surface Modifications with a Focus on Orthopedic Fixation Repair
by Kevin Koshy Thomas, Mah Noor Zafar, William G. Pitt and Ghaleb A. Husseini
Appl. Sci. 2024, 14(1), 10; https://doi.org/10.3390/app14010010 - 19 Dec 2023
Cited by 17 | Viewed by 8306
Abstract
Biomedical devices made from high-modulus and hardness materials play a critical role in enhancing the quality of life for people with bone-related ailments. While these materials have been successfully used in orthopedic applications, concerns including stress-shielding have necessitated the exploration of alternative solutions. [...] Read more.
Biomedical devices made from high-modulus and hardness materials play a critical role in enhancing the quality of life for people with bone-related ailments. While these materials have been successfully used in orthopedic applications, concerns including stress-shielding have necessitated the exploration of alternative solutions. An ideal biomedical implant requires a delicate balance of mechanical performance, corrosion resistance, tissue biocompatibility, and other properties such as tribological performance and osseointegration. This review explores the suitability of biodegradable magnesium (Mg) alloys as a promising material for biomedical implants. It delves into the essential properties of biomedical implants, emphasizing the importance of matching mechanical characteristics with human bone properties to mitigate stress shielding. The corrosion properties of implant materials are discussed, highlighting the need for controlled degradation to ensure the safety and longevity of implants. The focus then shifts to the potential of magnesium alloys as biomedical implants, examining their benefits, limitations, and the challenges associated with their high degradation rates and less-than-satisfactory mechanical properties. Alloying with elements such as aluminum, zinc, and others is explored to improve magnesium alloys’ mechanical performance and corrosion resistance. Furthermore, this review discusses surface modification techniques, including chemical conversion coatings and biomimetic deposition, as effective strategies to enhance the corrosion resistance and biocompatibility of magnesium and its alloys. These modifications offer opportunities to improve the long-term performance of magnesium-based biomedical implants. This review provides a comprehensive overview of the properties, challenges, and potential solutions associated with biodegradable magnesium alloys as a promising material for biomedical implants. It underscores the importance of addressing problems related to mechanical performance, corrosion resistance, and biocompatibility to advance the development of safe and effective biomedical implant materials. Full article
Show Figures

Figure 1

13 pages, 3604 KiB  
Article
In Situ Synthesis of Graphene Oxide-Sealed LDHs Coatings: A Novel Approach to Enhancing Corrosion Resistance and Tribological Performance on Magnesium Alloys
by Weiming Li, Ping Wang, Shaoqing Wang, Zhihong Duan, Lele Liu, Yimeng Wang and Min Xu
Coatings 2023, 13(9), 1544; https://doi.org/10.3390/coatings13091544 - 4 Sep 2023
Cited by 4 | Viewed by 1710
Abstract
This study introduces an innovative approach to enhancing the corrosion resistance and tribological performance of magnesium alloys by in situ growing zinc-aluminum layered double hydroxide (ZnAl-LDHs) with graphene oxide (GO) sealing. Traditional LDHs coatings exhibit limitations in corrosion protection due to their porous [...] Read more.
This study introduces an innovative approach to enhancing the corrosion resistance and tribological performance of magnesium alloys by in situ growing zinc-aluminum layered double hydroxide (ZnAl-LDHs) with graphene oxide (GO) sealing. Traditional LDHs coatings exhibit limitations in corrosion protection due to their porous structure. This paper advances the LDHs coating technology by integrating GO, forming a composite LDHs/GO coating on magnesium alloys. The novel incorporation of GO provides a unique two-layered defense system against corrosion: the GO layer serves as a high-resistance barrier to corrosive agents, while the LDHs layer absorbs NO3 ions, offering a secondary protection. The coating’s properties were meticulously characterized using techniques such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared (FTIR) Raman spectroscopy, electrochemical assays, and friction-wear tests. Experimental findings reveal that the synergistic action between LDHs and GO results in significant improvements in corrosion resistance and friction reduction. Specifically, GO’s adherence to the LDHs coating’s pores and its ability to transfer into the friction layer during wear significantly enhances the coating’s integrity and stability. The successful in situ synthesis of LDHs /GO coatings opens new horizons for composite coatings, with potential implications across various industrial applications. Full article
Show Figures

Figure 1

24 pages, 402 KiB  
Review
Efficiency of Expired Drugs Used as Corrosion Inhibitors: A Review
by Nicolae Vaszilcsin, Andrea Kellenberger, Mircea Laurentiu Dan, Delia Andrada Duca and Valentin Laurentiu Ordodi
Materials 2023, 16(16), 5555; https://doi.org/10.3390/ma16165555 - 10 Aug 2023
Cited by 43 | Viewed by 3863
Abstract
Corrosion inhibitors represent one of the most commonly used methods for significantly reducing the corrosion rate of metals and alloys. Adsorption inhibitors have a wide range of applications in cooling water systems, deicing solutions for aircrafts, airports and ways, etching and degreasing solutions, [...] Read more.
Corrosion inhibitors represent one of the most commonly used methods for significantly reducing the corrosion rate of metals and alloys. Adsorption inhibitors have a wide range of applications in cooling water systems, deicing solutions for aircrafts, airports and ways, etching and degreasing solutions, oil pipelines, paints and coatings and metal processing solutions. Adsorption corrosion inhibitors of metals and alloys are generally organic compounds that contain structures with heteroatoms (N, P, S, As, O) in their molecules, having lone pair electrons or π electrons in aromatic rings or multiple bonds. They enable relatively strong interactions between the metal atoms and organic molecules, resulting in a protective layer of organic molecules adsorbed at the metal–corrosive solution interface. Most molecules of active substances from drugs contain similar structures, which is why many drugs have been already tested as corrosion inhibitors. One of the major disadvantages of using drugs for this purpose is their particularly high price. To overcome this impediment, the possibility of using expired drugs as corrosion inhibitors has been investigated since 2009. The present paper is an exhaustive compilation of the scientific published papers devoted to the use of expired drugs as corrosion inhibitors in various aggressive solutions. The inhibitory efficiencies of expired drugs are presented as a function of the studied metal or alloy and the nature of the aggressive solution, as well as the concentration of the inhibitor in such a solution. Research has especially been focused on mild and carbon steel and less on stainless steel, as well as on some metals such as copper, zinc, nickel, tin and aluminum and its alloys. The experimental methods used to assess the inhibitory efficiencies of expired drugs are briefly discussed. Also, the available information on the stability of the active substances in the drugs is presented, although most authors were not concerned with this aspect. Finally, several actions are revealed that must be undertaken by researchers so that the results obtained in the study of the anticorrosive action of expired drugs can be applied at the industrial level and not remain only an academic concern. Full article
(This article belongs to the Special Issue Mechanical Properties and Corrosion Behavior of Advanced Materials)
17 pages, 2946 KiB  
Article
Corrosion Resistance of Zinc and Zinc-Aluminum-Magnesium Coatings in Atmosphere on the Territory of Russia
by Yulia M. Panchenko, Andrey I. Marshakov, Timofey N. Igonin, Tatyana A. Nenasheva, Ludmila A. Nikolaeva and Artem A. Ivanenko
Materials 2023, 16(15), 5214; https://doi.org/10.3390/ma16155214 - 25 Jul 2023
Cited by 10 | Viewed by 2664
Abstract
Zinc-coated carbon steel is commonly used in the construction of buildings, infrastructure objects such as roads and bridges, automotive production, etc. Coatings based on zinc-aluminum-magnesium alloys that may have better corrosion resistance than zinc have been developed. The coatings made of the new [...] Read more.
Zinc-coated carbon steel is commonly used in the construction of buildings, infrastructure objects such as roads and bridges, automotive production, etc. Coatings based on zinc-aluminum-magnesium alloys that may have better corrosion resistance than zinc have been developed. The coatings made of the new alloys have been available on the market for a shorter period of time than conventional zinc coatings. This paper presents data on the corrosion resistance of zinc and zinc-aluminum-magnesium coatings on carbon steel obtained by tests in four locations in Russia with marine and non-marine atmospheres. Four one-year exposures at the beginning of each season and two-year tests were performed. It is shown that the corrosion resistance of the coatings depends significantly on the beginning of the exposure. The categories of atmosphere corrosivity in relation to the coatings were determined at each location. Based on the dose–response function (DRF) for zinc developed for the territory of Russia, DRFs for the coatings were obtained. A match between the categories of atmosphere corrosivity determined by the first-year corrosion losses and estimated from the values of corrosion losses calculated using the DRF is shown. Based on the data of two-year tests, the variation in the corrosion rate over time is obtained. The corrosion rates of the coatings in the territory of Russia are compared to the corrosion rates of coatings observed in various locations around the world. An approximate estimate of the service life of the coatings at the test sites is given. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

15 pages, 4595 KiB  
Article
Degradation Behavior of Arc-Sprayed Zinc Aluminum Alloy Coatings for the Vessel Yongle in the South China Sea
by Guo-Sheng Huang, Zi-Lin Li, Xiao-Shuo Zhao, Yong-Lei Xin, Li Ma, Ming-Xian Sun and Xiang-Bo Li
Coatings 2023, 13(7), 1139; https://doi.org/10.3390/coatings13071139 - 23 Jun 2023
Cited by 5 | Viewed by 2847
Abstract
Since thermally sprayed zinc and aluminum coatings were invented 100 years ago, they have realized extensive industrial applications for steel structure protection in a variety of fields for nearly 100 years and have been proven to be effective and reliable. However, it has [...] Read more.
Since thermally sprayed zinc and aluminum coatings were invented 100 years ago, they have realized extensive industrial applications for steel structure protection in a variety of fields for nearly 100 years and have been proven to be effective and reliable. However, it has seldom been reported in the ship industry in China since many workers worry about the risk of rapid corrosion, especially in harsh environments such as the South China Sea. In this paper, three kinds of arc-sprayed zinc aluminum coatings were tested to choose the best coating system for application on the research vessel Yongle by electrochemical behavior and a long-term atmospheric exposure experiment. The variation of the corrosion rate and the bonding strength was used to clarify the long-term protection performance. The results show that Zn15Al has the lowest corrosion (Rp larger than 2200 Ω·cm2) among the three kinds of coatings and has a bonding strength larger than 6.38 MPa after a 5 year test. The performance of the coatings in the South China Sea indicates that they can provide excellent protection for the hull above the waterline of the Yongle vessel in the 3 year test. It could be predicted that thermally sprayed zinc aluminum coating has vast application potential in the South China Sea due to its excellent anticorrosion performance. Full article
(This article belongs to the Special Issue Environmental Corrosion of Metals and Its Prevention)
Show Figures

Figure 1

14 pages, 1549 KiB  
Article
Modification of Liquid Glasses Is a Key Factor in the Technology of Obtaining Hybrid Compositions and Coatings with Anticorrosive Properties
by Pavel Razgovorov, Svetlana Loginova, Natalia Politaeva, Ksenia Velmozhina and Polina Shinkevich
Coatings 2023, 13(6), 974; https://doi.org/10.3390/coatings13060974 - 23 May 2023
Cited by 1 | Viewed by 1832
Abstract
The aim of the work was to investigate the prospects of imparting valuable physical and chemical properties, such as corrosion resistance, impact and bending strength, adhesion and storage stability, to hybrid systems of potassium and sodium silicates by modification with organic compounds. Here, [...] Read more.
The aim of the work was to investigate the prospects of imparting valuable physical and chemical properties, such as corrosion resistance, impact and bending strength, adhesion and storage stability, to hybrid systems of potassium and sodium silicates by modification with organic compounds. Here, we present the results of worldwide activities of scientific teams studying the manufacturing technology of modified liquid glass anticorrosive coatings used in chemical, petrochemical industry and modern construction. The authors theoretically and economically justified and put into practice novel organic and inorganic compositions with increased viability. The durable and waterproof coatings with good adhesion to various substrates (non-ferrous metals, steel, plastered surface and wood) were obtained. The authors demonstrate the possibility of recycling of zinc-containing rongalite production wastes and sludge pastes of electrochemical productions containing alkali and alkaline-earth metal cations by including them into the composition instead of pigmenting solid-phase components. We propose a technological route for obtaining anticorrosion coatings to protect aluminum and its alloys operated in a zone of elevated (up to 673 K) temperatures. Full article
Show Figures

Figure 1

Back to TopTop