Efficiency of Expired Drugs Used as Corrosion Inhibitors: A Review
Abstract
:1. Introduction
2. Inhibitory Efficiency of Expired Drugs
2.1. Experimental Methods
2.2. Anticorrosive Effect of Expired Drugs
Corrosive Solution | Expired Drug | Inhibitor Conc. | IE (%) (Experimental Method) | Reference |
---|---|---|---|---|
1 M HCl | Ceftazidime | 300 ppm | 94.2 (WL); 93.1 (PDP); 74.1 (EIS) | [138] |
1 M HCl | Metronizadole | 1 mmol L−1 | 91.8 (PDP) | [145] |
1 M HCl | Ranitidine | 300; 400; 300 ppm | 92.4 (WL); 90 (PDP); 91.8 (EIS) | [142] |
5 M HCl | Ixabepilone | 0.4 mg/L | 76.377 (WL); 97.599 (PDP); 86.246 (EIS) | [139] |
5 M HCl | Naftifine | 4 mg/L | 68.511 (WL); 97.189 (PDP); 73.452 (EIS) | [88] |
0.1 M HNO3 | Midazolam | 10−4 M | 92.9 (WL); 92.9 (PDP); 90.1 (EIS) | [144] |
1 M HNO3 | Meropenem | 300 ppm | 94.6 (WL); 93.7 (PDP); 96.7 (EIS); 98.7 (EFM) | [146] |
1 M HNO3 | Simvastatin | 300 ppm | 78.8 (WL); 70.1 (PDP); 66.4 (EIS); 72.7 (EFM) | [143] |
2 M HNO3 | Megavit Zinc | 400 ppm | 66.87 (WL); 61.18 (PDP); 60.49 (EIS) | [147] |
2 M HNO3 | Tylosin | 300 ppm | 92.1 (WL); 94.1 (PDP); 93.7 (EIS) | [148] |
Synthetic acid rain | Ibuprofen | 10−2 M | 96.5 (WL); 97.2 (PDP); 97.3 (EIS) | [140] |
Paracetamol | 10−2 M | 96.3 (PDP); 97.2 (EIS) | [141] |
3. Drug Stability and Analysis
4. Conclusions
- -
- Identification of new expired medicines that are really friendly to the environment in aggressive solutions, including neutral and basic ones, which are preferably used in closed systems to avoid contact with the environment;
- -
- Analysis of the effectiveness of expired drugs in relation with that of fresh drugs;
- -
- Evaluation of the active substance content of expired drugs and the stability in aggressive solutions;
- -
- Study of the influence of excipients from expired drugs on the inhibitory efficiency;
- -
- Stimulation of research to develop new procedures of selective collection and delivery of expired medicines in enough quantities for the proposed purpose;
- -
- Study of the legislative framework that allows the use of expired drugs as corrosion inhibitors;
- -
- Development of disposal methods for exhausted solutions containing expired medicines;
- -
- Collaboration of corrosion engineers with pharmaceutic experts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NACE Study “International Measures of Prevention, Application and Economics of Corrosion Technology”. Available online: https://www.jm.com/en/blog/2017/march/nace-study-estimates-global-cost-of-corrosion-at-25-trillion-annually/ (accessed on 25 November 2022).
- Bockris, J.O.; Reddy, A.K.N. Modern Electrochemistry, 2nd ed.; Kluwer Academic: New York, NY, USA, 2000; Volume 2B. [Google Scholar]
- Lazzari, L.; Pedeferri, M.P. Corrosion Science and Engineering; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Assad, H.; Kumar, A. Understanding functional group effect on corrosion inhibition efficiency of selected organic compounds. J. Mol. Liq. 2021, 344, 117755. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Verma, C.; Quraishi, M.A. Molecular structural aspects of organic corrosion inhibitors: Experimental and computational insights. J. Mol. Struct. 2021, 1227, 129374. [Google Scholar] [CrossRef]
- Popoola, L.T. Organic green corrosion inhibitors. Corros. Rev. 2019, 37, 71–102. [Google Scholar] [CrossRef]
- Sastri, V.S. Green Corrosion Inhibitors-Theory and Practice; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Chaubey, N.; Quraishi, A.; Chauhan, D.S.; Quraishi, M.A. Frontiers and advances in green and sustainable inhibitors for corrosion applications: A critical review. J. Mol. Liq. 2021, 321, 114385. [Google Scholar] [CrossRef]
- Salleh, S.Z.; Yusoff, A.H.; Zakaria, S.K.; Taib, M.A.A.; Seman, A.A.; Masri, M.N.; Mohamad, M.; Mamat, S.; Sobri, S.A.; Ali, A.; et al. Plant extracts as green corrosion inhibitor for ferrous metal alloys: A review. J. Clean. Prod. 2021, 304, 127030. [Google Scholar] [CrossRef]
- Wei, H.; Heidarshenas, B.; Zhou, L.; Hussain, G.; Li, Q.; Ostrikov, K. Green inhibitors for steel corrosion in acidic environment: State of art. Mater. Today Sustain. 2020, 10, 100044. [Google Scholar] [CrossRef]
- Abdallah, M. Antibacterial drugs as corrosion inhibitors for corrosion of aluminum in hydrochloric solution. Corros. Sci. 2004, 46, 1981–1996. [Google Scholar] [CrossRef]
- Abdallah, M.; Zaafarany, I.; Al-Karanee, S.O.; Abd El-Fattah, A.A. Antihypertensive drugs as an inhibitors for corrosion of aluminum and aluminum silicon alloys in aqueous solutions. Arab. J. Chem. 2012, 5, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Tamborin, S.M.; Dias, S.L.P.; Silva, S.N.; Dick, L.F.P.; Azambuja, D.S. Preparation and electrochemical characterization of Amoxicillin-doped cellulose acetate films for AA2024-T3 Aluminum alloy coatings. Corros. Sci. 2011, 53, 1571–1580. [Google Scholar] [CrossRef]
- Arslan, T.; Kandemirli, F.; Ebenso, E.E.; Love, I.; Alemu, H. Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium. Corros. Sci. 2009, 51, 35–47. [Google Scholar] [CrossRef]
- Sudhish, K.S.; Ashish, K.S.; Ishtiaque, A.; Quraishi, M.A. Streptomycin: A commercially available drug as corrosion inhibitor for mild steel in hydrochloric acid solution. Matter. Lett. 2009, 63, 819–822. [Google Scholar] [CrossRef]
- Sing, A.K.; Quraishi, M.A. Effect of Cefazolin on the corrosion of mild steel in HCl solution. Corros. Sci. 2010, 52, 152–160. [Google Scholar] [CrossRef]
- Morad, M.S. Inhibition of iron corrosion in acid solutions by Cefatrexyl: Behavior near and at the corrosion potential. Corros. Sci. 2008, 50, 436–448. [Google Scholar] [CrossRef]
- Singh, A.K.; Shukla, S.K.; Singh, M.; Quraishi, M.A. Inhibitive effect of Ceftazidime on corrosion of mild steel in hydrochloric acid solution. Mater. Chem. Phys. 2011, 129, 68–76. [Google Scholar] [CrossRef]
- Samide, A. A pharmaceutical product as corrosion inhibitor for carbon steel in acidic environment. J. Environ. Sci. Health Part A 2013, 48, 159–165. [Google Scholar] [CrossRef]
- Fallavena, T.; Antonow, M.; Simoes-Goncalves, R. Caffeine as non-toxic corrosion inhibitor for copper in aqueous solutions of potassium nitrate. Appl. Surf. Sci. 2006, 253, 566–571. [Google Scholar] [CrossRef]
- El-Haddad, M.N. Chitosan as a green inhibitor for copper corrosion in acidic medium. Int. J. Biol. Macromol. 2013, 55, 142–149. [Google Scholar] [CrossRef]
- Minnoş, B.; Ilhan-Sungur, E.; Çotuk, A.; Doğruöz-Güngör, N.; Cansever, N. The corrosion behavior of galvanized steel in cooling tower water containing a biocide and a corrosion inhibitor. Biofouling 2013, 29, 223–235. [Google Scholar] [CrossRef]
- Gece, G. Drugs: A review of promising novel corrosion inhibitors. Corros. Sci. 2011, 53, 3873–3898. [Google Scholar] [CrossRef]
- Shama, G. Comment on the paper ‘‘Drugs: A review of promising novel corrosion inhibitors’’ by G. Gece–A (corrosion-free) bridge too far? Corros. Sci. 2012, 60, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Verma, C.; Quraishi, M.A.; Rhee, K.Y. Present and emerging trends in using pharmaceutically active compounds as aqueous phase corrosion inhibitors. J. Mol. Liq. 2021, 328, 115395. [Google Scholar] [CrossRef]
- Raghavendra, N. Use of ravage Lovastin as a non-toxic corrosion inhibitor for copper in the 3M H2SO4 solution. Int. J. Adv. Sci. Eng. 2019, 6, 1233–1238. [Google Scholar] [CrossRef]
- Hameed, R.S.A. Expired Ranitidine drugs as corrosion inhibitor for corrosion of aluminum in hydrochloric acid. Azhar Bull. Sci. 2009, 20, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Vaszilcsin, N.; Ordodi, V.; Borza, A. Corrosion inhibitors from expired drugs. Int. J. Pharm. 2012, 431, 241–244. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Sorour, A.A.; Quraishi, M.A. An overview of expired drugs as novel corrosion inhibitors for metals and alloys. Int. J. Chem. Pharm. Sci. 2016, 4, 680–691. [Google Scholar]
- Baari, M.J.; Sabandar, C.W. A Review on expired drug-based corrosion inhibitors: Chemical composition, structural effects, inhibition mechanism, current challenges, and future prospects. Indones. J. Chem. 2021, 21, 1316–1336. [Google Scholar] [CrossRef]
- Strehblow, H.H.; Marcuse, P. Fundamentals of Corrosion. In Corrosion Mechanisms in Theory and Practice, 3rd ed.; Marcuse, P., Ed.; CRC Press: Boca Raton, FL, USA; Taylor and Francis: Boca Raton, FL, USA, 2012. [Google Scholar]
- McCafferty, E. Introduction to Corrosion Science; Springer Science: New York, NY, USA, 2010. [Google Scholar]
- Bahron, H.; Ghani, A.A.; El Hassane, A.; Embong, Z.; Alharthi, A.I.; Mohamad, K.H.; Yatimah, A. Adsorption, electrochemistry, DFT and inhibitive effect of imines derived from Tribulin on corrosion of mild steel in 1 M HCl. J. Mol. Struct. 2021, 1235, 130206. [Google Scholar] [CrossRef]
- Baboian, R. Corrosion Tests and Standards: Application and Interpretation, 2nd ed.; ASTM International: West Conshohocken, PA, USA, 1995. [Google Scholar]
- King, A.D.; Birbilis, N.; Scully, J.R. Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection Study. Electrochim. Acta 2014, 121, 394–406. [Google Scholar] [CrossRef]
- Farahati, R.; Mousavi-Khoshdela, S.M.; Ghaffrinejad, A.; Behzadi, H. Experimental and computational study of Penicillamine drug and cysteine as water-soluble green corrosion inhibitors of mild steel. Prog. Org. Coat. 2020, 142, 105567. [Google Scholar] [CrossRef]
- Kalman, E.; Felhosi, I.; Karman, F.H.; Lukovits, I.; Telegdi, J.; Palinkas, G. Environmentally Friendly Corrosion Inhibitors. In Corrosion and Environmental Degradation; Schulze, M., Ed.; Wiley-VCH: Weinheim, Germany, 2000; Volume I. [Google Scholar]
- Orazem, M.E.; Tribollet, B. Electrochemical Impedance Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Chung, I.M.; Malathy, R.; Priyadharshini, R.; Hemapriya, V.; Kim, S.H.; Prabakaran, M. Inhibition of mild steel corrosion using Magnolia Kobus extract in sulphuric acid medium. Mat. Today Commun. 2020, 25, 101687. [Google Scholar] [CrossRef]
- Jmiai, A.; Tara, A.; El Issami, S.; Hilali, M.; Jbara, O.; Bazzi, L. A new trend in corrosion protection of copper in acidic medium by using Jujube shell extract as an effective green and environmentally safe corrosion inhibitor: Experimental, quantum chemistry approach and Monte Carlo simulation study. J. Mol. Liq. 2021, 322, 114509. [Google Scholar] [CrossRef]
- Abdel-Rehim, S.S.; Khaled, K.F.; Abd-Elshafi, N.S. Electrochemical frequency modulation as a new technique for monitoring corrosion inhibition of iron in acid media by new thiourea derivative. Electrochim. Acta 2006, 51, 3269–3277. [Google Scholar] [CrossRef]
- Obot, I.B.; Onyeachu, I.B. Electrochemical frequency modulation (EFM) technique: Theory and recent practical applications in corrosion research. J. Mol. Liq. 2018, 249, 83–96. [Google Scholar] [CrossRef]
- Kuhn, A.T.; Shams El Din, A.M. Thermometric and calorimetric methods in electrochemical and corrosion studies. Surf. Technol. 1983, 20, 55–69. [Google Scholar] [CrossRef]
- Al-Mhyawi, S.R. Application of expired Tramadol medicinal drug for corrosion inhibition of steel in acidic environment: Analytical, kinetic, and thermodynamic studies. Int. J. Corros. Scale Inhib. 2022, 11, 1282–1302. [Google Scholar] [CrossRef]
- Geethamani, P.; Narmatha, M.; Dhanalakshmi, R.; Aejitha, S.; Kasthuri, P.K. Corrosion inhibition and adsorption properties of mild steel in 1 M hydrochloric acid medium by expired Ambroxol drug. J. Bio-Tribo-Corros. 2019, 5, 16. [Google Scholar] [CrossRef]
- Fadila, B.; Sihem, A.; Sameh, A.; Kardas, G. A study on the inhibition effect of expired Amoxicillin on mild steel corrosion in 1N HCl. Mater. Res. Express. 2019, 6, 046419. [Google Scholar] [CrossRef]
- Geethamani, P.; Kasthuri, P.K.; Aejitha, S. An Expired non-toxic drug acts as corrosion inhibitor for mild steel in hydrochloric acid medium. Int. J. Chem. Pharm. Sci. 2015, 3, 1442–1448. [Google Scholar]
- Gupta, N.K.; Gopal, C.S.A.; Srivastava, V.; Quraishi, M.A. Application of expired drugs in corrosion inhibition of mild steel. Int. J. Pharm. Chem. Anal. 2017, 4, 8–12. [Google Scholar] [CrossRef]
- Singh, P.; Chauhan, D.S.; Srivastava, K.; Srivastava, V.; Quraishi, M.A. Expired Atorvastatin drug as corrosion inhibitor for mild steel in hydrochloric acid solution. Int. J. Ind. Chem. 2017, 8, 363–372. [Google Scholar] [CrossRef]
- Singh, A.K.; Chugh, B.; Saha, S.K.; Banerjee, P.; Ebenso, E.E.; Thakur, V.; Pani, B. Evaluation of anti-corrosion performance of an expired semi synthetic antibiotic Cefdinir for mild steel in 1 M HCl medium: An experimental and theoretical study. Results Phys. 2019, 14, 102383. [Google Scholar] [CrossRef]
- Naggar, A.H.; Mahross, M.H.; Tarek, M.; El-Sayed, A.E.A.Y.; El-Nasr, T.A.S.; Abdelwahab, A.A. Comparative experimental and theoretical studies of three different expired pharmaceutical compounds as green corrosion inhibitors of mild steel in different acidic solutions. Int. J. Electrochem. Sci. 2022, 17, 220532. [Google Scholar] [CrossRef]
- Hameed, R.S.A.; AlShafey, H.I.; Abu-Nawwas, A.H. 2-(2, 6-dichloranilino) phenyl acetic acid drugs as eco-friendly corrosion inhibitors for mild steel in 1M HCl. Int. J. Electrochem. Sci. 2014, 9, 6006–6019. [Google Scholar]
- Kalkhambkar, A.G.; Rajappa, S.K.; Manjanna, J.; Malimath, G.H. Effect of expired Doxofylline drug on corrosion protection of soft steel in 1 M HCl: Electrochemical, quantum chemical and synergistic effect studies. J. Indian Chem. Soc. 2022, 99, 100639. [Google Scholar] [CrossRef]
- Hameed, R.S.A.; Aleid, G.M.S.; Khaled, A.; Mohammad, D.; Aljuhani, E.H.; Al-Mhyawi, F.; Alshammary, S.R.; Abdallah, M. Expired Dulcolax drug as corrosion inhibitor for low carbon steel in acidic environment. Int. J. Electrochem. Sci. 2022, 17, 220655. [Google Scholar] [CrossRef]
- Srinivasulu, A.; Kasthuri, P.K. Study of inhibition and adsorption properties of mild steel corrosion by expired pharmaceutical Gentamicin drug in hydrochloric acid media. Orient. J. Chem. 2017, 33, 2616–2624. [Google Scholar] [CrossRef]
- Al-Nami, S.Y. Investigation of adsorption and inhibitive effect of expired Helicure drug on mild steel corrosion in hydrochloric acid solution. Int. J. Electrochem. Sci. 2020, 15, 2685–2699. [Google Scholar] [CrossRef]
- Sharma, S.; Ganjoo, R.; Thakur, A.; Kumar, A. Investigation of corrosion performance of expired Irnocam on the mild steel in acidic medium. Mater. Today Proc. 2022, 66, 540–543. [Google Scholar] [CrossRef]
- Dohare, P.; Chauhan, D.S.; Hammouti, B.; Quraishi, M.A. Experimental and DFT investigation on the corrosion inhibition behavior of expired drug Lumerax on mild steel in hydrochloric acid. Anal. Bioanal. Electrochem. 2017, 9, 762–783. [Google Scholar]
- Geethamani, P.; Kasthuri, P.K.; Aejitha, S. A new pharmaceutically expired drug acts as corrosion inhibitor for mild steel in acid medium. Corros. Dye 2014, 76, 28406–28410. [Google Scholar]
- Fouda, A.S.; El-Dossoki, F.I.; El-Hossiany, A.; Sello, E.A. Adsorption and anticorrosion behavior of expired Meloxicam on mild steel in hydrochloric acid solution. Surf. Eng. Appl. Electrochem. 2020, 56, 491–500. [Google Scholar] [CrossRef]
- Shi, Y.; Bai, W.; Guo, J.; Gao, L.; Chen, Y.; Wu, Y.; Liang, L. Inhibition of three kinds of expired Nitroimidazole antibiotics. Anti-Corros. Methods Mater. 2018, 65, 398–407. [Google Scholar] [CrossRef]
- Hameed, R.S.A. Ranitidine drugs as non-toxic corrosion inhibitors for mild steel in hydrochloric acid medium. Port. Electrochim. Acta 2011, 29, 273–285. [Google Scholar] [CrossRef]
- Dohare, P.; Chauhan, D.S.; Sorour, A.A.; Quraishi, M.A. DFT and experimental studies on the inhibition potentials of expired Tramadol drug on mild steel corrosion in hydrochloric acid. Mater. Discov. 2017, 9, 30–41. [Google Scholar] [CrossRef]
- Raghavendra, N.; Hublikar, L.V.; Ganiger, P.J.; Bhinge, A.S. Expired Ceftin as a corrosion inhibitor for mild steel in 5% HCl solution. Int. J. Green Herbal Chem. 2019, 8, 610–616. [Google Scholar] [CrossRef]
- Dahiya, S.; Saini, N.; Dahiya, N.; Lgaz, H.; Salghid, R.; Jodehe, S.; Lata, V. Corrosion inhibition activity of an expired antibacterial drug in acidic media amid elucidate DFT and MD simulations. Port. Electrochim. Acta 2018, 36, 213–230. [Google Scholar] [CrossRef]
- Chaudhari, L.P.; Patel, S.N. Corrosion Inhibition Study of Expired Acetazolamide on mild steel in dilute hydrochloric acid solution. J. Bio-Tribo-Corros. 2019, 5, 20. [Google Scholar] [CrossRef]
- Chaudhari, L.P.; Patel, S.N. Green approach to corrosion inhibition on mild steel in acidic media by the expired Sulpha drug. Int. J. Manag. Technol. Eng. 2018, 8, 665–678. [Google Scholar]
- Raghavendra, N. Expired Abacavir sulfate drug as non-toxic corrosion inhibitor for mild steel (MS) in 3 M hydrochloric acid system. Gazy Univ. J. Sci. 2019, 32, 1113–1121. [Google Scholar] [CrossRef] [Green Version]
- Raghavendra, N. Expired Amitriptyline drug as a new nontoxic inhibitor protecting mild steel corrosion in HCl solution. Sci. Lett. 2019, 7, 26–31. [Google Scholar]
- Raghavendra, N. The Corrosion Inhibition Study of expired Doxercalciferol drug as nontoxic inhibitor for mild steel (MS) in 3M HCl medium. J. Chem. Pharm. Res. 2018, 10, 1–6. [Google Scholar]
- Raghavendra, N. Expired Fluoxymesterone drug as sustainable corrosion inhibitor for mild steel (MS) in 3 M HCl solution: Experimental investigations towards mitigation of metal dissolution. Int. J. Chem. Mater. Res. 2019, 6, 1–7. [Google Scholar] [CrossRef]
- Raghavendra, N. Expired Lorazepam drug: A medicinal compound as green corrosion inhibitor for mild steel in hydrochloric acid system. Chem. Afr. 2019, 2, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, M.; Fawzy, A.; Alfakeer, M. Inhibition potentials and adsorption performance of two sulfonylurea antibiotic expired drugs on the corrosion of mild steel in 0.5 M H2SO4. Int. J. Electrochem. Sci. 2020, 15, 10289–10303. [Google Scholar] [CrossRef]
- Geethamani, P.; Kasthuri, P.K. Adsorption and corrosion inhibition of mild steel in acidic media by expired pharmaceutical drug. Cogent Chem. 2015, 1, 1091558. [Google Scholar] [CrossRef]
- Alfakeer, M.; Abdallah, M.; Fawzy, A. Corrosion inhibition effect of expired Ampicillin and Flucloxacillin drugs for mild steel in aqueous acidic medium. Int. J. Electrochem. Sci. 2020, 15, 3283–3297. [Google Scholar] [CrossRef]
- Geethamani, P.; Kasthuri, P.K. The inhibitory action of expired Asthalin drug on the corrosion of mild steel in acidic media: A comparative study. J. Taiwan Inst. Chem. Eng. 2016, 63, 490–499. [Google Scholar] [CrossRef]
- Abdallah, M.; Fawzy, A.; Alfakeer, M.; Altass, H.M. Expired Azithromycin and Roxithromycin drugs as environmentally friendly inhibitors for mild steel corrosion in H2SO4 solutions. Green Chem. Lett. Rev. 2021, 14, 509–518. [Google Scholar] [CrossRef]
- Ma, X.; Dang, R.; Kang, Y.; Gong, Y.; Luo, J.; Zhang, Y.; Fu, J.; Li, C.; Ma, Y. Electrochemical studies of expired drug (Formoterol) as oilfield corrosion inhibitor for mild steel in H2SO4 media. Int. J. Electrochem. Sci. 2020, 15, 1964–1981. [Google Scholar] [CrossRef]
- Sundaram, R.G.; Vengatesh, G.; Thamaraiselvi, M.; Prabakaran, R.; Thailan, V.; Muthuvel, I.; Niraimathi, S. Experimental and computational approach of an expired antibiotic drug Kynurenic acid as an efficient corrosion inhibitor for mild steel in HNO3 medium. J. Iranian Chem. Soc. 2022, 19, 2311–2329. [Google Scholar] [CrossRef]
- Bustos-Terrones, V.; Concha, L.; Menchaca-Campos, C.; Uruchurtu, J.; Romero, M.A.; Esparza, M.; Covelo, A.; Hernandez, M.; Sarmient, E. Eco-friendly recycled pharmaceutical inhibitor/waste particle containing hybrid coatings for corrosion protection. In Biobased and Environmental Benign Coatings; Tiwari, A., Galanis, A., Soucek, M.D., Eds.; Scrivener Publishing: Beverly, MA, USA, 2016; pp. 245–278. [Google Scholar]
- Palaniappana, N.; Alphonsab, J.; Colec, I.S.; Balasubramaniand, K.; Bosco, I.G. Rapid investigation expiry drug green corrosion inhibitor on mild steel in NaCl medium. Mat. Sci. Eng. B 2019, 249, 114423. [Google Scholar] [CrossRef]
- Ganapathi-Sundaram, R.; Vengatesh, G.; Sundaravadivelu, M. Surface morphological and quantum chemical studies of some expired drug molecules as potential corrosion inhibitors for mild steel in chloride medium. Surf. Interfaces 2021, 22, 100841. [Google Scholar] [CrossRef]
- Odunlamia, O.A.; Tijania, S.K.U.; Fayomi, O.S.I. Study of corrosion properties, adsorption mechanism and thermodynamics characteristics of expired Artemether-Lumefantrine inhibition drug on mild steel in NaCl solution. Int. J. Eng. Res. Technol. 2021, 13, 1289–1299. [Google Scholar] [CrossRef]
- Bustos-Terrones, V.; Menchaca, C.; Romero, M.A.; Esparza, J.M.; Dominguez, A.; Uruchurtu, J. Electrochemical evaluation of an outdated antifungal drug as corrosion inhibitor of mild steel in neutral chloride media. Innov. Corros. Mat. Sci. 2015, 5, 31–35. [Google Scholar] [CrossRef]
- Anadebe, V.C.; Nnaji, P.C.; Onukwuli, O.D.; Okafor, N.A.; Abeng, F.E.; Chukwuike, V.I.; Okoye, C.C.; Udoh, I.I.; Chidiebere, M.A.; Guo, L.; et al. Multidimensional insight into the corrosion inhibition of Salbutamol drug molecule on mild steel in oilfield acidizing fluid: Experimental and computer aided modeling approach. J. Mol. Liq. 2022, 349, 118482. [Google Scholar] [CrossRef]
- Raghavendra, N. Use of expired Naftifine drug as corrosion inhibitor for copper in hydrochloric acid. J. Adv. Electrochem. 2019, 5, 177–179. [Google Scholar] [CrossRef]
- Ugi, B.U.; Obeten, M.E.; Bassey, V.M.; BoEkom, E.J.; Omaliko, E.C.; Ugi, F.B.; Uwah, I.E. Quantum and electrochemical studies of corrosion inhibition impact on industrial structural steel (E410) by expired Amiloride drug in 0.5 M solutions of HCl, H2SO4 and NaHCO3. Mor. J. Chem. 2021, 9, 677–696. [Google Scholar] [CrossRef]
- Elabbasy, H.M.; Gadow, H.S. Study the effect of expired Tenoxicam on the inhibition of carbon steel corrosion in a solution of hydrochloric acid. J. Mol. Liq. 2021, 321, 114918. [Google Scholar] [CrossRef]
- Fouda, A.S.; Mahmoud, W.M.; Mageed, H.A.A. Evaluation of an expired nontoxic Amlodipine Besylate drug as a corrosion inhibitor for low-carbon steel in hydrochloric acid solutions. J. Bio- Tribo-Corros. 2016, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Fouda, A.S.; Motawee, M.S.; Megahid, H.E.; Abdul-Mageed, H.A. Evaluation of an expired non-toxic Amlodipine Besylatedrug as corrosion inhibitor for low carbon steel in hydrochloric acid solutions. Benha J. Appl. Sci. 2016, 1, 107–119. [Google Scholar]
- Shanab, M.M.A.H. Electrochemical and computational studies of Aripiprazole as a novel eco-friendly green corrosion inhibitor for carbon steel in aqueous environment. Int. J. Electrochem. Sci. 2021, 16, 21103. [Google Scholar] [CrossRef]
- Hameed, R.S.A.; Essa, A.B.; Mohamed, D.; Abdallah, M.; Aljohani, M.M.; Al-Mhyawi, S.R.; Soliman, M.S.; Arafa, E.I. Evaluation of expired Augmentine drugs as corrosion inhibitor for carbon steel alloy in 1.0 N HCl acidic environment using analytical techniques. Egypt. J. Chem. 2022, 65, 735–745. [Google Scholar] [CrossRef]
- Fouda, A.S.; Badr, G.E. Evaluation of expired Bromocriptine drug as eco-friendly corrosion inhibitor for C-steel in acidic media. Biointerface Res. Appl. Chem. 2020, 10, 5704–5714. [Google Scholar] [CrossRef]
- Zadeh, A.S.K.; Zandi, M.S.; Kazemipour, M. Corrosion protection of carbon steel in acidic media by expired Bupropion drug; experimental and theoretical study. J. Indian Chem. Soc. 2022, 99, 100522. [Google Scholar] [CrossRef]
- Maior, I.; Cojocaru, A.; Badea, G.E.; Nicola, I.; Ciobotaru, I.A.; Baranga, A. Efficient corrosion inhibitors by recovery of pharmaceutical waste. An. Un. Oradea Fasc. Chem. 2020, 27, 5–12. [Google Scholar]
- Fouda, A.S.; El Morsi, M.A.; El Mogy, T. Studies on the inhibition of carbon steel corrosion in hydrochloric acid solution by expired Carvedilol drug. Green Chem. Lett. Rev. 2017, 10, 336–345. [Google Scholar] [CrossRef]
- Eid, S. Expired Desloratidine drug as inhibitor for corrosion of carbon steel pipeline in hydrochloric acid solution. Int. J. Electrochem. Sci. 2021, 16, 150852. [Google Scholar] [CrossRef]
- Attia, E.M. Expired Farcolin drug as corrosion inhibitor for carbon steel in 1M HCl solution. J. Basic. Appl. Chem. 2015, 5, 1–15. [Google Scholar]
- Zakaria, K.; Abbas, M.A.; Bedair, M.A. Herbal expired drug bearing glycosides and polysaccharides moieties as green and cost-effective oilfield corrosion inhibitor: Electrochemical and computational studies. J. Mol. Liq. 2022, 352, 118689. [Google Scholar] [CrossRef]
- Hameed, R.S.A.; Ismai, E.A.; Al-Shafey, H.I.; Abbas, M.A. Expired Indomethacin therapeutics as corrosion inhibitors for carbon steel in 1.0 M hydrochloric acid media. J. Bio-Tribo-Corros. 2020, 6, 114. [Google Scholar] [CrossRef]
- Hameed, R.S.A.; Aljuhani, M.M.; Essa, A.B.; Khaled, A.; Nassar, A.M.; Badr, M.M.; Al-Mhyawi, S.R.; Soliman, M.S. Electrochemical techniques for evaluation of expired Megavit drugs as corrosion inhibitor for steel in hydrochloric acid. Int. J. Electrochem. Sci. 2021, 16, 210446. [Google Scholar] [CrossRef]
- Samide, A.; Ilea, P.; Vladu, A.C. Metronidazole performance as corrosion inhibitor for carbon steel, 304L stainless steel and aluminum in hydrochloric acid solution. Int. J. Electrochem. Sci. 2017, 12, 5964–5983. [Google Scholar] [CrossRef]
- Motawea, M.M. Corrosion inhibition efficiency of expired Nitazoxanide drug on carbon steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 2019, 14, 6682–6698. [Google Scholar] [CrossRef]
- Elsaoud, A.M.A.; Seyam, D.F.; El-Kattan, F.A.; El-Etre, A.Y. Test of No Plac expired drug as metallic corrosion inhibitor for carbon steel. Benha J. Appl. Sci. 2021, 6, 239–245. [Google Scholar]
- Liu, Y.; Wang, Z.; Chen, X.; Zhang, Z.; Wang, B.; Li, H.J.; Wu, Y.C. Synthesis and evaluation of Omeprazole-based derivatives as eco-friendly corrosion inhibitors for Q235 steel in hydrochloric acid. J. Environ. Chem. Eng. 2022, 10, 108674. [Google Scholar] [CrossRef]
- Tsygankova, L.E.; Bryksina, V.A.; Uryadnikov, A.A.; Abramov, A.E. Protective efficiency of expired drug against acid corrosion of carbon steel. Int. J. Corros. Scale Inhib. 2022, 11, 564–576. [Google Scholar] [CrossRef]
- Fouda, A.S.; Ibrahim, H.; Rashwaan, S.; El-Hossiany, A.; Ahmed, R.M. Expired drug (Pantoprazole sodium) as a corrosion inhibitor for high carbon steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 2018, 13, 6327–6346. [Google Scholar] [CrossRef]
- Duca, D.A.; Dan, M.L.; Vaszilcsin, N. Expired domestic drug-Paracetamol-as corrosion inhibitor for carbon steel in acid media. IOP Conf. Ser. Mater. Sci. Eng. 2018, 416, 012043. [Google Scholar]
- Al-Shafey, H.I.; Hameed, R.S.A.; Ali, F.A.; Aboul-Magd, A.A.S.; Salah, M. Effect of expired drugs as corrosion inhibitors for carbon steel in 1M HCl solution. Int. J. Pharm. Sci. Rev. Res. 2014, 27, 146–152. [Google Scholar]
- Dohare, P.; Chauhan, D.S.; Quraishi, M.A. Expired Podocip drug as potential corrosion inhibitor for carbon steel in acid chloride solution. Int. J. Corros. Scale Inhib. 2018, 7, 25–37. [Google Scholar] [CrossRef]
- El-Desoky, A.M.; Ahmed, H.M.; Ali, A.E. Electrochemical and analytical study of the corrosion inhibitory behavior of expired pharmaceutical compounds for C-steel corrosion. Int. J. Electrochem. Sci. 2015, 10, 5112–5129. [Google Scholar]
- Fouda, A.S.; Mahmoud, W.M.; Elawayeb, K.M.A. Unused Clopidogrel drug as eco-friendly corrosion inhibitor for carbon steel in aqueous media. Prot. Met. Phys. Chem. Surf. 2017, 53, 139–149. [Google Scholar] [CrossRef]
- Abeng, F.E.; Anadebe, V.C.; Idim, V.D.; Edim, M.M. Anti-corrosion behaviour of expired Tobramycin drug on carbon steel in acidic medium. S. Afr. J. Chem. 2020, 73, 125–130. [Google Scholar] [CrossRef]
- Haruna, K.; Saleh, T.A.; Quraishi, M.A. Expired Metformin drug as green corrosion inhibitor for simulated oil/gas well acidizing environment. J. Mol. Liq. 2020, 315, 113716. [Google Scholar] [CrossRef]
- Guo, W.; Umar, A.; Zhao, Q.; Alsaiari, M.A.; Al-Hadeethi, Y.; Wang, L.; Pei, M. Corrosion inhibition of carbon steel by three kinds of expired Cephalosporins in 0.1 M H2SO4. J. Mol. Liq. 2020, 320, 114295. [Google Scholar] [CrossRef]
- Samide, A.; Iacobescu, G.E.; Tutunaru, B.; Grecu, R.; Tigae, C.; Spînu, C. Inhibitory properties of Neomycin thin film formed on carbon steel in sulfuric acid solution: Electrochemical and AFM investigation. Coatings 2017, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Al-Gorair, A.S.; Abdallah, M. Expired Paracetamol as corrosion inhibitor for low carbon steel in sulfuric acid. Electrochemical, kinetics and thermodynamics investigation. Int. J. Electrochem. Sci. 2021, 16, 210771. [Google Scholar] [CrossRef]
- Anaee, R.A.; Tomi, I.H.R.; Abdulmajeed, M.H.; Naser, S.A.; Kathem, M.M. Expired Etoricoxib as a corrosion inhibitor for steel in acidic solution. J. Mol. Liq. 2019, 279, 594–602. [Google Scholar] [CrossRef]
- Kouri, H.; Bouhlal, F.; Bouisoui, E.M.; Labjar, N.; Benabdellah Amine, G.; Dahrouch, A.; Savaş, K.; El Ibrahimi, B.; Benzaouak, A.; Serghini-Idrissi, M.; et al. Inhibition of corrosion of C38 steel in 1 M H3PO4 medium by an Esomeprazole drug waste. Int. J. Corros. Scale Inhib. 2022, 11, 173–197. [Google Scholar] [CrossRef]
- Tajabadipour, H.; Mohammadi-Manesh, H.; Shahidi-Zandi, M. Experimental and theoretical studies of carbon steel corrosion protection in phosphoric acid solution by expired Lansoprazole and Rabeprazole drugs. J. Indian Chem. Soc. 2022, 99, 100285. [Google Scholar] [CrossRef]
- Raghavendra, N.; Hublikar, L.V.; Patil, S.M.; Ganiger, P.J.; Bhinge, A.S.; Chitnis, S. Corrosion protection of expired Perindopril and expired Alprazolam drug in carbon steel in the 3% NaCl solution. Int. J. Pharm. Biol. Sci. 2019, 9, 838–842. [Google Scholar]
- Dan, M.; Vaszilcsin, N.; Labosel, M.; Pancan, B. Expired Zosyn drug as corrosion inhibitor for carbon steel in sodium chloride solution. Chem. Bull. “POLITEHNICA” Univ. 2014, 59, 1. [Google Scholar]
- Raghavendra, N. Effect of expired Oxazepam medicine on the corrosion of carbon steel in 5% NaCl solution: An experimental approach towards mitigation of dissolution process. Fron. Chem. Res. 2019, 1, 1–4. [Google Scholar] [CrossRef]
- Hameed, R.S.A.; Aljuhani, E.H.; Felaly, R.; Munshi, A.M. Effect of expired Paracetamol–Zn+2 system and its synergistic effect towards iron dissolution inhibition and green inhibition performance. J. Adhes. Sci. Technol. 2020, 35, 838–855. [Google Scholar] [CrossRef]
- Bobina, M.; Ordodi, V.; Kellenberger, A.; Vaszilcsin, N. Expired Streptomycin as corrosion inhibitor for carbon steel in acetic acid-sodium acetate buffer solution. J. Eng. Sci. Innov. 2021, 6, 399–418. [Google Scholar]
- Onyeachu, I.B.; Abdel-Azeim, S.; Chauhan, D.S.; Quraishi, M.A. Electrochemical and computational insights on the application of expired Metformin drug as a novel inhibitor for the sweet corrosion of C1018 steel. ACS Omega 2021, 6, 65–76. [Google Scholar] [CrossRef]
- Abdallah, M.; Al Bahir, A.; Altass, H.M.; Fawzy, A.; El Guesmi, N.; Al-Gorair, A.S.; Benhiba, F.; Warad, I.; Zarrouk, A. Anticorrosion and adsorption performance of expired antibacterial drugs on Sabic iron corrosion in HCl solution: Chemical, electrochemical and theoretical approach. J. Mol. Liq. 2021, 330, 115702. [Google Scholar] [CrossRef]
- Abdallah, M.; Fawzy, A.; Al Bahir, A. The effect of expired Acyclovir and Omeprazole drugs on the inhibition of Sabic iron corrosion in HCl solution. Int. J. Electrochem. Sci. 2020, 15, 4739–4753. [Google Scholar] [CrossRef]
- Abdallah, M.; Fawzy, A.; Al Bahir, A. Expired Amoxicillin and Cefuroxime drugs as efficient anticorrosives for Sabic iron in 1.0 M hydrochloric acid solution. Chem. Eng. Commun. 2022, 209, 158–170. [Google Scholar] [CrossRef]
- Abdallah, M.; Soliman, K.A.; Al-Gorair, A.S.; Al Bahir, A.; Al-Fahemi, J.H.; Motawea, M.S.; Al-Juaid, S.S. Enhancing the inhibition and adsorption performance of SABIC iron corrosion in sulfuric acid by expired vitamins. Experimental and computational approach. RSC Adv. 2021, 11, 17092–17107. [Google Scholar] [CrossRef]
- Hameed, R.S.A.; Aljuhani, E.H.; Felaly, R.; Munshi, A.M. Expired pharmaceutical compounds as potential inhibitors for cast iron corrosion in acidic medium. Res. Chem. Intermed. 2017, 43, 3893–3913. [Google Scholar] [CrossRef]
- Iroha, N.B.; Maduelosi, N.J. Pipeline steel protection in oil well acidizing fluids using expired pharmaceutical agent. Chem. Int. 2020, 6, 267–276. [Google Scholar] [CrossRef]
- Hameed, R.S.A.; Mohamed, D.; Aljuhani, E.H.; Tasić, M.; Aljohani, M.M.; Al-Mhyawi, S.R.; Soliman, M.S. Application of expired Co-Amoxiclav medicinal drugs for corrosion inhibition of steel alloys used in petroleum industry in acidic environment. Int. J. Corros. Scale Inhib. 2019, 10, 714–731. [Google Scholar] [CrossRef]
- Iroha, N.B.; Nnanna, L.A.; Maduelosi, N.J.; Anadebe, V.C.; Abeng, F.E. Evaluation of the anticorrosion performance of Tamsulosin as corrosion inhibitor for pipeline steel in acidic environment: Experimental and theoretical study. J. Taibah Univ. Sci. 2022, 16, 288–299. [Google Scholar] [CrossRef]
- Motawea, M.M. Corrosion inhibition effect of expired Levothyroxine drug on stainless steel 304L in 0.5 M H2SO4 Solution. Int. J. Electrochem. Sci. 2021, 16, 21021. [Google Scholar] [CrossRef]
- Fouda, A.S.; El-Azaly, A.M. Expired Concor drug as potential nontoxic corrosion inhibitor for 304 stainless steel in hydrochloric acid solution. Zašt. Mater. 2018, 59, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Dong, J.; Bian, H.; Lu, H.; Bin, D.; Tang, S.; Song, Y.; Lu, H. Expired Cefalexin loaded into mesoporous nanosilica for self-healing epoxy coating on 304 stainless steel. Nanomaterials 2022, 12, 2406. [Google Scholar] [CrossRef]
- Kamel, M.M.; Mohsen, Q.; Anwar, Z.M.; Sherif, M.A. An expired Ceftazidime antibiotic as an inhibitor for disintegration of copper metal in pickling HCl media. J. Mat. Res. Technol. 2021, 11, 875–886. [Google Scholar] [CrossRef]
- Raghavendra, N.; Hublikar, L.V.; Ganiger, P.J. Expired Ixabepilone as a corrosion inhibitor on copper metal protection in 5 M HCl medium. Int. J. Sci. Res. Chem. Sci. 2019, 6, 1–3. [Google Scholar] [CrossRef]
- Tasić, Z.Z.; Petrović-Mihajlović, M.B.; Simonović, A.; Radovanović, M.B.; Antonijević, M.M. Ibuprofen as a corrosion inhibitor for copper in synthetic acid rain solution. Sci. Rep. 2019, 9, 14710. [Google Scholar] [CrossRef] [Green Version]
- Tasić, Ž.Z.; Petrović-Mihajlović, M.B.; Radovanović, M.B.; Simonović, A.T.; Antonijević, M.M. Experimental and theoretical studies of Paracetamol as a copper corrosion inhibitor. J. Mol. Liq. 2021, 327, 114817. [Google Scholar] [CrossRef]
- Fouda, A.S.; Rashwaan, S.; Ibrahim, H.; Ahmed, R.E. Corrosion inhibition of α-brass alloy in aqueous solution by using expired Ranitidine. Int. J. Electrochem. Sci. 2020, 15, 5982–6000. [Google Scholar] [CrossRef]
- Fouda, A.S.; Badawy, A.A. Adsorption and corrosion inhibition of cu in nitric acid by expired Simvastatin drug. Prot. Met. Phys. Chem. Surf. 2019, 55, 572–582. [Google Scholar] [CrossRef]
- Kellenberger, A.; Duca, D.A.; Dan, M.L.; Medeleanu, M. Recycling unused Midazolam drug as efficient corrosion inhibitor for copper in nitric acid solution. Materials 2022, 15, 2918. [Google Scholar] [CrossRef]
- Samide, A.; Tutunaru, B.; Dobriţescu, A.; Ilea, P.; Vladu, A.C.; Tigae, C. Electrochemical and theoretical study of Metronidazole drug as inhibitor for copper corrosion in hydrochloric acid solution. Int. J. Electrochem. Sci. 2016, 11, 5520–5534. [Google Scholar] [CrossRef]
- Fouda, A.S.; Rashwan, S.M.; Kamel, M.; Badawy, A.A. Unused Meropenem drug as corrosion inhibitor for copper in acidic medium; experimental and theoretical studies. Int. J. Electrochem. Sci. 2016, 11, 9745–9761. [Google Scholar] [CrossRef]
- Elsaoud, A.A.; Mabrouk, E.M.; Seyam, D.F.; El-Etre, A. Recyclization of expired Megavit Zinc (MZ) drug as metallic corrosion inhibitor for copper alloy C10100 in nitric acid solution. J. Bio-Tribo-Corros. 2021, 7, 64. [Google Scholar]
- Ali, M.A.; Ouf, A.M.; El-Hossiany, A.; Fouda, A.S. Eco-friendly approach to corrosion inhibition of copper in HNO3 solution by the expired Tylosin drug. Biointerface Res. Appl. Chem. 2022, 12, 5116–5130. [Google Scholar] [CrossRef]
- Raghavendra, N.; Sheelimath, D.S.; Chitnis, S.R. Expired Atenolol drug: A nontoxic corrosion inhibitor for Al in 3 M HCl pickling environment. J. Mol. Eng. Mater. 2019, 7, 1950009. [Google Scholar] [CrossRef]
- Raghavendra, N.; Hubikar, L.V.; Ganiger, P.J.; Bhinge, A.S. Prevention of aluminum corrosion in hydrochloric acid using expired Oseltamivir drug as an inhibitor. J. Fail. Anal. Prev. 2020, 20, 1864–1874. [Google Scholar] [CrossRef]
- Raghavendra, N. Expired Naproxen drug as a robust corrosion inhibitor of Al in 3 M hydrochloric acid system. Songklanakarin J. Sci. Technol. 2020, 42, 917–922. [Google Scholar] [CrossRef]
- Hameed, R.S.A.; Ismail, E.A.; Abu-Nawwas, V.; Al-Shafey, H.I. Expired Voltaren drugs as corrosion inhibitor for aluminum in hydrochloric acid. Int. J. Electrochem. Sci. 2015, 10, 2098–2109. [Google Scholar]
- Motawea, M.M.; Gadow, H.S.; Fouda, A.S. Expired Cidamex drug as corrosion inhibitor for aluminum in acidic solution. Glo. J. Res. Eng. Chem. Eng. 2016, 16, 7–19. [Google Scholar]
- Nathiya, R.S.; Perumal, S.; Murugesan, V.; Raj, V. Expired drugs: Environmentally safe inhibitors for aluminum corrosion in 1 M H2SO4. J. Bio-Tribo-Corros. 2018, 4, 4. [Google Scholar] [CrossRef]
- Abdallah, M.; Hawsawi, H.; Al-Gorair, A.S.; Alotaibi, M.T.; Al-Juaid, S.S.; Hameed, R.S.A. Appraisal of adsorption and inhibition effect of expired Micardis drug on aluminum corrosion in hydrochloric acid solution. Int. J. Electrochem. Sci. 2022, 17, 220462. [Google Scholar] [CrossRef]
- Al Bahir, A. Evaluation of expired Linezolid and Norfloxacin drugs as proficient environmentally safe inhibitors for mitigation of aluminum corrosion in sodium chloride medium. Chem. Data Collect. 2022, 42, 100960. [Google Scholar] [CrossRef]
- Su, P.; Li, L.; Li, W.; Huang, C.; Wang, X.; Liu, H.; Singh, A. Expired drug Theophylline as potential corrosion inhibitor for 7075 Aluminum alloy in 1 M NaOH solution. Int. J. Electrochem. Sci. 2020, 15, 1412–1425. [Google Scholar] [CrossRef]
- Attia, E.M.; Hassan, N.S.; Hyba, A.M. Corrosion protection of tin in 1M HCl by expired Primperan and E-mox drugs-Part I. J. Basic. Appl. Chem. 2017, 7, 9–25. [Google Scholar]
- Almashhadani, H.A.; Alshujery, M.K.; Khalil, M.; Kadhem, M.M.; Khadom, A.A. Corrosion inhibition behavior of expired Diclofenac sodium drug for Al 6061 alloy in aqueous media: Electrochemical, morphological, and theoretical investigations. J. Mol. Liq. 2021, 343, 117656. [Google Scholar] [CrossRef]
- Chen, T.; Gan, H.; Chen, Z.; Chen, M.; Fu, C. Eco-friendly approach to corrosion inhibition of AA5083 aluminum alloy in HCl solution by the expired Vitamin B1 drugs. J. Mol. Struct. 2021, 1244, 130881. [Google Scholar] [CrossRef]
- Hamza, R.A.; Samawi, K.A.; Salman, T.A. Inhibition studies of aluminum alloy (2024) corrosion in acid hydrochloride solution using an expired Phenylphrine drug. Egypt. J. Chem. 2020, 63, 2863–2875. [Google Scholar] [CrossRef]
- Attia, E.M.; Hassan, N.S.; Hyba, A.M. Corrosion protection of tin in 1M HCl by expired Novacid drug-Part I. Int. J. Adv. Res. 2016, 4, 872–886. [Google Scholar]
- Abbar, J.C.; Swetha, G.A.; Sachin, H.P. Impact of an expired hemorheologic drug on the mitigation of zinc corrosion in acidic environment: Insights from chemical, electrochemical, and surface evaluation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129518. [Google Scholar] [CrossRef]
- Duca, D.A.; Dan, M.L.; Vaszilcsin, N. Ceftriaxone as corrosion inhibitor for nickel in acid solutions. Adv. Electron. Forum. 2018, 27, 74–82. [Google Scholar]
- Attia, E.M.; Hassan, N.S.; Hyba, A.M. Corrosion protection of tin in 1M HCl by expired Primperan and E-mox drugs-Part II. J. Basic. Appl. Chem. 2018, 8, 1–13. [Google Scholar]
- Attia, E.M.; Hassan, N.S.; Hyba, A.M. Potentiodynamic study on the effect of expired Septazole and Septrin drugs on the corrosion inhibition of tin electrode in 1M HCl solution. J. Basic. Appl. Chem. 2019, 9, 11–18. [Google Scholar]
- Anaee, R.A.; Al-Majeed, M.H.A.; Naser, S.A.; Kathem, M.M.; Ahmed, O.A. Antibacterial inhibitor as an expired Metoclopramide in 0.5M phosphoric acid. Al-Khwarizmi Eng. J. 2019, 15, 71–81. [Google Scholar] [CrossRef]
- Ellepola, N.; Rubasinghege, G. Heterogeneous photocatalysis of Amoxicillin under natural conditions and high-intensity light: Fate, transformation, and mineralogical impacts. Environments. 2022, 9, 77. [Google Scholar] [CrossRef]
- Gozlan, I.; Rotstein, A.; Dror Avisar, D. Amoxicillin-degradation products formed under controlled environmental conditions: Identification and determination in the aquatic environment. Chemosphere 2013, 91, 985–992. [Google Scholar] [CrossRef]
- Shamnamola, G.K.; Sreelakshmi, K.P.; Gopika Ajith, G.; Jacob, J.M. Effective utilization of drugs as green corrosion inhibitor-A review. AIP Conf. Proc. 2020, 2225, 070006. [Google Scholar] [CrossRef]
- Heding, H. N-Demethylstreptomycin-Degradation studies. Acta Chem. Scand. 1969, 23, 1275–1278. [Google Scholar] [CrossRef] [Green Version]
Corrosive Solution | Expired Drug | Inhibitor Concentration | IE (%) (Experimental Method) | Reference |
---|---|---|---|---|
1 M HCl | Ambroxol | 9% | 64.89 (WL); 60.52 (PDP); 61.95 (EIS); | [45] |
Amoxicillin | 1800 ppm | 94.47 (WL) | [46] | |
Asthaline | 0.9% v/v | 62.35 (WL); 55.83 (PDP); 55.04 (EIS) | [47] | |
Atenolol | 200 ppm | 91.04 (PDP); 93.29 (EIS) | [48] | |
Atorvastatin (expired) | 150 ppm | 99.08 (PDP); 96.38 (EIS); 96.47 (WL) | [49] | |
Atorvastatin (fresh) | 150 ppm | 98.41 (PDP); 96.36 (EIS); 93.52 (WL) | [49] | |
Cefdinir | 6.32 × 10−4 M | 96.9 (EIS); 95.6 (PDP) | [50] | |
Chlorpromazine | 700 ppm | 85.1 (PDP) | [51] | |
Declophen | 2.5% v/v | 86.6 (WL); 87.5 (PDP) | [52] | |
Doxofylline | 200 ppm | 72.8 (WL); 72.1 (PDP); 72.6 (EIS) | [53] | |
Dulcolax | 500 ppm | 91.8 (WL); 91.0 (VOL); 92.5 (PDP); 93.0 (EIS) | [54] | |
Gentamicin | 0.9% v/v | 76.65 (WL); 75.06 (PDP); 78.44 (EIS) | [55] | |
Helicure | 300 ppm | 83.2 (WL); 84.6 (EFM); 83.8 (EIS); 85.8 (PDP) | [56] | |
Irnocam | 600 ppm | 80.4 (WL); 75.4 (PDP) | [57] | |
Lumerax | 100 mg/L | 98.5 (WL); 97.6 (EIS); 95.2 (PDP) | [58] | |
Lupicof | 0.9% | 79.2 (WL); 58.24 (PDP); 70.86 (EIS) | [59] | |
Mebeverine | 700 ppm | 82.1 (PDP) | [51] | |
Meloxicam | 30 ppm | 90.2 (WL); 79.2 (EFM); 80.8 (EIS); 88.0 (PDP) | [60] | |
Metoclopramide | 700 ppm | 83.3 (PDP) | [51] | |
Metronidazole | 10−5 M | 62.14 (WL); 72.82 (PDP); 64.62 (EIS) | [61] | |
Nifedipine | 200 ppm | 93.13 (PDP); 95.61 (EIS) | [48] | |
Ornidazole | 2·10−5 M | 71.10 (WL); 79.04 (PDP); 71.61 (EIS) | [61] | |
Ranitidine | 400 ppm | 89 (WL); 90 (PDP); 92 (EIS) | [62] | |
Tinidazole | 10−5 M | 83.53 (WL); 85.21 (PDP); 80.92 (EIS) | [61] | |
Tramadol | 100 ppm | 96.12 (WL); 97.2 (EIS) | [63] | |
5% HCl | Ceftin | 0.4 mg/L | 83.308 (WL); 94.401 (AAS) | [64] |
0.5 M HCl | Ethambutol | 1000 ppm | 99.60 (WL); 97.61 (PDP); 93.72 (EIS) | [65] |
2 M HCl | Acetazolamide | 500 ppm | 82.4 (WL); 93.3 (PDP); 96.4 (EIS) | [66] |
Bactrim | 400 ppm | 67.9 (WL); 94.4 (PDP); 93.1 (EIS) | [67] | |
3 M HCl | Abacavir | 0.4 g/L | 85.454 (WL); 95.365 (PDP); 72.648 (EIS) | [68] |
Amitriptyline | 2 mg/L | 87.577 (PDP); 82.3 (EIS) | [69] | |
Doxercalciferol | 0.4 mg/L | 95.4 (AAS); 86.967 (PDP); 88.617 (EIS) | [70] | |
Fluoxymesterone | 0.2 mg/L | 94.200 (AAS); 87.517 (PDP); 88.813 (EIS) | [71] | |
Lorazepam | 0.4 mg/L | 82.72 (WL); 96.49 (AAS); 87.70 (PDP) | [72] | |
0.5 M H2SO4 | Glibenclamide | 500 ppm | 86.3 (WL); 85.1 (PDP); 86.5 (ESI) | [73] |
Glimepiride | 500 ppm | 86.3 (WL); 88.0 (PDP); 90.4 (EIS) | [73] | |
Tramadol | 500 ppm | 93.2 (WL); 93.6 (VOL); 94.0 (ACI) | [44] | |
1 M H2SO4 | Ambroxol | 9% v/v | 81.10 (WL); 68.61 (PDP); 68.93 (EIS) | [74] |
Ampicillin | 400 ppm | 93.17 (WL); 93.95 (PDP); 91.02 (EIS) | [75] | |
Asthalin | 9% v/v | 73.68 (WL); 75.56 (PDP); 69.23 (EIS) | [76] | |
Azithromycin | 400 ppm | 88.32 (PDP); 87.20 (EIS); 84.97 (WL) | [77] | |
Chlorpromazine | 700 ppm | 97.13 (PDP) | [51] | |
Flucloxacillin | 400 ppm | 88.20 (WL); 90.92 (PDP); 88.99 (EIS) | [75] | |
Formoterol | 300 ppm | 95 (WL); 98 (EIS); 95 (PDP) | [78] | |
Mebeverine | 700 ppm | 93.62 (PDP) | [51] | |
Metoclopramide | 700 ppm | 96.42 (PDP) | [51] | |
Roxithromycin | 400 ppm | 84.91 (PDP); 86.75 (EIS); 86.12 (WL) | [77] | |
1 M HNO3 | Kinurenic acid | 300 ppm | 88.9 (WL); 89.8 (PDP); 89.3 (EIS) | [79] |
0.1 M Na2SO4 + 3% NaCl | Fluconazole | 150 ppm | 84 (PDP); 80 (EIS) | [80] |
Lansoprazol | 100; 50 ppm | 95 (PDP); 75 (EIS) | ||
3.5% NaCl | Rabeprazole Domperidone Benfotiamine | 0.5 mg/L | 98.52 (WL); 98.81 (WL); 98.92 (WL) | [81] |
NaCl 700 ppm | Acarbose | 100 ppm | 82.36 (WL); 75.80 (EIS); 86.22 (PDP) | [82] |
Voglibose | 79.73 (WL); 74.75 (EIS); 83.97 (PDP) | |||
Miglitol | 78.25 (WL); 70.25 (EEIS); 81.56 (PDP) | |||
0.625 M NaCl | Artemether-Lumefantrine | 75 | [83] | |
2.6% NaCl + 0.4% (NH4)2SO4 | Fluconazole | 150 ppm | 84.46 (PDP); 64.83 (EIS) | [84] |
Oilfield fluid | Salbutamol | 0.4 g L−1 | 80.1 (WL); 89.0 (PDP); 84.8 (EIS) | [85] |
Corrosive Solution | Expired Drug | Inhibitor Conc. | IE (%) (Experimental Method) | Reference |
---|---|---|---|---|
0.5 M HCl | Amiloride | 7 × 10−3 M | 99.2 (TM); 98.6 (WL); 92.8 (EIS); 98.12 (PDP) | [87] |
Tenoxicam | 4 × 10−4 M | 81.0 (PDP); 71.0 (EIS) | [88] | |
1 M HCl | Amlodipine Besylate | 250 ppm | 84.0 (WL); 83.5 (PDP); 94.3 (EIS) | [89] |
Amlodipine besylate | 250 ppm | 84.0 (WL); 83.5 (PDP); 94.3 (EIS) | [90] | |
Aripiprazole | 300 ppm | 93.1 (WL); 94.8 (PDP); 95.1 (EIS) | [91] | |
Augmentine | 300 ppm | 97.8 (WL); 97.1 (PDP); 98.0 (ACI) | [92] | |
Bromocriptine | 1.12 × 10−4 M | 82.6 (WL); 88.8 (PDP); 85.1 (EIS) | [93] | |
Bupropion | 500 ppm | 90.3 (PDP); 88.0 (EIS) | [94] | |
Carbocysteine | 2.4% | 61 (WL) | [95] | |
Carvedilol | 1.6 × 10−4 M | 98.9 (WL); 98.1 (PDP); 98.6 (EIS); 98.1 (EFM) | [96] | |
Desloratidine | 1.93 × 10−4 | 85.2 (PDP); 92.7 (WL) | [97] | |
Farcolin | 20% v/v | 95 (PDP); 97 (WL) | [98] | |
Immulant | 1.2 g L−1 | 97.5 (PDP); 95.3 (EIS) | [99] | |
Indomethacin | 500 ppm | 83.81 (WL); 79.61 (PDP); 82.37 (EIS) | [100] | |
Megavit | 300 ppm | 91.7 (PDP); 90.6 (EIS) | [101] | |
Metronidazole | 0.8 mmol L−1 | 80.6 (PDP); 81.1 (EIS); 80.0 (WL) | [102] | |
Nitazoxanide | 300 ppm | 90.1 (WL); 90.2 (EIS); 90.0 (PDP) | [103] | |
No Plac | 20 ppm | 93.0 (WL); 77.8 (PDP); 91.6 (EIS) | [104] | |
Omeprazole | 0.2 × 10−3 M | 96.6; 98.7; 98.0 | [105] | |
Omeprazole | 40 mg L−1 | 70 (PDP); 90 (WL); 92 (EIS) | [106] | |
Pantoprazole sodium | 300 ppm | 93.3 (WL); 95.1 (PDP); 92.2 (EIS); 89.2 (EFM) | [107] | |
Paracetamol | 2.4% | 68 (WL) | [95] | |
Paracetamol | 10−3 M | 85.8 (PDP); 84.8 (EIS) | [108] | |
Phenytoin | 500 ppm | 79.1 (WL); 81.78 (PDP); 79.0 (EIS) | [109] | |
Podocip | 100 mg/L | 96.57 (WL); 97.93 (EIS); 97.55 (PDP) | [110] | |
2 M HCl | Captopril | 15 × 10−5 M | 77.9 (WL); 65.4 (PDP); 81.7 (EIS) | [111] |
Clopidogrel | 250 ppm | 82.8 (WL); 93.2 (PDP); 85.8 (EIS); 86.4 (EFM) | [112] | |
Guaifenesin | 15 × 10−5 M | 71.4 (WL); 61.2 (PDP); 80.3 (EIS) | [111] | |
Hydrochlorothiazide | 15 × 10−5 M | 81.8 (WL); 73.5 (PDP); 83.1 (EIS) | [111] | |
Tobramycin | 500 ppm | 90.5 (PDP); 84.3 (EIS); 80.0 ™ | [113] | |
15% HCl | Metformin | 1000 ppm | 68.79 (WL); 74.72 (EIS); 73.46 (PDP) | [114] |
0.1 M H2SO4 | Cefotaxime | 10−3 M | 78.2 (EIS); 79.2 (PDP); 74.7 (WL) | [115] |
Ceftriaxone | 10−3 M | 84.4 (EIS); 85.0 (PDP); 80.8 (WL) | [115] | |
Cefuroxime | 10−3 M | 71.5 (EIS); 71.8 (PDP); 68.5 (WL) | [115] | |
0.5 M H2SO4 | Amiloride | 7 × 10−3 M | 87.3(TM); 88.2 (WL); 90.8 (EIS); 89.5 (PDP) | [87] |
Bupropion | 500 ppm | 82 (PDP); 83 (EIS) | [94] | |
Omeprazole | 40 mg L−1 | 70 (PDP); 90 (WL); 92 (EIS) | [106] | |
Paracetamol | 10−3 M | 93.7 (PDP); 96.4 (EIS) | [108] | |
1 M H2SO4 | Neomycin | 79.5 (PDP); 73.2 (EIS) | [116] | |
Paracetamol | 275 mg/L | 94.2 (PDP); 92.1 (EIS) | [117] | |
0.5 M H3PO4 | Etoricoxib | 225 ppm | 80.63 (PDP) | [118] |
1 M H3PO4 | Esomeprazole | 10−4 mol L−1 | 99.55 (PDP); 99.52 (EIS) | [119] |
3 M H3PO4 | Lansoprazole | 10 mmol L−1 | 92.9 (PDP); 93.5 (EIS) | [120] |
Raboprazole | 10 mmol L−1 | 94.8 (PDP); 94.2 (EIS) | [120] | |
3% NaCl | Alprazolam | 0.4 g/L | 85.78 (WL); 80.00 (AAS) | [121] |
Perindopril | 0.4 g/L | 90.00 (WL); 91.58 (AAS) | [121] | |
3.5% NaCl | Zosyn | 10−3 M | 91.08 (PDP) | [122] |
5% NaCl | Oxazepam | 0.4 mg/L | 80.113 (WL); 80.114 (VOL) | [123] |
2 M NaCl | Paracetamol+Zn+2 | 200 ppm + 100 ppm | 91.0 (PDP); 92.1 (EIS); 92.0 (TM); 94.4 (WL); 83.8 (AAS) | [124] |
0.5 M CH3COOH- 0.25 M CH3COONa | Streptomycin | 10−3M | 82.1 (WL); 87.4 (PDP); 82.2 (EIS) | [125] |
0.5 M NaHCO3 | Amiloride | 7 × 10−3 M | 96.6 (TM); 92.2 (WL); 91.9 (EIS); 93.5 (PDP) | [87] |
H2SO4 0.1 M/CH3COOH 0.25 M/CH3COONa 0.25 M | Carbamazepin | 5 × 10−3 M | 90 (PDP) | [28] |
Paracetamol | 5 × 10−3 M | 85 (PDP) | [28] | |
CO2 sat. 3.5% NaCl + 340 ppm acetic acid | Metformin | 200 ppm | 89.47 ± 1.42 (EIS); 86.31 (PDP) | [126] |
Corrosive Solution | Expired Drug | Inhibitor Conc. | IE (%) (Experimental Method) | Reference |
---|---|---|---|---|
1 M HCl | Acyclovir | 500 ppm | 87.0 (WL); 94.47 (PDP); 93.82 (EIS) | [127] |
Amoxicillin | 87.0 (WL); 94.47 (PDP); 93.82 (EIS) | [129] | ||
Ampicillin | 91.8 (WL); 95.79 (PDP); 95.83 (EIS) | [127] | ||
Ceftriaxone | 96.9 (WL); 98.02 (PDP); 97.90 (EIS) | |||
Cefuroxime | 92.9 (WL); 96.58 (PDP); 96.00 (EIS) | [129] | ||
Omeprazole | 88.8 (WL); 95.26 (PDP); 95.50 (EIS) | [128] | ||
0.5 M H2SO4 | Vitamin B1 | 250 mg L−1 | 89.45 (WL); 91.14 (PDP); 89.12 (EIS) | [130] |
Vitamin B2 | 91.49 (WL); 92.40 (PDP); 90.85 (EIS) |
Corrosive Solution | Expired Drug | Inhibitor Conc. | IE (%) (Experimental Method) | Reference |
---|---|---|---|---|
1 M HCl | Cefpodoxime | 240 ppm | 95.2 (WL); 94.4 (PDP); 93.4 (EIS) | [131] |
Levofloxacin | 93.4 (WL); 92.4 (PDP); 92.6 (EIS) | |||
Linezolid | 89.8 (WL); 89.5 (PDP); 87.7 (EIS) | |||
Ofloxacin | 91.6 (WL); 91.4 (PDP); 90.6 (EIS) |
Corrosive Solution | Expired Drug | Inhibitor Conc. | IE (%) (Experimental Method) | Reference |
---|---|---|---|---|
1 M HCl | Desloratidine | 1.93·10−4 M | 92.7 (WL); 85.2 (PDP) | [97] |
1 M HCl | Tamsulosin | 2·10−3 M | 88.0 (EIS); 94.1 (PDP) | [134] |
15% HCl | Pregabalin | 2.5 g/L | 91.5 (PDP); 92.4 (EIS); 96.5 (WL) | [132] |
1 M H2SO4 | Co-amoxiclav | 300 ppm | 96 (WL); 95.3 (VOL); 95 (ACI); 96 (TM) | [133] |
Corrosive Solution | Expired Drug | Inhibitor Conc. | IE (%) (Experimental Method) | Reference |
---|---|---|---|---|
1 M HCl | Metronidazole | 0.8 mmol L−1 | 67.9 (WL) 67.9 (PDP); 68.3 (EIS); | [102] |
2 M HCl | Concor | 300 ppm | 75.10 (WL); 64.1 (PDP); 85.8 (EIS); 81.2 (EFM) | [136] |
0.5 M H2SO4 | Levothyroxine | 150 ppm | 94.3 (WL); 93.2 (PDP); 91.7 (EIS) | [135] |
3.5% NaCl | Cefalexim | - | - | [137] |
Sample | Corrosive Solution | Expired Drug | Inhibitor Conc. | IE (%) (Experimental Method) | Reference |
---|---|---|---|---|---|
Al | 1 M HCl | Cidamex | 300 ppm | 90.9 (WL); 98.7 (VOL); 99.6 (PDP); 81.0 (EIS); 84.3 (EFM) | [153] |
1 M HCl | Metronidazole | 0.8 mmol L−1 | 88.3 (WL); 88.2 (PDP); 91.1 (EIS); | [102] | |
1 M HCl | Micardis | 300 mg L−1 | 96.8 (WL); 97.2 (PDP); 94.0 (EIS); 99.4 (VOL) | [155] | |
1 M HCl | Ranitidine | 300 ppm | 82 (WL); 82.2 (PDP) | [27] | |
1 M HCl | Voltaren | 125 ppm | 89.7 (WL); 91.7 (PDP) | [152] | |
3 M HCl | Oseltamivir | 2 mg/L | 91.3 (WL); 98.639 (PDP); 98.8 (AAS) | [150] | |
3 M HCl | Naproxen | 1 g/L | 99.002 (PDP); 97.704 (EIS); 97.2 (VOL) | [151] | |
3 M HCl | Atenolol | 0.4 g/L | 87.868 (WL); 98.666 (PDP); 95.878 (EIS); 97.000 (AAS); 92.063 (VOL) | [149] | |
1 M H2SO4 | Moxifoxacin | 400 ppm | 95.31 (WL); 95.40 (PDP); 94.00 (EIS) | [154] | |
Betnesol | 86.17 (WL); 85.01 (PDP); 85.47 (EIS) | ||||
1 M NaCl | Linezolid | 250 mg L−1 | 77.2 (WL); 85.8 (PDP); 83.7 (EIS) | [156] | |
Norfloxacin | 74.2 (WL); 79.5 (PDP); 77.2 (EIS) | ||||
Al alloy 7075 | 1 M NaOH | Theophylline | 2.5% | 90 (EIS); 91 (PDP) | [157] |
Al alloy 2024 | 1 M HCl | Phenylphrine | 500 ppm | 82.96 (WL) | [158] |
Al alloy 6061 | 0.1 M HCl | Diclofenac | 150 ppm | 99.98 (PDP) | [159] |
Al alloy 6061 | 3.5% NaCl | Diclofenac | 150 ppm | 85.98 (PDP) |
Metal | Corrosive Solution | EXPIRED DRUG | Inhibitor Conc. | IE (%) (Experimental Method) | Reference |
---|---|---|---|---|---|
Ni | 1 M HCl | Ceftriaxone | 10−5 M | 71.4 (WL); 73.0 (PDP); 73.9 (EIS) | [164] |
0.5 M H2SO4 | Ceftriaxone | 10−4 M | 69.6 (WL); 70.1 (PDP); 69.5 (EIS) | ||
Sn | 1 M HCl | Primperan | 9.9% v/v | 96.45 (PDP) | [158] |
E-mox | 92.05 (PDP) | ||||
Primperan | 91.32 (WL) | [165] | |||
E-mox | 93.85 (WL) | ||||
Novacid | 93.9 (WL); 94.2 (PDP) | [162] | |||
Septazole | 9% v/v | 95 (PDP) | [166] | ||
Septrin | 90 (PDP) | ||||
Zn | 0.1 M HCl | Pentoxifylline | 300 ppm | 84.3 (WL); 71.2 (PDP); 83.6 (EIS) | [163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaszilcsin, N.; Kellenberger, A.; Dan, M.L.; Duca, D.A.; Ordodi, V.L. Efficiency of Expired Drugs Used as Corrosion Inhibitors: A Review. Materials 2023, 16, 5555. https://doi.org/10.3390/ma16165555
Vaszilcsin N, Kellenberger A, Dan ML, Duca DA, Ordodi VL. Efficiency of Expired Drugs Used as Corrosion Inhibitors: A Review. Materials. 2023; 16(16):5555. https://doi.org/10.3390/ma16165555
Chicago/Turabian StyleVaszilcsin, Nicolae, Andrea Kellenberger, Mircea Laurentiu Dan, Delia Andrada Duca, and Valentin Laurentiu Ordodi. 2023. "Efficiency of Expired Drugs Used as Corrosion Inhibitors: A Review" Materials 16, no. 16: 5555. https://doi.org/10.3390/ma16165555
APA StyleVaszilcsin, N., Kellenberger, A., Dan, M. L., Duca, D. A., & Ordodi, V. L. (2023). Efficiency of Expired Drugs Used as Corrosion Inhibitors: A Review. Materials, 16(16), 5555. https://doi.org/10.3390/ma16165555