Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = xylose metabolism in bacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1934 KiB  
Article
Verrucomicrobia of the Family Chthoniobacteraceae Participate in Xylan Degradation in Boreal Peat Soils
by Andrey L. Rakitin, Irina S. Kulichevskaya, Alexey V. Beletsky, Andrey V. Mardanov, Svetlana N. Dedysh and Nikolai V. Ravin
Microorganisms 2024, 12(11), 2271; https://doi.org/10.3390/microorganisms12112271 - 8 Nov 2024
Cited by 12 | Viewed by 1835
Abstract
The phylum Verrucomicrobiota is one of the main groups of soil prokaryotes, which remains poorly represented by cultivated organisms. The major recognized role of Verrucomicrobiota in soils is the degradation of plant-derived organic matter. These bacteria are particularly abundant in peatlands, where xylan-type [...] Read more.
The phylum Verrucomicrobiota is one of the main groups of soil prokaryotes, which remains poorly represented by cultivated organisms. The major recognized role of Verrucomicrobiota in soils is the degradation of plant-derived organic matter. These bacteria are particularly abundant in peatlands, where xylan-type hemicelluloses represent one of the most actively decomposed peat constituents. The aim of this work was to characterize the microorganisms capable of hydrolyzing xylan under the anoxic conditions typical of peatland soils. The laboratory incubation of peat samples with xylan resulted in the pronounced enrichment of several phylotypes affiliated with the Verrucomicrobiota, Firmicutes, and Alphaproteobacteria. Sequencing of the metagenome of the enrichment culture allowed us to recover high-quality metagenome-assembled genomes (MAGs) assigned to the genera Caproiciproducens, Clostridium, Bacillus (Firmicutes), and Rhizomicrobium (Alphaproteobacteria), Cellulomonas (Actinobacteriota) and the uncultured genus-level lineage of the family Chthoniobacteraceae (Verrucomicrobiota). The latter bacterium, designated “Candidatus Chthoniomicrobium xylanophilum” SH-KS-3, dominated in the metagenome and its MAG was assembled as a complete closed chromosome. An analysis of the SH-KS-3 genome revealed potential endo-1,4-beta-xylanases, as well as xylan beta-1,4-xylosidases and other enzymes involved in xylan utilization. A genome analysis revealed the absence of aerobic respiration and predicted chemoheterotrophic metabolism with the capacity to utilize various carbohydrates, including cellulose, and to perform fermentation or nitrate reduction. An analysis of other MAGs suggested that Clostridium and Rhizomicrobium could play the role of primary xylan degraders while other community members probably took advantage of the availability of xylo-oligosaccharides and xylose or utilized low molecular weight organics. Full article
(This article belongs to the Special Issue Genomics Approaches in Microbial Ecology)
Show Figures

Figure 1

23 pages, 10973 KiB  
Article
Alleviating Effect of Lactiplantibacillus plantarum NXU0011 Fermented Wolfberry on Ulcerative Colitis in Mice
by Mingxia Nie, Quan Ji, Gang Guo, Haiyan Zhang, Yanhong Wang, Ru Zhai and Lin Pan
Fermentation 2023, 9(11), 971; https://doi.org/10.3390/fermentation9110971 - 14 Nov 2023
Cited by 1 | Viewed by 1782
Abstract
As research into the relationship between the gut microbiome and health continues to evolve, probiotics are garnering increasing interest among consumers. Fermentation is recognized as an efficacious biotechnology for augmenting the nutritional and functional attributes of foods. In this study, the ameliorative effects [...] Read more.
As research into the relationship between the gut microbiome and health continues to evolve, probiotics are garnering increasing interest among consumers. Fermentation is recognized as an efficacious biotechnology for augmenting the nutritional and functional attributes of foods. In this study, the ameliorative effects of Lycium barbarum L. lyophilized powder fermented with Lactiplantibacillus plantarum NXU0011 (LP+Ly) on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in mice were investigated employing immunohistochemistry, qRT-PCR, macrogenomics, and metabolomics. The results revealed that LP+Ly intervention significantly ameliorated histopathological inflammation in the ulcerated colon, diminished the expression of inflammatory markers such as IL-6, P-STAT3, and miR-214, and enhanced the diversity of intestinal flora in the mouse model group. Moreover, there was an increase in the abundance of beneficial bacteria, including Lactobacillus, Prevotella, and Akkermansia. Metabolomic analysis indicated that 15 metabolites, including citrulline, D-xylose, and α-ketoisovaleric acid, exhibited significant variations following the LP+Ly intervention. The metabolic pathways that displayed substantial differences included tryptophan biosynthesis, arginine biosynthesis, and amino sugar and nucleotide sugar metabolism. LP+Ly effectively improved the inflammatory state within the intestines by modulating arginine biosynthesis, thus alleviating the impact of UC. Full article
(This article belongs to the Special Issue Role of Probiotics in Food Fermentation and Their Health Benefits)
Show Figures

Figure 1

17 pages, 5308 KiB  
Article
Analysis of the Effects of Surfactants on Extracellular Polymeric Substances
by Hongyu Zhang, Xuecheng Zheng and Dongmin Lai
Processes 2023, 11(11), 3212; https://doi.org/10.3390/pr11113212 - 11 Nov 2023
Cited by 2 | Viewed by 2129
Abstract
Reservoirs after chemical flooding usually have residual chemicals, which can affect the driving effect of subsequent microbial drives. Among them, the effect of surfactants on the metabolites of oil-recovering bacteria is the most obvious. Therefore, this paper investigates the influence mechanism of sodium [...] Read more.
Reservoirs after chemical flooding usually have residual chemicals, which can affect the driving effect of subsequent microbial drives. Among them, the effect of surfactants on the metabolites of oil-recovering bacteria is the most obvious. Therefore, this paper investigates the influence mechanism of sodium dodecyl sulfate (SDS) on the nature and structure of Extracellular Polymeric Substances (EPS) produced by metabolism of Enterobacter cloacae, through a variety of characterization to analysis the components and structure of EPS under SDS stress. The results showed that Enterobacter cloacae was identified as a glycolipid-producing strain, the main components of EPS were polysaccharides and proteins. The polysaccharide composition (%: w/w) was glucosamine, 37.2; glucose, 31.5; rhamnose, 26.3; xylose, 1.7; and unidentified sugar, 3.3; and the main component of proteins was polyglutamic acid. EPS under the stress of SDS showed an increase in the content of functional groups such as -C=O and -COOH and an increase in the cellular particle size, and production of EPS increased by 10.69 × 103 mg/L when the SDS concentration was 2.5 × 102 mg/L; 3D-EEM results showed that the components of all three types of EPS The 3D-EEM results showed that all three types of EPS fractions contained tryptophan and protein-like substances, humic acid-like substances were only distributed in the solubilized extracellular polymers (SL-EPS), and aromatic proteins were only present in the loosely bound type (LB-EPS) and tightly bound type (TB-EPS). In addition, the peaks representing humic-like substances showed a blue shift, indicating that SDS had the greatest effect on SL-EPS. This study provides a guidance for refining the mechanism of strain EPS response to reservoir residual surfactant SDS, and provides a more comprehensive and in-depth understanding of surfactant-protein interactions. Full article
(This article belongs to the Special Issue Advances in Microbial Biotechnology and Bioengineering Processes)
Show Figures

Figure 1

13 pages, 8244 KiB  
Article
The Multiomics Response of Bacillus subtilis to Simultaneous Genetic and Environmental Perturbations
by Li Liu, Gaoyang Li and Huansheng Cao
Microorganisms 2023, 11(8), 1949; https://doi.org/10.3390/microorganisms11081949 - 30 Jul 2023
Viewed by 1523
Abstract
How bacteria respond at the systems level to both genetic and environmental perturbations imposed at the same time is one fundamental yet open question in biology. Bioengineering or synthetic biology provides an ideal system for studying such responses, as engineered strains always have [...] Read more.
How bacteria respond at the systems level to both genetic and environmental perturbations imposed at the same time is one fundamental yet open question in biology. Bioengineering or synthetic biology provides an ideal system for studying such responses, as engineered strains always have genetic changes as opposed to wildtypes and are grown in conditions which often change during growth for maximal yield of desired products. So, engineered strains were used to address the outstanding question. Two Bacillus subtilis strains (MT1 and MT2) were created previously for the overproduction of N-acetylglucosamine (GlcNAc), which were grown in an environment with a carbon shift from glucose to glucose and xylose in the same culture system. We had four groups: (1) a wildtype (WT) grown with glucose at t1; (2) a WT with glucose and xylose at t2; (3) a mutant (MT1) grown with glucose at t1; and (4) MT1 with glucose and xylose at t2. By measuring transcriptomes and metabolomes, we found that GlcNAc-producing mutants, particularly MT2, had a higher yield of N-acetylglucosamine than WT but displayed a smaller maximum growth rate than the wildtype, despite MT1 reaching higher carrying capacity. Underlying the observed growth, the engineered pathways leading to N-acetylglucosamine had both higher gene expression and associated metabolite concentrations in MT1 than WT at both t1 and t2; in bioenergetics, there was higher energy supply in terms of ATP and GTP, with the energy state metric higher in MT1 than WT at both timepoints. Additionally, most top key precursor metabolites were equally abundant in MT1 and WT at either timepoints. Besides that, one prominent feature was the high consistency between transcriptomics and metabolomics in revealing the response. First, both metabolomes and transcriptomes revealed the same PCA clusters of the four groups. Second, we found that the important functions enriched both by metabolomes and transcriptomes overlapped, such as amino acid metabolism and ABC transport. Strikingly, these functions overlapped those enriched by the genes showing a high (positive or negative) correlation with metabolites. Furthermore, these functions also overlapped the enriched KEGG pathways identified using weighted gene coexpression network analysis. All these findings suggest that the responses to simultaneous genetic and environmental perturbations are well coordinated at the metabolic and transcriptional levels: they rely heavily on bioenergetics, but core metabolism does not differ much, while amino acid metabolism and ABC transport are important. This serves as a design guide for bioengineering, synthetic biology, and systems biology. Full article
(This article belongs to the Special Issue Metabolism in the Bacillus subtilis)
Show Figures

Figure 1

18 pages, 4472 KiB  
Article
D-Xylose Blocks the Broad Negative Regulation of XylR on Lipid Metabolism and Affects Multiple Physiological Characteristics in Mycobacteria
by Kun Wang, Xujie Cui, Xiaocui Ling, Jiarui Chen, Jiachen Zheng, Yuling Xiang and Weihui Li
Int. J. Mol. Sci. 2023, 24(8), 7086; https://doi.org/10.3390/ijms24087086 - 11 Apr 2023
Cited by 2 | Viewed by 2034
Abstract
D-xylose is the most abundant fermentable pentose, which usually represents an architectural component of the bacterial cell wall. However, its regulatory function and the involved signaling pathway in bacteria remain largely unclear. Here, we show that D-xylose can act as a signaling molecule [...] Read more.
D-xylose is the most abundant fermentable pentose, which usually represents an architectural component of the bacterial cell wall. However, its regulatory function and the involved signaling pathway in bacteria remain largely unclear. Here, we show that D-xylose can act as a signaling molecule to regulate the lipid metabolism and affect multiple physiological characteristics in mycobacteria. D-xylose directly interacts with XylR and inhibits its DNA-binding ability, thus blocking XylR-mediated repression. The xylose inhibitor, XylR, plays a global regulatory role and affects the expression of 166 mycobacterial genes that are involved in lipid synthesis and metabolism. Furthermore, we show that the xylose-dependent gene regulation of XylR affects the multiple physiological characteristics of Mycobacterium smegmatis, including bacterial size, colony phenotype, biofilm formation, cell aggregation, and antibiotic resistance. Finally, we found that XylR inhibited the survival of Mycobacterium bovis BCG in the host. Our findings provide novel insights into the molecular mechanism of lipid metabolism regulation and its correlation with bacterial physiological phenotypes. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

16 pages, 1587 KiB  
Article
Comparative Genomic Analysis Reveals the Functional Traits and Safety Status of Lactic Acid Bacteria Retrieved from Artisanal Cheeses and Raw Sheep Milk
by Ilias Apostolakos, Spiros Paramithiotis and Marios Mataragas
Foods 2023, 12(3), 599; https://doi.org/10.3390/foods12030599 - 1 Feb 2023
Cited by 15 | Viewed by 3563
Abstract
Lactic acid bacteria (LAB) are valuable for the production of fermented dairy products. We investigated the functional traits of LAB isolated from artisanal cheeses and raw sheep milk, assessed their safety status, and explored the genetic processes underlying the fermentation of carbohydrates. Lactiplantibacillus [...] Read more.
Lactic acid bacteria (LAB) are valuable for the production of fermented dairy products. We investigated the functional traits of LAB isolated from artisanal cheeses and raw sheep milk, assessed their safety status, and explored the genetic processes underlying the fermentation of carbohydrates. Lactiplantibacillus plantarum had the largest and more functional genome compared to all other LAB, while most of its protein-encoding genes had unknown functions. A key finding of our analysis was the overall absence of acquired resistance genes (RGs), virulence genes (VGs), and prophages, denoting that all LAB isolates fulfill safety criteria and can be used as starter or adjunct cultures. In this regard, the identified mobile genetic elements found in LAB, rather than enabling the integration of RGs or VGs, they likely facilitate the uptake of genes involved in beneficial functions and in the adaptation of LAB in dairy matrices. Another important finding of our study was that bacteriocins and CAZymes were abundant in LAB though each species was associated with specific genes, which in turn had different activity spectrums and identified applications. Additionally, all isolates were able to metabolize glucose, lactose, maltose, and sucrose, but Lactiplantibacillus plantarum was strongly associated with the fermentation of rhamnose, mannose, cellobiose, and trehalose whereas Levilactobacillus brevis with the utilization of arabinose and xylose. Altogether these results suggest that to fully exploit the beneficial properties of LAB, a combination of strains as food additives may be necessary. Interestingly, biological processes involved in the metabolism of carbohydrates that are not of direct interest for the dairy industry may yield valuable metabolites or activate pathways associated with beneficial health effects. Our results provide useful information for the development of new probiotic artisanal cheeses and probiotic starter cultures. Full article
(This article belongs to the Special Issue Cheese: Chemistry, Physics and Microbiology)
Show Figures

Figure 1

28 pages, 5502 KiB  
Article
Exploiting Catabolite Repression and Stringent Response to Control Delay and Multimodality of Bioluminescence Signal by Metal Whole-Cell Biosensors: Interplay between Metal Bioavailability and Nutritional Medium Conditions
by Eva Delatour, Christophe Pagnout, Marie Zaffino and Jérôme F. L. Duval
Biosensors 2022, 12(5), 327; https://doi.org/10.3390/bios12050327 - 11 May 2022
Cited by 8 | Viewed by 2585
Abstract
The time-dependent response of metal-detecting whole-cell luminescent bacterial sensors is impacted by metal speciation/bioavailability in solution. The comprehensive understanding of such connections requires the consideration of the bacterial energy metabolism at stake and the effects of supplied food on cells’ capability to convert [...] Read more.
The time-dependent response of metal-detecting whole-cell luminescent bacterial sensors is impacted by metal speciation/bioavailability in solution. The comprehensive understanding of such connections requires the consideration of the bacterial energy metabolism at stake and the effects of supplied food on cells’ capability to convert bioaccumulated metals into light. Accordingly, we investigated the time response (48 h assay) of PzntA-luxCDABE Escherichia coli Cd biosensors in media differing with respect to sources of amino acids (tryptone or Lysogeny Broth) and carbon (glucose, xylose and mixtures thereof). We show that the resulting coupling between the stringent cell response and glucose/xylose-mediated catabolite repressions lead to well-defined multimodalities and shapes of the bioluminescence signal over time. Based on a recent theory for the time–response of metal-sensing luminescent bacteria, successful theoretical reconstructions of the bioluminescence signals are reported under all Cd concentrations (0–20 nM) and nutritive conditions examined. This analysis leads to the evaluation of time-dependent cell photoactivity and qualitative information on metal speciation/bioavailability in solution. Biosensor performance and the position, shape, number, and magnitude of detected peaks are discussed in relation to the metabolic pathways operative during the successive light emission modes identified here over time. Altogether, the results clarify the contributions of metal/nutrient bio-availabilities and food quality to cell response typology. Full article
(This article belongs to the Special Issue Microbial Biosensors for Environmental Monitoring)
Show Figures

Figure 1

17 pages, 1609 KiB  
Article
Isolation of Efficient Xylooligosaccharides-Fermenting Probiotic Lactic Acid Bacteria from Ethnic Pickled Bamboo Shoot Products
by Apinun Kanpiengjai, Pongsakorn Nuntikaew, Jirat Wongsanittayarak, Nalapat Leangnim and Chartchai Khanongnuch
Biology 2022, 11(5), 638; https://doi.org/10.3390/biology11050638 - 21 Apr 2022
Cited by 19 | Viewed by 3463
Abstract
Xylooligosaccharides (XOSs) are produced from xylan, which is a component of the hemicellulose that can be found in bamboo shoots. Naw Mai Dong, an ethnic pickled bamboo shoot product of northern Thailand, is generally characterized as acidic and has a sour taste. It [...] Read more.
Xylooligosaccharides (XOSs) are produced from xylan, which is a component of the hemicellulose that can be found in bamboo shoots. Naw Mai Dong, an ethnic pickled bamboo shoot product of northern Thailand, is generally characterized as acidic and has a sour taste. It can be considered a potential source of probiotic lactic acid bacteria (LAB). This study aimed to isolate efficient XOSs-fermenting probiotic LAB from ethnic pickled bamboo shoot products. A total of 51 XOSs-fermenting LAB were recovered from 24 samples of Naw Mai Dong, while 17 strains exhibited luxuriant growth in xylose and XOSs. Among these, seven strains belonging to Levicaseibacillus brevis and Pediococcus acidilactici exhibited similar growth in glucose, xylose, and XOSs, while the rest showed a weaker degree of growth in xylose and XOSs than glucose. Sixteen strains exhibited resistance under gastrointestinal tract conditions and displayed antimicrobial activity against foodborne pathogens. Notably, Lv. brevis FS2.1 possessed the greatest probiotic properties, with the highest %hydrophobicity index and %auto-aggregation. Effective degradation and utilization of XOSs by probiotic strains are dependent upon xylanase and β-xylosidase production, as well as xylose metabolism. It can be concluded that pickled bamboo shoot products can be a beneficial source of XOSs-fermenting probiotic LAB. Full article
(This article belongs to the Special Issue Medical and Industrial Biotechnology)
Show Figures

Figure 1

12 pages, 2880 KiB  
Review
Glucose Isomerase: Functions, Structures, and Applications
by Ki Hyun Nam
Appl. Sci. 2022, 12(1), 428; https://doi.org/10.3390/app12010428 - 3 Jan 2022
Cited by 51 | Viewed by 28188
Abstract
Glucose isomerase (GI, also known as xylose isomerase) reversibly isomerizes D-glucose and D-xylose to D-fructose and D-xylulose, respectively. GI plays an important role in sugar metabolism, fulfilling nutritional requirements in bacteria. In addition, GI is an important industrial enzyme for the production of [...] Read more.
Glucose isomerase (GI, also known as xylose isomerase) reversibly isomerizes D-glucose and D-xylose to D-fructose and D-xylulose, respectively. GI plays an important role in sugar metabolism, fulfilling nutritional requirements in bacteria. In addition, GI is an important industrial enzyme for the production of high-fructose corn syrup and bioethanol. This review introduces the functions, structure, and applications of GI, in addition to presenting updated information on the characteristics of newly discovered GIs and structural information regarding the metal-binding active site of GI and its interaction with the inhibitor xylitol. This review provides an overview of recent advancements in the characterization and engineering of GI, as well as its industrial applications, and will help to guide future research in this field. Full article
(This article belongs to the Special Issue Enzyme Catalysis: Advances, Techniques, and Outlooks)
Show Figures

Figure 1

19 pages, 924 KiB  
Review
Xylose Metabolism in Bacteria—Opportunities and Challenges towards Efficient Lignocellulosic Biomass-Based Biorefineries
by Rafael Domingues, Maryna Bondar, Inês Palolo, Odília Queirós, Catarina Dias de Almeida and M. Teresa Cesário
Appl. Sci. 2021, 11(17), 8112; https://doi.org/10.3390/app11178112 - 31 Aug 2021
Cited by 41 | Viewed by 8852
Abstract
In a sustainable society based on circular economy, the use of waste lignocellulosic biomass (LB) as feedstock for biorefineries is a promising solution, since LB is the world’s most abundant renewable and non-edible raw material. LB is available as a by-product from agricultural [...] Read more.
In a sustainable society based on circular economy, the use of waste lignocellulosic biomass (LB) as feedstock for biorefineries is a promising solution, since LB is the world’s most abundant renewable and non-edible raw material. LB is available as a by-product from agricultural and forestry processes, and its main components are cellulose, hemicellulose, and lignin. Following suitable physical, enzymatic, and chemical steps, the different fractions can be processed and/or converted to value-added products such as fuels and biochemicals used in several branches of industry through the implementation of the biorefinery concept. Upon hydrolysis, the carbohydrate-rich fraction may comprise several simple sugars (e.g., glucose, xylose, arabinose, and mannose) that can then be fed to fermentation units. Unlike pentoses, glucose and other hexoses are readily processed by microorganisms. Some wild-type and genetically modified bacteria can metabolize xylose through three different main pathways of metabolism: xylose isomerase pathway, oxidoreductase pathway, and non-phosphorylative pathway (including Weimberg and Dahms pathways). Two of the commercially interesting intermediates of these pathways are xylitol and xylonic acid, which can accumulate in the medium either through manipulation of the culture conditions or through genetic modification of the bacteria. This paper provides a state-of-the art perspective regarding the current knowledge on xylose transport and metabolism in bacteria as well as envisaged strategies to further increase xylose conversion into valuable products. Full article
Show Figures

Figure 1

11 pages, 2387 KiB  
Article
Improved CRISPR/Cas9 Tools for the Rapid Metabolic Engineering of Clostridium acetobutylicum
by Tom Wilding-Steele, Quentin Ramette, Paul Jacottin and Philippe Soucaille
Int. J. Mol. Sci. 2021, 22(7), 3704; https://doi.org/10.3390/ijms22073704 - 2 Apr 2021
Cited by 18 | Viewed by 4332
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas (CRISPR-associated proteins)9 tools have revolutionized biology—several highly efficient tools have been constructed that have resulted in the ability to quickly engineer model bacteria, for example, Escherichia coli. However, the use of CRISPR/Cas9 tools has lagged [...] Read more.
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas (CRISPR-associated proteins)9 tools have revolutionized biology—several highly efficient tools have been constructed that have resulted in the ability to quickly engineer model bacteria, for example, Escherichia coli. However, the use of CRISPR/Cas9 tools has lagged behind in non-model bacteria, hampering engineering efforts. Here, we developed improved CRISPR/Cas9 tools to enable efficient rapid metabolic engineering of the industrially relevant bacterium Clostridium acetobutylicum. Previous efforts to implement a CRISPR/Cas9 system in C. acetobutylicum have been hampered by the lack of tightly controlled inducible systems along with large plasmids resulting in low transformation efficiencies. We successfully integrated the cas9 gene from Streptococcuspyogenes into the genome under control of the xylose inducible system from Clostridium difficile, which we then showed resulted in a tightly controlled system. We then optimized the length of the editing cassette, resulting in a small editing plasmid, which also contained the upp gene in order to rapidly lose the plasmid using the upp/5-fluorouracil counter-selection system. We used this system to perform individual and sequential deletions of ldhA and the ptb-buk operon. Full article
(This article belongs to the Special Issue Microbial Systems and Synthetic Biology)
Show Figures

Figure 1

25 pages, 1367 KiB  
Review
Enzymology of Alternative Carbohydrate Catabolic Pathways
by Dominik Kopp, Peter L. Bergquist and Anwar Sunna
Catalysts 2020, 10(11), 1231; https://doi.org/10.3390/catal10111231 - 23 Oct 2020
Cited by 7 | Viewed by 5954
Abstract
The Embden–Meyerhof–Parnas (EMP) and Entner–Doudoroff (ED) pathways are considered the most abundant catabolic pathways found in microorganisms, and ED enzymes have been shown to also be widespread in cyanobacteria, algae and plants. In a large number of organisms, especially common strains used in [...] Read more.
The Embden–Meyerhof–Parnas (EMP) and Entner–Doudoroff (ED) pathways are considered the most abundant catabolic pathways found in microorganisms, and ED enzymes have been shown to also be widespread in cyanobacteria, algae and plants. In a large number of organisms, especially common strains used in molecular biology, these pathways account for the catabolism of glucose. The existence of pathways for other carbohydrates that are relevant to biomass utilization has been recognized as new strains have been characterized among thermophilic bacteria and Archaea that are able to transform simple polysaccharides from biomass to more complex and potentially valuable precursors for industrial microbiology. Many of the variants of the ED pathway have the key dehydratase enzyme involved in the oxidation of sugar derived from different families such as the enolase, IlvD/EDD and xylose-isomerase-like superfamilies. There are the variations in structure of proteins that have the same specificity and generally greater-than-expected substrate promiscuity. Typical biomass lignocellulose has an abundance of xylan, and four different pathways have been described, which include the Weimberg and Dahms pathways initially oxidizing xylose to xylono-gamma-lactone/xylonic acid, as well as the major xylose isomerase pathway. The recent realization that xylan constitutes a large proportion of biomass has generated interest in exploiting the compound for value-added precursors, but few chassis microorganisms can grow on xylose. Arabinose is part of lignocellulose biomass and can be metabolized with similar pathways to xylose, as well as an oxidative pathway. Like enzymes in many non-phosphorylative carbohydrate pathways, enzymes involved in L-arabinose pathways from bacteria and Archaea show metabolic and substrate promiscuity. A similar multiplicity of pathways was observed for other biomass-derived sugars such as L-rhamnose and L-fucose, but D-mannose appears to be distinct in that a non-phosphorylative version of the ED pathway has not been reported. Many bacteria and Archaea are able to grow on mannose but, as with other minor sugars, much of the information has been derived from whole cell studies with additional enzyme proteins being incorporated, and so far, only one synthetic pathway has been described. There appears to be a need for further discovery studies to clarify the general ability of many microorganisms to grow on the rarer sugars, as well as evaluation of the many gene copies displayed by marine bacteria. Full article
(This article belongs to the Special Issue Biocatalysis and Whole-Cell Biotransformation in Biomanufacturing)
Show Figures

Figure 1

14 pages, 2980 KiB  
Article
Characterisation of the First Archaeal Mannonate Dehydratase from Thermoplasma acidophilum and Its Potential Role in the Catabolism of D-Mannose
by Dominik Kopp, Robert Willows and Anwar Sunna
Catalysts 2019, 9(3), 234; https://doi.org/10.3390/catal9030234 - 3 Mar 2019
Cited by 7 | Viewed by 6707
Abstract
Mannonate dehydratases catalyse the dehydration reaction from mannonate to 2-keto-3-deoxygluconate as part of the hexuronic acid metabolism in bacteria. Bacterial mannonate dehydratases present in this gene cluster usually belong to the xylose isomerase-like superfamily, which have been the focus of structural, biochemical and [...] Read more.
Mannonate dehydratases catalyse the dehydration reaction from mannonate to 2-keto-3-deoxygluconate as part of the hexuronic acid metabolism in bacteria. Bacterial mannonate dehydratases present in this gene cluster usually belong to the xylose isomerase-like superfamily, which have been the focus of structural, biochemical and physiological studies. Mannonate dehydratases from archaea have not been studied in detail. Here, we identified and characterised the first archaeal mannonate dehydratase (TaManD) from the thermoacidophilic archaeon Thermoplasma acidophilum. The recombinant TaManD enzyme was optimally active at 65 °C and showed high specificity towards D-mannonate and its lactone, D-mannono-1,4-lactone. The gene encoding for TaManD is located adjacent to a previously studied mannose-specific aldohexose dehydrogenase (AldT) in the genome of T. acidophilum. Using nuclear magnetic resonance (NMR) spectroscopy, we showed that the mannose-specific AldT produces the substrates for TaManD, demonstrating the possibility for an oxidative metabolism of mannose in T. acidophilum. Among previously studied mannonate dehydratases, TaManD showed closest homology to enzymes belonging to the xylose isomerase-like superfamily. Genetic analysis revealed that closely related mannonate dehydratases among archaea are not located in a hexuronate gene cluster like in bacteria, but next to putative aldohexose dehydrogenases, implying a different physiological role of mannonate dehydratases in those archaeal species. Full article
(This article belongs to the Special Issue Novel Enzyme and Whole-Cell Biocatalysts)
Show Figures

Graphical abstract

14 pages, 1226 KiB  
Article
An Innovative Biocatalyst for Continuous 2G Ethanol Production from Xylo-Oligomers by Saccharomyces cerevisiae through Simultaneous Hydrolysis, Isomerization, and Fermentation (SHIF)
by Thais S. Milessi-Esteves, Felipe A.S. Corradini, Willian Kopp, Teresa C. Zangirolami, Paulo W. Tardioli, Roberto C. Giordano and Raquel L.C. Giordano
Catalysts 2019, 9(3), 225; https://doi.org/10.3390/catal9030225 - 1 Mar 2019
Cited by 14 | Viewed by 3812
Abstract
Many approaches have been considered aimed at ethanol production from the hemicellulosic fraction of biomass. However, the industrial implementation of this process has been hindered by some bottlenecks, one of the most important being the ease of contamination of the bioreactor by bacteria [...] Read more.
Many approaches have been considered aimed at ethanol production from the hemicellulosic fraction of biomass. However, the industrial implementation of this process has been hindered by some bottlenecks, one of the most important being the ease of contamination of the bioreactor by bacteria that metabolize xylose. This work focuses on overcoming this problem through the fermentation of xylulose (the xylose isomer) by native Saccharomyces cerevisiae using xylo-oligomers as substrate. A new concept of biocatalyst is proposed, containing xylanases and xylose isomerase (XI) covalently immobilized on chitosan, and co-encapsulated with industrial baker’s yeast in Ca-alginate gel spherical particles. Xylo-oligomers are hydrolyzed, xylose is isomerized, and finally xylulose is fermented to ethanol, all taking place simultaneously, in a process called simultaneous hydrolysis, isomerization, and fermentation (SHIF). Among several tested xylanases, Multifect CX XL A03139 was selected to compose the biocatalyst bead. Influences of pH, Ca2+, and Mg2+ concentrations on the isomerization step were assessed. Experiments of SHIF using birchwood xylan resulted in an ethanol yield of 0.39 g/g, (76% of the theoretical), selectivity of 3.12 gethanol/gxylitol, and ethanol productivity of 0.26 g/L/h. Full article
(This article belongs to the Special Issue Novel Enzyme and Whole-Cell Biocatalysts)
Show Figures

Graphical abstract

27 pages, 2454 KiB  
Review
Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering
by Khaled A. Selim, Dina E. El-Ghwas, Saadia M. Easa and Mohamed I. Abdelwahab Hassan
Fermentation 2018, 4(1), 16; https://doi.org/10.3390/fermentation4010016 - 8 Mar 2018
Cited by 52 | Viewed by 18419
Abstract
Scarcity of the non-renewable energy sources, global warming, environmental pollution, and raising the cost of petroleum are the motive for the development of renewable, eco-friendly fuels production with low costs. Bioethanol production is one of the promising materials that can subrogate the petroleum [...] Read more.
Scarcity of the non-renewable energy sources, global warming, environmental pollution, and raising the cost of petroleum are the motive for the development of renewable, eco-friendly fuels production with low costs. Bioethanol production is one of the promising materials that can subrogate the petroleum oil, and it is considered recently as a clean liquid fuel or a neutral carbon. Diverse microorganisms such as yeasts and bacteria are able to produce bioethanol on a large scale, which can satisfy our daily needs with cheap and applicable methods. Saccharomyces cerevisiae and Pichia stipitis are two of the pioneer yeasts in ethanol production due to their abilities to produce a high amount of ethanol. The recent focus is directed towards lignocellulosic biomass that contains 30–50% cellulose and 20–40% hemicellulose, and can be transformed into glucose and fundamentally xylose after enzymatic hydrolysis. For this purpose, a number of various approaches have been used to engineer different pathways for improving the bioethanol production with simultaneous fermentation of pentose and hexoses sugars in the yeasts. These approaches include metabolic and flux analysis, modeling and expression analysis, followed by targeted deletions or the overexpression of key genes. In this review, we highlight and discuss the current status of yeasts genetic engineering for enhancing bioethanol production, and the conditions that influence bioethanol production. Full article
(This article belongs to the Special Issue Fermentation and Bioactive Metabolites)
Show Figures

Graphical abstract

Back to TopTop