Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = workwear

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3940 KiB  
Article
Effect of Workwear Fit on Thermal Insulation: Assessment Using 3D Scanning Technology
by Magdalena Młynarczyk, Joanna Orysiak and Jarosław Jankowski
Materials 2025, 18(9), 2098; https://doi.org/10.3390/ma18092098 - 3 May 2025
Viewed by 389
Abstract
Thermal insulation is a basic property for describing a set of clothing and consists of the thermal resistance of the individual layers of clothing (which depends on the material used and its structure) and also takes into account the air gaps between the [...] Read more.
Thermal insulation is a basic property for describing a set of clothing and consists of the thermal resistance of the individual layers of clothing (which depends on the material used and its structure) and also takes into account the air gaps between the layers. Here, the total thermal insulation was measured in a climatic chamber with a thermal manikin. The air gaps were measured using a 3D scanning technique and calculated using the Blender 3D graphics program. Our study shows the effect of size (fit) on the size of the air gaps, as well as the influence of the air gap size on the thermal insulation value (both for static and dynamic conditions with 45 double steps and 45 double arm movements per minute) for workwear. The relationship of the total thermal insulation value on the volume and size of the air gap was described as a second-order polynomial (R2 > 0.8). It was observed that for workwear, thermal insulation did not increase when the air gaps exceeded approximately 30 mm or when the air gap volume reached 50–55 dm3. The highest total thermal insulation (~0.23 m2°C/W) was achieved when the garment closely fitted the wearer’s body (or in this case, the thermal manikin) without excessive tightness. Full article
(This article belongs to the Special Issue Advanced Textile Materials: Design, Properties and Applications)
Show Figures

Figure 1

12 pages, 1916 KiB  
Article
Correlational Analysis with Regards to the Causes of Chemical Intoxication Due to Pesticides Among Farmers in Bogotá, Colombia: A Cross-Sectional Observational Study
by Mayra Daniela Maldonado, Katherine Montaña-Oviedo, Diana M. Ballén, Juan de Dios Villegas and Alejandro Botero Carvajal
Safety 2025, 11(2), 38; https://doi.org/10.3390/safety11020038 - 24 Apr 2025
Viewed by 1284
Abstract
Background: Farmers are continuously exposed to pesticides during crop production, which can lead to both acute and chronic poisoning. This exposure poses a significant global public health concern. In response, this study aims to achieve two primary objectives: (1) to identify the correlation [...] Read more.
Background: Farmers are continuously exposed to pesticides during crop production, which can lead to both acute and chronic poisoning. This exposure poses a significant global public health concern. In response, this study aims to achieve two primary objectives: (1) to identify the correlation between pesticide intoxication cases among farmers and their potential causes and (2) to assess the relationship between risk–control measures, hygiene practices, and resulting health effects. Methods: This study employed a cross-sectional mixed-methods observational design, sampling 112 farmers from Bogotá’s rural areas. Data were analyzed using logistic regression in R (version 4.2.1), examining eight associated variables. Results: The use of personal protective equipment (PPE) ranged from approximately 62% to 92%. Additionally, 82% of participants reported changing their workwear and 76% practiced bodily hygiene after exposure. Nevertheless, health complaints persisted—particularly affecting vision (46%), the respiratory system (38%), and the skin (32%). Notably, two out of every three farmers reported experiencing some form of systemic illness associated with pesticide exposure. Conclusion: A strong association was observed between the use of facemasks and changing workwear and the prevention of pesticide-related intoxication. These practices appear to be key in reducing chemical exposure during fumigation activities. Full article
Show Figures

Figure 1

23 pages, 9308 KiB  
Article
Thermal and Moisture Management Properties of Knitted Fabrics for Skin-Contact Workwear
by Simona Vasile, Jaime Paolo Vega Arellano, Cosmin Copot, Ahmad Osman and Alexandra De Raeve
Materials 2025, 18(8), 1859; https://doi.org/10.3390/ma18081859 - 18 Apr 2025
Viewed by 727
Abstract
Thermal and moisture properties of the textile materials worn in close contact with the skin greatly contribute to the comfort of the workwear and of the personal protective clothing (PPC) assemblies they are part of. This study examines in depth the thermoregulatory properties [...] Read more.
Thermal and moisture properties of the textile materials worn in close contact with the skin greatly contribute to the comfort of the workwear and of the personal protective clothing (PPC) assemblies they are part of. This study examines in depth the thermoregulatory properties of eighteen knitted fabrics used in polo shirts and T-shirts, which function as thermal underwear, standard workwear compliant with various regulations, or as base layers in PPC systems. Most of the fabrics specifically engineered for heat protection demonstrated superior air permeability (ranging from 700 to 1200 mm/s) and efficient moisture management (OMMC 0.5–0.7). Their drying time varied between 12 and 18 min, comparable to most commodity fibre blend fabrics investigated. Generally, the heat-protective fabrics were heavier and exhibited greater thermal and vapour resistance. However, despite minor variations in predicted thermal comfort, seventeen of the fabrics were classified in the same cluster. These findings offer valuable insights into the thermal and moisture management properties of knitted fabrics with various levels of protection, and the correlations found between their thermoregulatory and physical properties, such as mass and thickness, provide guidance for the development of innovative knitted materials for workwear that enhance wearer comfort. Full article
Show Figures

Figure 1

14 pages, 3160 KiB  
Article
Influence of Fabric Characteristics on Mechanical Performances of Protective Gloves
by Ali Afzal, Shahbaz Ahmad, Sheraz Ahmad, Muhammad Irfan, Liliana Indrie, Faheem Ahmad and Mariana Rațiu
Coatings 2025, 15(3), 285; https://doi.org/10.3390/coatings15030285 - 28 Feb 2025
Viewed by 819
Abstract
In this study, high-performance gloves were developed from core–sheath yarn. Different materials were used in the core, while Kevlar fibers were used in the sheath. The filaments used in the core included glass, ultra-high-molecular-weight polyethylene (UHMWPE), and stainless steel filaments with 100D and [...] Read more.
In this study, high-performance gloves were developed from core–sheath yarn. Different materials were used in the core, while Kevlar fibers were used in the sheath. The filaments used in the core included glass, ultra-high-molecular-weight polyethylene (UHMWPE), and stainless steel filaments with 100D and 200D linear densities. Seamless gloves were developed from these yarns with varying characteristics to observe their effect on the performance of seamless gloves. The factors examined were the areal density (GSM) of the gloves, linear density of sheath fibers, core material, and plied structure. The mechanical behavior of the gloves was evaluated by different tests such as blade cut resistance, coupe cut resistance, tear resistance, and puncture resistance. The results demonstrated that the sheath fiber characteristics, core material type, yarn’s plied structure, and fabric’s areal density are statistically significant factors affecting the properties of gloves in relation to mechanical risk. The selection of appropriate levels of these parameters is crucial for better achievement of desired properties in workwear protection applications. Full article
Show Figures

Figure 1

19 pages, 6409 KiB  
Article
Material Textile Design as a Trigger for Transdisciplinary Collaboration: Coating Bio-Based Textiles Using Waste from the Wood Industry
by Jimena Alarcón Castro, Riccardo Balbo, Carla Joana Silva, Catalina Fuenzalida Fernández and Florencia Alarcón Carrasco
Coatings 2025, 15(2), 216; https://doi.org/10.3390/coatings15020216 - 11 Feb 2025
Cited by 2 | Viewed by 1410
Abstract
Waste production is a worldwide concern due to its adverse impact on the environment, as well as on the health of living beings. Sustainable development states the urgent need to implement actions to gradually replace fossil resources, including the use of renewable raw [...] Read more.
Waste production is a worldwide concern due to its adverse impact on the environment, as well as on the health of living beings. Sustainable development states the urgent need to implement actions to gradually replace fossil resources, including the use of renewable raw materials such as residues and secondary raw materials from other industries as a promising alternative to replace fossil resources. This research explores an approach focused on the design of renewable materials by developing a bio-based textile coating with the use of sawdust from radiata pine, which is the result of industrial wood transformation processes. The methodology adopted a transdisciplinary approach, integrating knowledge from design, engineering, and sociology disciplines. A perceived sawdust quality study was carried out in its original format, while two different coated textile substrates were developed, using knife-over-roller and spray coating processes, which were evaluated from user acceptance and functional performance points of views. Finally, a clothing prototype for workwear, using the bio-based coatings, was developed, employing a mono-material design concept (i.e., using the same material in all its forms). The results obtained from users and laboratory studies favour the knife-over-roller coating and the removable clothing design, which provides improved usability performance. The obtained conclusions highlight that transdisciplinary collaboration is essential to address complex challenges in the development of solutions, placing the design of material as a necessary prior action in the design process of final products. Full article
(This article belongs to the Special Issue Advances in Coated Fabrics and Textiles)
Show Figures

Figure 1

22 pages, 3085 KiB  
Article
Detection of Human Traffic Controllers Wearing Construction Workwear via Synthetic Data Generation
by Seunghyun Baik and Euntai Kim
Sensors 2025, 25(3), 816; https://doi.org/10.3390/s25030816 - 29 Jan 2025
Cited by 1 | Viewed by 855
Abstract
Developing Level 3 or higher autonomous vehicles requires the ability to follow human traffic controllers in situations where regular traffic signals are unavailable, such as during construction. However, detecting human traffic controllers at construction sites is challenging due to the lack of dedicated [...] Read more.
Developing Level 3 or higher autonomous vehicles requires the ability to follow human traffic controllers in situations where regular traffic signals are unavailable, such as during construction. However, detecting human traffic controllers at construction sites is challenging due to the lack of dedicated datasets and variations in their appearance. This paper proposes a method for detecting human traffic controllers by generating synthetic images with diffusion models. We introduce a color-boosting technique to enhance image diversity and employ a cut-and-paste mechanism for seamless integration into realistic road scenes. We generate 19,840 synthetic images, combined with 600 real-world images, to train a YOLOv7 model. The trained model achieves an AP50 score of 73.9%, improving by 32.9% over the baseline. The HTC600 dataset used in our experiments is publicly available to support autonomous driving research. Full article
Show Figures

Figure 1

19 pages, 2626 KiB  
Article
Reliability and Accuracy of Standard Reference Procedures for Measurements of Trunk and Arm Postures in Ergonomics
by Carl M. Lind, Ida-Märta Rhen and Mikael Forsman
Bioengineering 2025, 12(1), 50; https://doi.org/10.3390/bioengineering12010050 - 9 Jan 2025
Viewed by 1604
Abstract
Adequate reference procedures for obtaining the reference zero-angle position are important for precise and accurate posture measurements, but few studies have systematically investigated these. A limited number of previous studies suggest differences in accuracy between procedures, with some causing an underestimation of the [...] Read more.
Adequate reference procedures for obtaining the reference zero-angle position are important for precise and accurate posture measurements, but few studies have systematically investigated these. A limited number of previous studies suggest differences in accuracy between procedures, with some causing an underestimation of the true arm elevation angle when sensors are taped to the skin. The reliability of commonly used reference procedures for the measurement of the trunk posture is also not well explored, and alternative procedures may improve precision. Based on this identified gap, this study evaluated the test–retest reliability of the N-position (I-pose), i.e., the standard procedure for recording trunk postures, and compared it with two new alternative procedures. Additionally, the accuracy of the N-position for measuring arm elevation angles was compared with one alternative procedure. A total of 40 participants (22 women and 18 men) aged 26–70 years performed the reference procedures in a laboratory setting. Postures were recorded using a smart workwear system equipped with two inertial measurement units (IMUs) embedded in pockets within the workwear. For the trunk posture, the N-position showed a slight lack of test–retest reliability, while one of the alternative procedures demonstrated better test–retest reliability. For the arm posture, the N-position, which does not include lateral trunk inclination, resulted in a substantial underestimation of the arm elevation angle of approximately 15°, which is a novel finding. In contrast, the posture involving trunk inclination closely matched the targeted reference, with a difference of less than 2°. This study underscores the importance of selecting appropriate reference procedures to ensure precise and accurate posture measurements. Full article
(This article belongs to the Special Issue Biomechanics and Motion Analysis)
Show Figures

Figure 1

16 pages, 6066 KiB  
Article
Simulation of Ozone Distribution in an Innovative Drying and Sanitising Cabinet Chamber
by Damian Cebulski and Piotr Cyklis
Energies 2024, 17(22), 5803; https://doi.org/10.3390/en17225803 - 20 Nov 2024
Viewed by 1018
Abstract
Common designs of workwear drying units require not only energy efficiency but also effective disinfection. One possibility of sanitising clothes during drying is to use the ozone generated inside the drying chamber. This process requires precise management of airflow and a uniform distribution [...] Read more.
Common designs of workwear drying units require not only energy efficiency but also effective disinfection. One possibility of sanitising clothes during drying is to use the ozone generated inside the drying chamber. This process requires precise management of airflow and a uniform distribution of ozone in the chamber. Therefore, optimising the shape of the drying chamber must include not only the correct flow of drying air but also the correct distribution of ozone. This paper addresses the difficult problem of modelling the flow of sanitising ozone in an innovative drying chamber. The innovative shape of the chamber is shown in this article. Due to the low percentage of ozone in the air (up to 10 ppm), CFD simulation models of the usual mixture type are too inaccurate; therefore, special models have to be used. Therefore, this paper presents an experimentally verified methodology to simulate ozone flow in an innovative drying and sanitising cabinet using two methods: Discrete Phase Model (DPM) and Species Transport (ST). The DPM method uses a Euler–Lagrange approach to qualitatively assess the spread of ozone particles, treated with a description of the movement of the particles and not as a continuous gaseous substance. On the other hand, this already allows the verification of ozone concentrations, with an appropriate conversion of the measured quantities. The ANSYS/FLUENT 2023R1 program was used for the simulations after careful selection of the mesh, closing models, boundary conditions, etc. Simulations made it possible to analyse the distribution of ozone in the workspace and assess the effectiveness of the sanitisation process. The results of the simulations were verified on the basis of empirical tests, which showed the correctness of the model and the correct distribution of the sanitising ozone in the entire volume of the drying chamber in the innovative drying–sanitising chamber. The complete simulation of the air and ozone distribution using the presented models allowed for the optimisation of the opening and shapes, which contributed to improving the energy efficiency of the unit and increasing the efficiency of the sanitisation processes, making the described methodology very effective for optimising the chambers of various types of dryers. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

18 pages, 3653 KiB  
Article
Manufacturing and Properties of Various Ceramic-Embedded Composite Fabrics for Protective Clothing in Gas and Oil Industries Part II: Thermal Wear Comfort via Thermal Manikin
by Hyun-Ah Kim
Coatings 2023, 13(10), 1778; https://doi.org/10.3390/coatings13101778 - 16 Oct 2023
Viewed by 2226
Abstract
Thermal wear comfort for workwear clothing plays a vital role in maintaining comfortable water- and moisture-vapor-permeable properties while wearing clothing. In particular, thermal wear comfort measured using a thermal manikin is required in the protective workwear clothing market because their use provides objective [...] Read more.
Thermal wear comfort for workwear clothing plays a vital role in maintaining comfortable water- and moisture-vapor-permeable properties while wearing clothing. In particular, thermal wear comfort measured using a thermal manikin is required in the protective workwear clothing market because their use provides objective data concerning the actual wearing performance of the clothing. This paper investigated the thermal wear comfort properties of various ceramic-embedded composite fabrics for workwear clothing worn in gas and oil industries produced from new schemes. The thermal insulation rate (Clo value) of Al2O3(Aluminum oxide)/graphite, ZnO(zinc oxide)/ZrC(zirconium carbide) and ZnO/ATO(antimony tin oxide)-embedded clothing was greater (25.5, 24.7 and 16.9%, respectively) than that of regular clothing (control), which was in accordance with the results (15.0, 13.8 and 11.3% higher, respectively) of the heat retention rate (I) of fabric specimens. It revealed that ZnO- and ATO-embedded yarns mixed with ZrC particles enhanced thermal wear comfort and had superior anti-static and UV-protective properties. Considering UV-protective and anti-static protective clothing worn in gas and oil industries and cold weather regions, it can be concluded that ZnO/ZrC-incorporated fabric is suitable because it showed superior thermal wear comfort with excellent UV-protective and acceptable anti-static properties. Meanwhile, assuming high functional performance for protective clothing worn in winter and factories, ZnO/ATO-incorporated fabric is pertinent to fabricating protective clothing for cold weather regions. Full article
Show Figures

Figure 1

16 pages, 2679 KiB  
Article
The Effect of Corrective and Encouraging Accumulated Vibrotactile Feedback on Work Technique Training and Motivation—A Pilot Study
by Charlotta Langenskiöld, Annelie Berg and Liyun Yang
Int. J. Environ. Res. Public Health 2023, 20(18), 6741; https://doi.org/10.3390/ijerph20186741 - 11 Sep 2023
Cited by 3 | Viewed by 1526
Abstract
Encouraging feedback is shown to increase motivation and facilitate learning in different settings, though there is a lack of knowledge of applying it in work technique training. This pilot study aimed to evaluate two accumulated vibrotactile feedback strategies for work technique training using [...] Read more.
Encouraging feedback is shown to increase motivation and facilitate learning in different settings, though there is a lack of knowledge of applying it in work technique training. This pilot study aimed to evaluate two accumulated vibrotactile feedback strategies for work technique training using a smart workwear system. Eight women and two men participated in the study. They were divided into two groups, receiving the corrective feedback or the combined corrective and encouraging feedback while doing simulated manual handling tasks in a lab environment. Questionnaires and semi-structured interviews were used to evaluate the motivation, learning, and user experiences. In this small sample size, we saw that both groups significantly improved their work technique of upper arm and trunk postures, and no significant difference between groups was seen. In addition, both groups reported increased ergonomic awareness, were satisfied with the feedback training, and considered the system useful. However, the combined feedback group had slightly lower ratings of motivation and more negative experiences of the corrective feedback itself compared to the corrective feedback group. Both groups had positive experiences with the encouraging feedback. Future research should consider investigating the long-term learning effects of using solely corrective or encouraging accumulated feedback for work technique training with such systems. Full article
Show Figures

Figure 1

18 pages, 6805 KiB  
Article
Manufacturing and Properties of Various Ceramic Embedded Composite Fabrics for Protective Clothing in Gas and Oil Industries Part I: Anti-Static and UV Protection with Thermal Radiation
by Hyunah Kim
Coatings 2023, 13(9), 1481; https://doi.org/10.3390/coatings13091481 - 22 Aug 2023
Cited by 5 | Viewed by 3398
Abstract
Protective clothing in gas and oil industries requires high-performance characteristics, with superior anti-static and ultraviolet (UV) protection and good thermal wear comfort in cold weather regions. This study examined the manufacturing and properties of various ceramic-embedded composite fabrics made from a new scheme [...] Read more.
Protective clothing in gas and oil industries requires high-performance characteristics, with superior anti-static and ultraviolet (UV) protection and good thermal wear comfort in cold weather regions. This study examined the manufacturing and properties of various ceramic-embedded composite fabrics made from a new scheme (not a coating method) for protective clothing in the gas and oil industries. Therefore, sheath–core yarn specimens embedded with various ceramics, such as aluminum oxide (Al2O3)–graphite, zinc oxide–zirconium (ZnO–ZrC), and zinc oxide–antimony tin oxide (ZnO–ATO) were produced using a bi-component melt spinning machine, which is a novel method that was not tried before. Fabric specimens were also made from these ceramic-embedded sheath–core yarn specimens. UV-protection and anti-static properties of the ceramic-embedded composite specimen were compared with the thermal radiation and far-infrared (FIR) characteristics. The UV-protection factor (UPF) was measured according to the AS/NZ 4399 (1996) standard. ATLAS measuring equipment was used to analyze five duplicate specimens (4 × 8 cm). An anti-static assessment was also conducted using the JIS L 1094 standard method. A light heat emission apparatus was used to assess thermal radiation. A 10 × 10 cm specimen was prepared, and five duplicate assessments were conducted. Statistical analysis (F-test) was performed to verify the statistical significance of the experimental data with a 99% confidence limit. The ZnO–ATO-embedded composite fabric exhibited greater UV protection than the Al2O3–graphite-embedded and regular (control) specimen, indicating the excellent UV-protection property of the ZnO. In addition, the ZnO–ATO-embedded composite specimen exhibited excellent anti-static properties with lower rub-static voltage than the control fabric, which was attributed to the better electrical conductivity of ATO particles. In particular, the ZnO–ZrC-embedded composite specimen showed superior thermal radiation with excellent UPF and relatively good anti-static characteristics. Based on the high-performance characteristics of protective clothing worn in gas and oil industries, ZnO–ATO-embedded composite fabric has practical use for fabricating workwear protective clothing. In addition, considering protective clothing suitable for cold weather, ZnO–ZrC-embedded composite fabric is useful for protective clothing in cold weather regions. Full article
Show Figures

Figure 1

53 pages, 4751 KiB  
Review
Mobile Colistin Resistance (mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies
by Madubuike Umunna Anyanwu, Ishmael Festus Jaja, Charles Odilichukwu R. Okpala, Emmanuel Okechukwu Njoga, Nnenna Audrey Okafor and James Wabwire Oguttu
Antibiotics 2023, 12(7), 1117; https://doi.org/10.3390/antibiotics12071117 - 28 Jun 2023
Cited by 25 | Viewed by 5304
Abstract
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria [...] Read more.
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs. Full article
Show Figures

Figure 1

16 pages, 3714 KiB  
Article
Evaluation of In-Cloth versus On-Skin Sensors for Measuring Trunk and Upper Arm Postures and Movements
by Damien Hoareau, Xuelong Fan, Farhad Abtahi and Liyun Yang
Sensors 2023, 23(8), 3969; https://doi.org/10.3390/s23083969 - 13 Apr 2023
Cited by 6 | Viewed by 2393
Abstract
Smart workwear systems with embedded inertial measurement unit sensors are developed for convenient ergonomic risk assessment of occupational activities. However, its measurement accuracy can be affected by potential cloth artifacts, which have not been previously assessed. Therefore, it is crucial to evaluate the [...] Read more.
Smart workwear systems with embedded inertial measurement unit sensors are developed for convenient ergonomic risk assessment of occupational activities. However, its measurement accuracy can be affected by potential cloth artifacts, which have not been previously assessed. Therefore, it is crucial to evaluate the accuracy of sensors placed in the workwear systems for research and practice purposes. This study aimed to compare in-cloth and on-skin sensors for assessing upper arms and trunk postures and movements, with the on-skin sensors as the reference. Five simulated work tasks were performed by twelve subjects (seven women and five men). Results showed that the mean (±SD) absolute cloth–skin sensor differences of the median dominant arm elevation angle ranged between 1.2° (±1.4) and 4.1° (±3.5). For the median trunk flexion angle, the mean absolute cloth–skin sensor differences ranged between 2.7° (±1.7) and 3.7° (±3.9). Larger errors were observed for the 90th and 95th percentiles of inclination angles and inclination velocities. The performance depended on the tasks and was affected by individual factors, such as the fit of the clothes. Potential error compensation algorithms need to be investigated in future work. In conclusion, in-cloth sensors showed acceptable accuracy for measuring upper arm and trunk postures and movements on a group level. Considering the balance of accuracy, comfort, and usability, such a system can potentially be a practical tool for ergonomic assessment for researchers and practitioners. Full article
Show Figures

Figure 1

11 pages, 4945 KiB  
Article
The Detection of Foreign Items in Laundry Industry by Dual-Energy X-ray Transmission—Advantages and Limits
by Christine Bauer, Rebecca Wagner and Johannes Leisner
Sensors 2022, 22(21), 8248; https://doi.org/10.3390/s22218248 - 27 Oct 2022
Cited by 1 | Viewed by 2415
Abstract
Firefighters, paramedics, nursing staff, and other occupational groups are in constant need of fast and proper cleaning of their professional workwear, not only during a pandemic. Thus, laundry technology needs to become more efficient and automated. Unfortunately, some steps of the cleaning process, [...] Read more.
Firefighters, paramedics, nursing staff, and other occupational groups are in constant need of fast and proper cleaning of their professional workwear, not only during a pandemic. Thus, laundry technology needs to become more efficient and automated. Unfortunately, some steps of the cleaning process, such as finding and removing foreign items from pockets or belts, are still completed manually. This is not just time-consuming but potentially dangerous for the workers due to the hazardous nature of items such as scissors, scalpels, or syringes. Additionally, some items may damage the garments by staining or harm the laundry machines, causing malfunctions and process failure. On the one hand, these foreign items are often hidden inside the clothes, making detection very challenging with conventional superficial sensors. On the other hand, these items can be diverse and cannot be detected by metal detectors alone. X-ray transmission has proven to be a powerful tool for detecting items inside of objects. The dual-energy approach (DE-XRT) even allows obtaining quantitative information about the chemical composition of the measured materials. In this study, working garments were accompanied and filled with realistic foreign items. The potential of DE-XRT to detect those items was successfully shown. Full article
(This article belongs to the Special Issue I3S 2022 Selected Papers)
Show Figures

Figure 1

21 pages, 8458 KiB  
Article
Biobased Waterborne Polyurethane-Ureas Modified with POSS-OH for Fluorine-Free Hydrophobic Textile Coatings
by Amado Lacruz, Mireia Salvador, Miren Blanco, Karmele Vidal, Amaia M. Goitandia, Lenka Martinková, Martin Kyselka and Antxon Martínez de Ilarduya
Polymers 2021, 13(20), 3526; https://doi.org/10.3390/polym13203526 - 13 Oct 2021
Cited by 12 | Viewed by 6247
Abstract
Waterborne polyurethane-urea dispersions (WPUD), which are based on fully biobased amorphous polyester polyol and isophorone diisocyanate (IPDI), have been successfully synthesized obtaining a finishing agent that provides textiles with an enhanced hydrophobicity and water column. Grafting of trans-cyclohexanediol isobutyl POSS (POSS-OH) to the [...] Read more.
Waterborne polyurethane-urea dispersions (WPUD), which are based on fully biobased amorphous polyester polyol and isophorone diisocyanate (IPDI), have been successfully synthesized obtaining a finishing agent that provides textiles with an enhanced hydrophobicity and water column. Grafting of trans-cyclohexanediol isobutyl POSS (POSS-OH) to the biobased polymer backbone has also been investigated for the first time and its properties compared to a standard chain extender, 1,3-propanediol (PDO). The chemical structure of WPUD has been characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The thermal properties have been evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Mechanical properties have been studied by tensile stress–strain analysis. Moreover, the particle size, particle size distribution (PSD), and stability of developed waterborne dispersions have been assessed by dynamic light scattering (DLS), Z-potential, storage aging tests, and accelerated aging tests by analytical centrifuge (LUM). Subsequently, selected fabrics have been face-coated by the WPUD using the knife coating method and their properties have been assessed by measuring the water contact angle (WCA), oil contact angle (OCA), water column, fabric stiffness, air permeability, and water vapor resistance (breathability). Finally, the surface morphology and elemental composition of uncoated and coated fabrics have been studied by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. All of the synthesized polyurethane-ureas provided the coated substrates with a remarkable hydrophobicity and water column, resulting in a more sustainable alternative to waterproof coatings based on fluoropolymers, such as PTFE. Grafting POSS-OH to the polymeric backbone has led to textile coatings with enhanced hydrophobicity, maintaining thermal, mechanical, and water column properties, giving rise to multifunctional coatings that are highly demanded in protective workwear and technical textiles. Full article
(This article belongs to the Special Issue State-of-the-Art Polymeric Surfaces and Coatings)
Show Figures

Graphical abstract

Back to TopTop