Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = wood anatomical images

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9589 KiB  
Article
An Interpretable Approach to Wood Species Identification Based on Anatomical Features in Microscopic Images
by Lei Liu, Jian Qiu, Yong Cao, Qiying Li, Songping Qian and Yongke Sun
Forests 2025, 16(8), 1328; https://doi.org/10.3390/f16081328 - 15 Aug 2025
Viewed by 210
Abstract
Wood recognition plays a vital role in the trade and conservation of rare wood species. However, the computer vision-based methods classify the wood species by the features that are not used within the framework of wood anatomy, leading to results that are not [...] Read more.
Wood recognition plays a vital role in the trade and conservation of rare wood species. However, the computer vision-based methods classify the wood species by the features that are not used within the framework of wood anatomy, leading to results that are not interpretable. This study proposes a novel wood recognition method that detects anatomical structures such as vessels, wood rays, and parenchyma in wood microscopic images. These structures are quantified and mapped to the International Association of Wood Anatomists (IAWA) features, which are then used for species classification. Experimental results on 32 wood species demonstrate the effectiveness of the approach, achieving an accuracy of 94.1%, precision of 92.6%, recall of 93.3%, and an F1-score of 92.7%. In addition to its recognition performance, the method may offer interpretable IAWA-based classification criteria in wood science. These findings suggest that the method could serve as an anatomically interpretable framework for wood species identification, contributing to the regulation of the rare timber trade and supporting the conservation of endangered tree species. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

23 pages, 21351 KiB  
Article
Mineralogy of Petrified Wood from Costa Rica
by George E. Mustoe, Guillermo E. Alvarado and Armando J. Palacios
Minerals 2025, 15(5), 497; https://doi.org/10.3390/min15050497 - 7 May 2025
Viewed by 743
Abstract
Costa Rica is located along the narrow isthmus that connected South America to North America beginning in the mid-Cenozoic. The exchange of vertebrates between the two continents has received considerable study, but paleobotanical aspects are less known. The Pacific coast “ring of fire” [...] Read more.
Costa Rica is located along the narrow isthmus that connected South America to North America beginning in the mid-Cenozoic. The exchange of vertebrates between the two continents has received considerable study, but paleobotanical aspects are less known. The Pacific coast “ring of fire” volcanoes produced abundant hyaloclastic material that provided a source of silica for wood petrifaction, and the tropical forests contained diverse taxa. This combination resulted in the preservation of petrified wood at many sites in Costa Rica. Fossil wood ranges in age from Lower Miocene to Middle Pleistocene, but Miocene specimens are the most common. Our research involved the study of 54 specimens, with the goal of determining their mineral compositions and interpreting the fossilization processes. Data came from thin-section optical microscopy, SEM images, and X-ray diffraction. Two specimens were found to be mineralized with calcite, but most of the woods contained crystalline quartz and/or opal-CT. The preservation of anatomical detail is highly variable. Some specimens show evidence of decay or structural deformation that preceded mineralization, but other woods have well-preserved cell structures. This preliminary study demonstrates the abundance and botanical diversity of fossil wood in Costa Rica, hopefully opening a door into future studies that will consider the taxonomy and evolutionary aspects of the country’s fossil forests. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Fossils)
Show Figures

Graphical abstract

16 pages, 13219 KiB  
Article
Three-Dimensional Visualization of Major Anatomical Structural Features in Softwood
by Meng Ye, Shichao Zhao, Wanzhao Li and Jiangtao Shi
Forests 2025, 16(5), 710; https://doi.org/10.3390/f16050710 - 22 Apr 2025
Viewed by 578
Abstract
Wood displays three-dimensional characteristics at both macroscopic and microscopic scales. Accurately reconstructing its 3D structure is vital for a deeper understanding of the relationship between its anatomical characteristics and its physical and mechanical properties. This study aims to apply X-ray micro-computed tomography (XμCT) [...] Read more.
Wood displays three-dimensional characteristics at both macroscopic and microscopic scales. Accurately reconstructing its 3D structure is vital for a deeper understanding of the relationship between its anatomical characteristics and its physical and mechanical properties. This study aims to apply X-ray micro-computed tomography (XμCT) for the high-resolution, non-destructive visualization and quantification of softwood anatomical features. Six typical softwood species—Picea asperata, Cupressus funebris, Pinus koraiensis, Pinus massoniana, Cedrus deodara, and Pseudotsuga menziesii—were selected to represent a range of structural characteristics. The results show that a scanning resolution of 1–2 μm is suitable for investigating the transition from earlywood to latewood and resin canals, while a resolution of 0.5 μm is required for finer structures such as bordered pits, ray tracheids, and cross-field pits. In Pinus koraiensis, a direct 3D connection between radial and axial resin canals was observed, forming an interconnected resin network. In contrast, wood rays were found to be distributed near the surface of axial resin canals but without forming interconnected structures. The three-dimensional reconstruction of bordered pit pairs in Pinus massoniana and Picea asperata clearly revealed interspecific differences in pit morphology, distribution, and volume. The average surface area and volume of bordered pit pairs in Pinus massoniana were 1151.60 μm2 and 1715.35 μm3, respectively, compared to 290.43 μm2 and 311.87 μm3 in Picea asperata. Furthermore, XμCT imaging effectively captured the morphology and spatial distribution of cross-field pits across species, demonstrating its advantage in comprehensive anatomical deconstruction. These findings highlight the potential of XμCT as a powerful tool for 3D analysis of wood anatomy, providing deeper insight into the structural complexity and interconnectivity of wood. Full article
Show Figures

Figure 1

21 pages, 7356 KiB  
Article
Surface Morphology and Chemical Changes of Maple and Beech Cut Through by CO2 Laser Under Different Angles Relative to the Wood Grain
by Lidia Gurau, Ana-Maria Angelescu and Maria Cristina Timar
Forests 2024, 15(10), 1767; https://doi.org/10.3390/f15101767 - 8 Oct 2024
Cited by 3 | Viewed by 995
Abstract
This paper examined the surface morphology of maple and beech cut through by CO2 laser under different angles relative to the wood grain: 0°, 15°, 30°, 45°, 60°, 75°, and 90°. In the analysis, stylus measurements, stereo-microscopic images, and chemical changes were [...] Read more.
This paper examined the surface morphology of maple and beech cut through by CO2 laser under different angles relative to the wood grain: 0°, 15°, 30°, 45°, 60°, 75°, and 90°. In the analysis, stylus measurements, stereo-microscopic images, and chemical changes were considered. Laser uncovers more wood anatomical details, with enhanced clarity, when the cutting transitions from along the grain to across the grain. This is particularly noticeable in the earlywood and is more pronounced in maple compared to beech. The first tissue of earlywood was deeply ablated by the laser, leading to a wavy anatomical pattern, which is more visible for higher angles of laser cutting in relation to the wood grain. The anatomical structure of beech was more affected by carbonization in comparison to maple and had a significantly higher core roughness, Rk. For both species, the worst surface roughness occurred when cutting at 15°. In maple, the laser caused more degradation of the polysaccharides compared to beech, and this impact was particularly noticeable parallel to the grain rather than at a 90° angle. The degradation of hemicelluloses occurred in parallel with more advanced cellulose degradation for beech compared to maple and for cutting along the grain compared to across the grain. Structural changes in lignin, such as condensation processes, were observed for both species. Full article
(This article belongs to the Special Issue Wood Treatments and Modification Technologies—2nd Edition)
Show Figures

Figure 1

17 pages, 12952 KiB  
Article
Assessment of Changes in Selected Features of Pine and Birch Wood after Impregnation with Graphene Oxide
by Izabela Betlej, Sławomir Borysiak, Katarzyna Rybak, Barbara Nasiłowska, Aneta Bombalska, Zygmunt Mierczyk, Karolina Lipska, Piotr Borysiuk, Bogusław Andres, Małgorzata Nowacka and Piotr Boruszewski
Materials 2024, 17(18), 4464; https://doi.org/10.3390/ma17184464 - 11 Sep 2024
Cited by 1 | Viewed by 1037
Abstract
In this work, pine and birch wood were modified by graphene oxide using a single vacuum impregnation method. The research results indicate that the impregnation of wood with graphene oxide increases the crystallinity of cellulose in both pine and birch wood, and the [...] Read more.
In this work, pine and birch wood were modified by graphene oxide using a single vacuum impregnation method. The research results indicate that the impregnation of wood with graphene oxide increases the crystallinity of cellulose in both pine and birch wood, and the increase in crystallinity observed in the case of birch was more significant than in the case of pine. FT-IR analyses of pine samples impregnated with graphene oxide showed changes in intensity in the absorption bands of 400–600, 700–1500 cm−1, and 3200–3500 cm−1 and a peak separation of 1102 cm−1, which may indicate new C-O-C connections. In the case of birch, only some differences were noticed related to the vibrations of the OH group. The proposed modification also affects changes in the color of the wood surface, with earlywood containing more graphene oxide than latewood. Analysis of scanning electron microscope images revealed that graphene oxide adheres flat to the cell wall. Considering the differences in the anatomical structure of both wood species, the research showed a statistically significant difference in water absorption and retention of graphene oxide in wood cells. Graphene oxide does not block the flow of water in the wood, as evidenced by the absorbability of the working liquid at the level of 580–602 kg/m3, which corresponds to the value of pure water absorption by wood in the impregnation method using a single negative pressure. In this case, higher graphene oxide retention values were obtained for pine wood. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

14 pages, 11162 KiB  
Article
Response of Tracheid Structure Characteristics and Lignin Distribution of Taxodium Hybrid Zhongshanshan to External Stress
by Lu Yong, Yujin Bi, Jiangtao Shi, Xinzhou Wang and Biao Pan
Forests 2022, 13(11), 1792; https://doi.org/10.3390/f13111792 - 28 Oct 2022
Cited by 5 | Viewed by 2523
Abstract
The Taxodium hybrid Zhongshanshan fast-growing species is susceptible to environment and gravity to form reaction wood. In this study, individual growth rings of reaction wood are used as subjects, and an individual growth ring is divided into three zones: compression zone (CZ), lateral [...] Read more.
The Taxodium hybrid Zhongshanshan fast-growing species is susceptible to environment and gravity to form reaction wood. In this study, individual growth rings of reaction wood are used as subjects, and an individual growth ring is divided into three zones: compression zone (CZ), lateral zone (LZ), and opposite zone (OZ). The microanatomical structure and chemical properties of the tracheids in CZ, LZ, and OZ forms by the inclined or bent growth of T. Zhongshanshan are comparatively analyzed by using optical microscopy, scanning electron microscope, laser confocal microscopy, and Raman imaging techniques. In CZ, the length and diameter of compression wood (CW) tracheids decreased, and the shape of cross-sections became rounded as compared to the OZ and LZ tracheids. More notably, threaded fissures appeared on the cell wall of tracheids, and the thickness of the cell wall increased in CW. The analysis of tracheids’ cell wall structure showed that CW tracheids had a complete outer secondary wall middle (S2L) layer, but had no secondary wall inner (S3) layer. In the transition zone (TA) between CW and normal early wood, tracheids were divided into compressed and normal tracheids. Despite the compressed tracheids having a similar cell morphology to normal tracheids, they had a thin secondary wall S2L layer. Tracheids in LZ had a thin S2L layer only at the angle of the cell. No S2L layer was seen in the cell wall of OZ and CZ late wood tracheids. It can be concluded that the response of lignin deposition location to external stress was faster than the change in cell morphology. The above results help provide the theoretical basis for the response mechanism of T. Zhongshanshan reaction wood anatomical structures to the external environment and has important theoretical value for understanding its characteristics and its rational and efficient usage. Full article
Show Figures

Figure 1

7 pages, 2926 KiB  
Data Descriptor
Tropical Wood Species Recognition: A Dataset of Macroscopic Images
by Daniel Alejandro Cano Saenz, Carlos Felipe Ordoñez Urbano, Holman Raul Gaitan Mesa and Rubiel Vargas-Cañas
Data 2022, 7(8), 111; https://doi.org/10.3390/data7080111 - 11 Aug 2022
Cited by 3 | Viewed by 3339
Abstract
Forests are of incalculable value due to the ecosystem services they provide to humanity such as carbon storage, climate regulation and participation in the hydrological cycle. The threat to forests grows as the population increases and the activities that are carried out in [...] Read more.
Forests are of incalculable value due to the ecosystem services they provide to humanity such as carbon storage, climate regulation and participation in the hydrological cycle. The threat to forests grows as the population increases and the activities that are carried out in it, such as: cattle rearing, illegal trafficking, deforestation and harvesting. Moreover, the environmental authorities do not have sufficient capacity to exercise strict control over wood production due to the vast variety of timber species within the countries, the lack of tools to verify timber species in the supply chain and the limited available and labelled digital data of the forest species. This paper presents a set of digital macroscopic images of eleven tropical forest species, which can be used as support at checkpoints, to carry out studies and research based on macroscopic analysis of cross-sectional images of tree species such as: dendrology, forestry, as well as algorithms of artificial intelligence. Images were acquired in wood warehouses with a digital magnifying glass following a protocol used by the Colombian Ministry of Environment, as well as the USA Forest Services and the International Association of Wood Anatomists. The dataset contains more than 8000 images with resolution of 640 × 480 pixels which includes 3.9 microns per pixel, and an area of (2.5 × 1.9) square millimeters where the anatomical features are exposed. The dataset presents great usability for academics and researchers in the forestry sector, wood anatomists and personnel who work with computational models, without neglecting forest surveillance institutions such as regional autonomous corporations and the Ministry of the Environment. Full article
Show Figures

Figure 1

17 pages, 4949 KiB  
Article
Anatomical Features and Its Radial Variations among Different Catalpa bungei Clones
by Yamei Liu, Liang Zhou, Yingqi Zhu and Shengquan Liu
Forests 2020, 11(8), 824; https://doi.org/10.3390/f11080824 - 29 Jul 2020
Cited by 16 | Viewed by 3560
Abstract
Research highlights: Annual wood anatomy (xylem) aids our understanding of mature wood formation and the growth strategies of trees. Background and Objectives: Catalpa bungei is an important native species in China that produces excellent quality wood. Herein, we clarified the effects of the [...] Read more.
Research highlights: Annual wood anatomy (xylem) aids our understanding of mature wood formation and the growth strategies of trees. Background and Objectives: Catalpa bungei is an important native species in China that produces excellent quality wood. Herein, we clarified the effects of the genetic origin and cambial age on the anatomical characteristics of C. bungei wood. Materials and Methods: Six new 13-year-old C. bungei clones: ‘1-1’ (n trees = 3), ‘1-3’ (n trees = 3), ‘2-7’ (n trees = 3), ‘2-8’ (n trees = 3), ‘8-1’ (n trees = 4), and ‘9-1’ (n trees = 3) were removed for study from a plantation in Tianshui City, Gansu province, China. Xylem features were observed and the anatomical variables were manually measured via image analysis on (macro- micro-, and ultra-) features cut from radial increments of earlywood and latewood sampled at breast height. Results: Between the age of 1 and 2 years, wood was diffuse-porous; between the age of 3 and 9 years, wood was semi-ring-porous; and between the age of 10 and 13 years, wood was ring-porous. The effect of clones on anatomical characteristics was significant except for the microfibril angle in latewood and ring width. The transition between juvenile and mature wood was between 7 and 8 years based on patterns of radial variation in fiber length (earlywood) and microfibril angle. From the pith to the bark, fiber length, double wall thickness, fiber wall: lumen ratio, vessel diameter in earlywood, proportion of vessel in earlywood, and axial parenchyma in latewood increased significantly, whereas ring width, earlywood vessels, and the proportion of fiber decreased significantly. In addition, other features, such as vessel length, microfibril angle, and ray proportion, did not differ significantly from the pith to the bark. Conclusions: Breeding program must consider both clone and cambial age to improve the economic profitability of wood production. Full article
(This article belongs to the Special Issue Wood Structure and Properties)
Show Figures

Figure 1

14 pages, 1983 KiB  
Article
Groundwater Level Fluctuations Affect the Mortality of Black Alder (Alnus glutinosa Gaertn.)
by Mirela Tulik, Adam Grochowina, Joanna Jura-Morawiec and Szymon Bijak
Forests 2020, 11(2), 134; https://doi.org/10.3390/f11020134 - 22 Jan 2020
Cited by 16 | Viewed by 2881
Abstract
Since the 1990s, a decline of riparian black alder (Alnus glutinosa Gaertn.) has been observed over Europe. The fungus-like eukaryotic pathogen Phytophthora alni subsp. alni is thought to be a causal agent of this process; however, abiotic factors may also be [...] Read more.
Since the 1990s, a decline of riparian black alder (Alnus glutinosa Gaertn.) has been observed over Europe. The fungus-like eukaryotic pathogen Phytophthora alni subsp. alni is thought to be a causal agent of this process; however, abiotic factors may also be involved. Previous studies suggest that climate conditions and, especially, depletion of groundwater level may be among the most important factors that trigger this phenomenon. We investigated the radial growth and wood vessel diameter of black alder trees of various vigour classes as well as their response to groundwater level changes to search for the link between soil water resources availability and mortality related to alder dieback. Samples were collected in the natural stand located near Sieraków village in the Kampinoski National Park, central Poland, in the area where alder dieback has been recently observed. Based on the crown defoliation level, three vigour classes (healthy, weakened, and dead trees) were distinguished. Cross sections were prepared with a sliding microtome, and Cell P image analysis software was used for the measurements. Tree-ring width (TRW) and vessel diameter (VD) were determined and correlated with the monthly values of precipitation and groundwater level. Alders of the analysed vigour classes exhibited similar patterns of TRW and VD changes over the analysis time. The narrowest tree rings were observed in weakened alders, while the largest vessels were noted in healthy trees. In the case of TRW and VD chronologies, the weakest, and hence insignificant, resemblance was found for healthy and dead trees. TRW and VD of the analysed alders were not correlated with the monthly sum of precipitation, but a negative influence of rainfall in April was observed. In turn, groundwater level had an impact on the radial growth and wood anatomical features of the analysed trees. A negative effect of the highest water table level was found for TRW of weakened and dead trees as well as for VD of healthy and weakened alders. The lowest groundwater level and the amplitude of the water table positively affected VD of the dead trees. Alder decline has a polyetiological nature, and groundwater level fluctuations are one of many factors contributing to disease development. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

2 pages, 166 KiB  
Abstract
A Smart Multi-scale and Multi-temporal System to Support Precision and Sustainable Agriculture from Satellite Images
by Anna Brook, Veronica De Micco, Giovanna Battipaglia, Arturo Erbaggio, Giovanni Ludeno, Ilaria Catapano and Antonello Bonfante
Proceedings 2019, 30(1), 17; https://doi.org/10.3390/proceedings2019030017 - 12 Nov 2019
Cited by 1 | Viewed by 1389
Abstract
Currently, the main goal of agriculture is to support the achievement of food security in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality, under climate change conditions. Farm resources use improvement, as well as [...] Read more.
Currently, the main goal of agriculture is to support the achievement of food security in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality, under climate change conditions. Farm resources use improvement, as well as the reduction of soil degradation processes, can be realized by means of high spatial and temporal resolution of field crop monitoring, aiming to manage the local spatial variability. In the case of high incomes crops, as the vineyards for high-quality wines, the monitoring of spatial behavior of plants during the growing season represents an opportunity to improve the plant management, the farmer incomes and to preserve the environmental health. However, because the field monitoring is an additional cost for the farmer, its diffusion is slow down and with it the achievement of sustainable agriculture. In the last decades, the satellite multispectral images have been widely used for the management of large areas, with a limitation in observation due to the pre-defined and fixed scale with relatively coarse spatial resolution, resulting in restrictions in their application. This paper presents a modified multiscale full-connected convolutional neural network (CNN) as a practical tool for pan-sharpening of Sentinel-2A images by UAV images. The reconstructed data are validated by independent multispectral UAV images and in-situ spectral measurements, providing a multitemporal evaluation of plant responses through a set of selected vegetation indices. The proposed methodology has been tested on plant measurements taken either in-vivo and through the retrospective reconstruction of the eco-physiological vine behavior, by the evaluation of water conductivity and water use efficiency indexes from anatomical and isotopic traits recorded in vine stem wood. Such a methodology, able to evaluate with high spatial and temporal resolution the plant responses, combining the pro and cons of space-borne and UAVs data, has been applied in a vineyard of southern Italy by analyzing the period from 2015 to 2018. The obtained results have shown a good correspondence between the vegetation indices obtained from reconstructed Sentinel-2A data and plant measurements obtained from tree-ring based retrospective reconstruction of eco-physiological behavior. Full article
(This article belongs to the Proceedings of TERRAenVISION 2019)
14 pages, 2453 KiB  
Article
Wood Density Profiles and Their Corresponding Tissue Fractions in Tropical Angiosperm Trees
by Tom De Mil, Yegor Tarelkin, Stephan Hahn, Wannes Hubau, Victor Deklerck, Olivier Debeir, Joris Van Acker, Charles De Cannière, Hans Beeckman and Jan Van den Bulcke
Forests 2018, 9(12), 763; https://doi.org/10.3390/f9120763 - 7 Dec 2018
Cited by 27 | Viewed by 7059
Abstract
Wood density profiles reveal a tree’s life strategy and growth. Density profiles are, however, rarely defined in terms of tissue fractions for wood of tropical angiosperm trees. Here, we aim at linking these fractions to corresponding density profiles of tropical trees from the [...] Read more.
Wood density profiles reveal a tree’s life strategy and growth. Density profiles are, however, rarely defined in terms of tissue fractions for wood of tropical angiosperm trees. Here, we aim at linking these fractions to corresponding density profiles of tropical trees from the Congo Basin. Cores of 8 tree species were scanned with X-ray Computed Tomography to calculate density profiles. Then, cores were sanded and the outermost 3 cm were used to semi-automatically measure vessel lumen, parenchyma and fibre fractions using the Weka segmentation tool in ImageJ. Fibre wall and lumen widths were measured using a newly developed semi-automated method. An assessment of density variation in function of growth ring boundary detection is done. A mixed regression model estimated the relative contribution of each trait to the density, with a species effect on slope and intercept of the regression. Position-dependent correlations were made between the fractions and the corresponding wood density profile. On average, density profile variation mostly reflects variations in fibre lumen and wall fractions, but these are species- and position-dependent: on some positions, parenchyma and vessels have a more pronounced effect on density. The model linking density to traits explains 92% of the variation, with 65% of the density profile variation attributed to the three measured traits. The remaining 27% is explained by species as a random effect. There is a clear variation between trees and within trees that have implications for interpreting density profiles in angiosperm trees: the exact driving anatomical fraction behind every density value will depend on the position within the core. The underlying function of density will thus vary accordingly. Full article
(This article belongs to the Special Issue Wood Science and Tropical Forest Ecology)
Show Figures

Graphical abstract

10 pages, 3215 KiB  
Data Descriptor
Plant Trait Dataset for Tree-Like Growth Forms Species of the Subtropical Atlantic Rain Forest in Brazil
by Arthur Vinicius Rodrigues, Fábio Leal Viana Bones, Alisson Schneiders, Laio Zimermann Oliveira, Alexander Christian Vibrans and André Luís de Gasper
Data 2018, 3(2), 16; https://doi.org/10.3390/data3020016 - 8 May 2018
Cited by 8 | Viewed by 7852
Abstract
Plant functional traits have been incorporated in studies of vegetation ecology to better understand the mechanisms of ecological processes. For this reason, a global effort has been made to collect functional traits data for as many species as possible. In light of this, [...] Read more.
Plant functional traits have been incorporated in studies of vegetation ecology to better understand the mechanisms of ecological processes. For this reason, a global effort has been made to collect functional traits data for as many species as possible. In light of this, we identified the most common species of an area of 15,335 km2 inserted in the subtropical Atlantic Rain Forest in Southern Brazil. Then, we compiled functional trait information mostly from field samples, but also from herbarium and literature. The dataset presents traits of leaf, branch, maximum potential height, seed mass, and dispersion syndrome of 117 species, including trees, tree ferns, and palms. We also share images of anatomical features of branches used to measure wood traits. Data tables present mean trait values at individual and species level. Images of wood and stomatal features may be useful to assess other anatomical traits that were not covered in the data tables for the anatomical determination of species and/or for educational purposes. Full article
Show Figures

Figure 1

Back to TopTop