Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (739)

Search Parameters:
Keywords = wireless industrial networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2475 KiB  
Article
Real-Time Detection and Response to Wormhole and Sinkhole Attacks in Wireless Sensor Networks
by Tamara Zhukabayeva, Lazzat Zholshiyeva, Yerik Mardenov, Atdhe Buja, Shafiullah Khan and Noha Alnazzawi
Technologies 2025, 13(8), 348; https://doi.org/10.3390/technologies13080348 - 7 Aug 2025
Abstract
Wireless sensor networks have become a vital technology that is extensively applied across multiple industries, including agriculture, industrial operations, and smart cities, as well as residential smart homes and environmental monitoring systems. Security threats emerge in these systems through hidden routing-level attacks such [...] Read more.
Wireless sensor networks have become a vital technology that is extensively applied across multiple industries, including agriculture, industrial operations, and smart cities, as well as residential smart homes and environmental monitoring systems. Security threats emerge in these systems through hidden routing-level attacks such as Wormhole and Sinkhole attacks. The aim of this research was to develop a methodology for detecting security incidents in WSNs by conducting real-time analysis of Wormhole and Sinkhole attacks. Furthermore, the paper proposes a novel detection methodology combined with architectural enhancements to improve network robustness, measured by hop counts, delays, false data ratios, and route integrity. A real-time WSN infrastructure was developed using ZigBee and Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS) technologies. To realistically simulate Wormhole and Sinkhole attack scenarios and conduct evaluations, we developed a modular cyber–physical architecture that supports real-time monitoring, repeatability, and integration of ZigBee- and GSM/GPRS-based attacker nodes. During the experimentation, Wormhole attacks caused the hop count to decrease from 4 to 3, while the average delay increased by 40%, and false sensor readings were introduced in over 30% of cases. Additionally, Sinkhole attacks led to a 27% increase in traffic concentration at the malicious node, disrupting load balancing and route integrity. The proposed multi-stage methodology includes data collection, preprocessing, anomaly detection using the 3-sigma rule, and risk-based decision making. Simulation results demonstrated that the methodology successfully detected route shortening, packet loss, and data manipulation in real time. Thus, the integration of anomaly-based detection with ZigBee and GSM/GPRS enables a timely response to security threats in critical WSN deployments. Full article
(This article belongs to the Special Issue New Technologies for Sensors)
18 pages, 404 KiB  
Article
Deterministic Scheduling for Asymmetric Flows in Future Wireless Networks
by Haie Dou, Taojie Zhu, Fei Li, Chen Liu and Lei Wang
Symmetry 2025, 17(8), 1246; https://doi.org/10.3390/sym17081246 - 6 Aug 2025
Abstract
In the era of Industry 5.0, future wireless networks are increasingly shifting from traditional symmetric architectures toward heterogeneous and asymmetric paradigms, driven by the demand for diversified and dynamic services. This architectural evolution gives rise to complex and asymmetric flows, such as the [...] Read more.
In the era of Industry 5.0, future wireless networks are increasingly shifting from traditional symmetric architectures toward heterogeneous and asymmetric paradigms, driven by the demand for diversified and dynamic services. This architectural evolution gives rise to complex and asymmetric flows, such as the coexistence of periodic and burst flows with varying latency, jitter, and deadline constraints, posing new challenges for deterministic transmission. Traditional time-sensitive networking (TSN) is well-suited for periodic flows but lacks the flexibility to effectively handle dynamic, asymmetric traffi. To address this limitation, we propose a two-stage asymmetric flow scheduling framework with dynamic deadline control, termed A-TSN. In the first stage, we design a Deep Q-Network-based Dynamic Injection Time Slot algorithm (DQN-DITS) to optimize slot allocation for periodic flows under varying network loads. In the second stage, we introduce the Dynamic Deadline Online (DDO) scheduling algorithm, which enables real-time scheduling for asymmetric flows while satisfying flow deadlines and capacity constraints. Simulation results demonstrate that our approach significantly reduces end-to-end latency, improves scheduling efficiency, and enhances adaptability to high-volume asymmetric traffic, offering a scalable solution for future deterministic wireless networks. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Future Wireless Networks)
Show Figures

Figure 1

28 pages, 1328 KiB  
Review
Security Issues in IoT-Based Wireless Sensor Networks: Classifications and Solutions
by Dung T. Nguyen, Mien L. Trinh, Minh T. Nguyen, Thang C. Vu, Tao V. Nguyen, Long Q. Dinh and Mui D. Nguyen
Future Internet 2025, 17(8), 350; https://doi.org/10.3390/fi17080350 - 1 Aug 2025
Viewed by 240
Abstract
In recent years, the Internet of Things (IoT) has experienced considerable developments and has played an important role in various domains such as industry, agriculture, healthcare, transportation, and environment, especially for smart cities. Along with that, wireless sensor networks (WSNs) are considered to [...] Read more.
In recent years, the Internet of Things (IoT) has experienced considerable developments and has played an important role in various domains such as industry, agriculture, healthcare, transportation, and environment, especially for smart cities. Along with that, wireless sensor networks (WSNs) are considered to be important components of the IoT system (WSN-IoT) to create smart applications and automate processes. As the number of connected IoT devices increases, privacy and security issues become more complicated due to their external working environments and limited resources. Hence, solutions need to be updated to ensure that data and user privacy are protected from threats and attacks. To support the safety and reliability of such systems, in this paper, security issues in the WSN-IoT are addressed and classified as identifying security challenges and requirements for different kinds of attacks in either WSNs or IoT systems. In addition, security solutions corresponding to different types of attacks are provided, analyzed, and evaluated. We provide different comparisons and classifications based on specific goals and applications that hopefully can suggest suitable solutions for specific purposes in practical. We also suggest some research directions to support new security mechanisms. Full article
Show Figures

Figure 1

20 pages, 1023 KiB  
Article
Joint Optimization of Radio and Computational Resource Allocation in Uplink NOMA-Based Remote State Estimation
by Rongzhen Li and Lei Xu
Sensors 2025, 25(15), 4686; https://doi.org/10.3390/s25154686 - 29 Jul 2025
Viewed by 171
Abstract
In industrial wireless networks beyond 5G and toward 6G, combining uplink non-orthogonal multiple access (NOMA) with the Kalman filter (KF) effectively reduces interruption risks and transmission delays in remote state estimation. However, the complexity of wireless environments and concurrent multi-sensor transmissions introduce significant [...] Read more.
In industrial wireless networks beyond 5G and toward 6G, combining uplink non-orthogonal multiple access (NOMA) with the Kalman filter (KF) effectively reduces interruption risks and transmission delays in remote state estimation. However, the complexity of wireless environments and concurrent multi-sensor transmissions introduce significant interference and latency, impairing the KF’s ability to continuously obtain reliable observations. Meanwhile, existing remote state estimation systems typically rely on oversimplified wireless communication models, unable to adequately handle the dynamics and interference in realistic network scenarios. To address these limitations, this paper formulates a novel dynamic wireless resource allocation problem as a mixed-integer nonlinear programming (MINLP) model. By jointly optimizing sensor grouping and power allocation—considering sensor available power and outage probability constraints—the proposed scheme minimizes both estimation outage and transmission delay. Simulation results demonstrate that, compared to conventional approaches, our method significantly improves transmission reliability and KF estimation performance, thus providing robust technical support for remote state estimation in next-generation industrial wireless networks. Full article
Show Figures

Figure 1

20 pages, 7127 KiB  
Article
Design Method of Array-Type Coupler for UAV Wireless Power Transmission System Based on the Deep Neural Network
by Mingyang Li, Jiacheng Li, Wei Xiao, Jingyi Li and Chenyue Zhou
Drones 2025, 9(8), 532; https://doi.org/10.3390/drones9080532 - 29 Jul 2025
Viewed by 220
Abstract
Unmanned aerial vehicles (UAVs) are commonly used in various fields and industries, but their limited battery life has become a key constraint for their development. Wireless Power Transmission (WPT) technology, with its convenience, durability, intelligence, and unmanned features, significantly enhances UAVs’ battery life [...] Read more.
Unmanned aerial vehicles (UAVs) are commonly used in various fields and industries, but their limited battery life has become a key constraint for their development. Wireless Power Transmission (WPT) technology, with its convenience, durability, intelligence, and unmanned features, significantly enhances UAVs’ battery life and operational range. However, the variety of UAV models and different sizes pose challenges for designing couplers in the WPT system. This paper presents a design method for an array-type coupler in a UAV WPT system that uses a deep neural network. By establishing an electromagnetic 3D structure of the array-type coupler using electromagnetic simulation software, the dimensions of the transmitting and receiving coils are modified to assess how changes in the aperture of the transmitting coil and the length of the receiving coil affect the mutual inductance of the coupler. Furthermore, deep learning methods are utilized to train a high-precision model using the calculated data as the training and testing sets. Finally, taking the FAIRSER-X model UAV as an example, the transmitting and receiving coils are wound, and the feasibility and accuracy of the proposed method are verified through an LCR meter, which notably enhances the design efficiency of UAV WPT systems. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

12 pages, 2500 KiB  
Article
Deep Learning-Based Optical Camera Communication with a 2D MIMO-OOK Scheme for IoT Networks
by Huy Nguyen and Yeng Min Jang
Electronics 2025, 14(15), 3011; https://doi.org/10.3390/electronics14153011 - 29 Jul 2025
Viewed by 344
Abstract
Radio frequency (RF)-based wireless systems are broadly used in communication systems such as mobile networks, satellite links, and monitoring applications. These systems offer outstanding advantages over wired systems, particularly in terms of ease of installation. However, researchers are looking for safer alternatives as [...] Read more.
Radio frequency (RF)-based wireless systems are broadly used in communication systems such as mobile networks, satellite links, and monitoring applications. These systems offer outstanding advantages over wired systems, particularly in terms of ease of installation. However, researchers are looking for safer alternatives as a result of worries about possible health problems connected to high-frequency radiofrequency transmission. Using the visible light spectrum is one promising approach; three cutting-edge technologies are emerging in this regard: Optical Camera Communication (OCC), Light Fidelity (Li-Fi), and Visible Light Communication (VLC). In this paper, we propose a Multiple-Input Multiple-Output (MIMO) modulation technology for Internet of Things (IoT) applications, utilizing an LED array and time-domain on-off keying (OOK). The proposed system is compatible with both rolling shutter and global shutter cameras, including commercially available models such as CCTV, webcams, and smart cameras, commonly deployed in buildings and industrial environments. Despite the compact size of the LED array, we demonstrate that, by optimizing parameters such as exposure time, camera focal length, and channel coding, our system can achieve up to 20 communication links over a 20 m distance with low bit error rate. Full article
(This article belongs to the Special Issue Advances in Optical Communications and Optical Networks)
Show Figures

Figure 1

32 pages, 5164 KiB  
Article
Decentralized Distributed Sequential Neural Networks Inference on Low-Power Microcontrollers in Wireless Sensor Networks: A Predictive Maintenance Case Study
by Yernazar Bolat, Iain Murray, Yifei Ren and Nasim Ferdosian
Sensors 2025, 25(15), 4595; https://doi.org/10.3390/s25154595 - 24 Jul 2025
Viewed by 390
Abstract
The growing adoption of IoT applications has led to increased use of low-power microcontroller units (MCUs) for energy-efficient, local data processing. However, deploying deep neural networks (DNNs) on these constrained devices is challenging due to limitations in memory, computational power, and energy. Traditional [...] Read more.
The growing adoption of IoT applications has led to increased use of low-power microcontroller units (MCUs) for energy-efficient, local data processing. However, deploying deep neural networks (DNNs) on these constrained devices is challenging due to limitations in memory, computational power, and energy. Traditional methods like cloud-based inference and model compression often incur bandwidth, privacy, and accuracy trade-offs. This paper introduces a novel Decentralized Distributed Sequential Neural Network (DDSNN) designed for low-power MCUs in Tiny Machine Learning (TinyML) applications. Unlike the existing methods that rely on centralized cluster-based approaches, DDSNN partitions a pre-trained LeNet across multiple MCUs, enabling fully decentralized inference in wireless sensor networks (WSNs). We validate DDSNN in a real-world predictive maintenance scenario, where vibration data from an industrial pump is analyzed in real-time. The experimental results demonstrate that DDSNN achieves 99.01% accuracy, explicitly maintaining the accuracy of the non-distributed baseline model and reducing inference latency by approximately 50%, highlighting its significant enhancement over traditional, non-distributed approaches, demonstrating its practical feasibility under realistic operating conditions. Full article
Show Figures

Figure 1

14 pages, 4648 KiB  
Article
Cyber-Physical System and 3D Visualization for a SCADA-Based Drinking Water Supply: A Case Study in the Lerma Basin, Mexico City
by Gabriel Sepúlveda-Cervantes, Eduardo Vega-Alvarado, Edgar Alfredo Portilla-Flores and Eduardo Vivanco-Rodríguez
Future Internet 2025, 17(7), 306; https://doi.org/10.3390/fi17070306 - 17 Jul 2025
Viewed by 339
Abstract
Cyber-physical systems such as Supervisory Control and Data Acquisition (SCADA) have been applied in industrial automation and infrastructure management for decades. They are hybrid tools for administration, monitoring, and continuous control of real physical systems through their computational representation. SCADA systems have evolved [...] Read more.
Cyber-physical systems such as Supervisory Control and Data Acquisition (SCADA) have been applied in industrial automation and infrastructure management for decades. They are hybrid tools for administration, monitoring, and continuous control of real physical systems through their computational representation. SCADA systems have evolved along with computing technology, from their beginnings with low-performance computers, monochrome monitors and communication networks with a range of a few hundred meters, to high-performance systems with advanced 3D graphics and wired and wireless computer networks. This article presents a methodology for the design of a SCADA system with a 3D Visualization for Drinking Water Supply, and its implementation in the Lerma Basin System of Mexico City as a case study. The monitoring of water consumption from the wells is presented, as well as the pressure levels throughout the system. The 3D visualization is generated from the GIS information and the communication is carried out using a hybrid radio frequency transmission system, satellite, and telephone network. The pumps that extract water from each well are teleoperated and monitored in real time. The developed system can be scaled to generate a simulator of water behavior of the Lerma Basin System and perform contingency planning. Full article
Show Figures

Figure 1

23 pages, 10801 KiB  
Article
Secure Communication of Electric Drive System Using Chaotic Systems Base on Disturbance Observer and Fuzzy Brain Emotional Learning Neural Network
by Huyen Chau Phan Thi, Nhat Quang Dang and Van Nam Giap
Math. Comput. Appl. 2025, 30(4), 73; https://doi.org/10.3390/mca30040073 - 14 Jul 2025
Viewed by 206
Abstract
This paper presents a novel wireless control framework for electric drive systems by employing a fuzzy brain emotional learning neural network (FBELNN) controller in conjunction with a Disturbance Observer (DO). The communication scheme uses chaotic system dynamics to ensure data confidentiality and robustness [...] Read more.
This paper presents a novel wireless control framework for electric drive systems by employing a fuzzy brain emotional learning neural network (FBELNN) controller in conjunction with a Disturbance Observer (DO). The communication scheme uses chaotic system dynamics to ensure data confidentiality and robustness against disturbance in wireless environments. To be applied to embedded microprocessors, the continuous-time chaotic system is discretized using the Grunwald–Letnikov approximation. To avoid the loss of generality of chaotic behavior, Lyapunov exponents are computed to validate the preservation of chaos in the discrete-time domain. The FBELNN controller is then developed to synchronize two non-identical chaotic systems under different initial conditions, enabling secure data encryption and decryption. Additionally, the DOB is introduced to estimate and mitigate the effects of bounded uncertainties and external disturbances, enhancing the system’s resilience to stealthy attacks. The proposed control structure is experimentally implemented on a wireless communication system utilizing ESP32 microcontrollers (Espressif Systems, Shanghai, China) based on the ESP-NOW protocol. Both control and feedback signals of the electric drive system are encrypted using chaotic states, and real-time decryption at the receiver confirms system integrity. Experimental results verify the effectiveness of the proposed method in achieving robust synchronization, accurate signal recovery, and a reliable wireless control system. The combination of FBELNN and DOB demonstrates significant potential for real-time, low-cost, and secure applications in smart electric drive systems and industrial automation. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

41 pages, 2392 KiB  
Review
How Beyond-5G and 6G Makes IIoT and the Smart Grid Green—A Survey
by Pal Varga, Áron István Jászberényi, Dániel Pásztor, Balazs Nagy, Muhammad Nasar and David Raisz
Sensors 2025, 25(13), 4222; https://doi.org/10.3390/s25134222 - 6 Jul 2025
Viewed by 732
Abstract
The convergence of next-generation wireless communication technologies and modern energy infrastructure presents a promising path toward sustainable and intelligent systems. This survey explores how beyond-5G and 6G communication technologies can support the greening of Industrial Internet of Things (IIoT) systems and smart grids. [...] Read more.
The convergence of next-generation wireless communication technologies and modern energy infrastructure presents a promising path toward sustainable and intelligent systems. This survey explores how beyond-5G and 6G communication technologies can support the greening of Industrial Internet of Things (IIoT) systems and smart grids. It highlights the critical challenges in achieving energy efficiency, interoperability, and real-time responsiveness across different domains. The paper reviews key enablers such as LPWAN, wake-up radios, mobile edge computing, and energy harvesting techniques for green IoT, as well as optimization strategies for 5G/6G networks and data center operations. Furthermore, it examines the role of 5G in enabling reliable, ultra-low-latency data communication for advanced smart grid applications, such as distributed generation, precise load control, and intelligent feeder automation. Through a structured analysis of recent advances and open research problems, the paper aims to identify essential directions for future research and development in building energy-efficient, resilient, and scalable smart infrastructures powered by intelligent wireless networks. Full article
(This article belongs to the Special Issue Feature Papers in the Internet of Things Section 2025)
Show Figures

Figure 1

21 pages, 2578 KiB  
Article
Coverage Hole Recovery in Hybrid Sensor Networks Based on Key Perceptual Intersections for Emergency Communications
by He Li, Shixian Sun, Chuang Dong, Qinglei Qi, Cong Zhao, Zufeng Fu, Peng Yu and Jiajia Liu
Sensors 2025, 25(13), 4217; https://doi.org/10.3390/s25134217 - 6 Jul 2025
Viewed by 352
Abstract
Wireless sensor networks (WSNs) have found extensive applications in a variety of fields, including military surveillance, wildlife monitoring, industrial process monitoring, and more. The gradual energy depletion of sensor nodes with limited battery energy leads to the dysfunction of some of the nodes, [...] Read more.
Wireless sensor networks (WSNs) have found extensive applications in a variety of fields, including military surveillance, wildlife monitoring, industrial process monitoring, and more. The gradual energy depletion of sensor nodes with limited battery energy leads to the dysfunction of some of the nodes, thus creating coverage holes in the monitored area. Coverage holes can cause the network to fail to deliver high-quality data and can also affect network performance and the quality of service. Therefore, the detection and recovery of coverage holes are major issues in WSNs. In response to these issues, we propose a method for detecting and recovering coverage holes in wireless sensor networks. This method first divides the network into equally sized units, and then selects a representative node for each unit based on two conditions, called an agent. Then, the percentage of each unit covered by nodes can be accurately calculated and holes can be detected. Finally, the holes are recovered using the average of the key perceptual intersections as the initial value of the global optimal point of the particle swarm optimization algorithm. Simulation experiments show that the algorithm proposed in this paper reduces network energy consumption by 6.68%, decreases the distance traveled by mobile nodes by 8.51%, and increases the percentage of network hole recovery by 2.16%, compared with other algorithms. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Graphical abstract

26 pages, 389 KiB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Viewed by 1091
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

22 pages, 7580 KiB  
Article
Fuzzy-Based Multi-Modal Query-Forwarding in Mini-Datacenters
by Sami J. Habib and Paulvanna Nayaki Marimuthu
Computers 2025, 14(7), 261; https://doi.org/10.3390/computers14070261 - 1 Jul 2025
Viewed by 311
Abstract
The rapid growth of Internet of Things (IoT) enabled devices in industrial environments and the associated increase in data generation are paving the way for the development of localized, distributed datacenters. In this paper, we have proposed a novel mini-datacenter in the form [...] Read more.
The rapid growth of Internet of Things (IoT) enabled devices in industrial environments and the associated increase in data generation are paving the way for the development of localized, distributed datacenters. In this paper, we have proposed a novel mini-datacenter in the form of wireless sensor networks to efficiently handle query-based data collection from Industrial IoT (IIoT) devices. The mini-datacenter comprises a command center, gateways, and IoT sensors, designed to manage stochastic query-response traffic flow. We have developed a duplication/aggregation query flow model, tailored to emphasize reliable transmission. We have developed a dataflow management framework that employs a multi-modal query forwarding approach to forward queries from the command center to gateways under varying environments. The query forwarding includes coarse-grain and fine-grain strategies, where the coarse-grain strategy uses a direct data flow using a single gateway at the expense of reliability, while the fine-grain approach uses redundant gateways to enhance reliability. A fuzzy-logic-based intelligence system is integrated into the framework to dynamically select the appropriate granularity of the forwarding strategy based on the resource availability and network conditions, aided by a buffer watching algorithm that tracks real-time buffer status. We carried out several experiments with gateway nodes varying from 10 to 100 to evaluate the framework’s scalability and robustness in handling the query flow under complex environments. The experimental results demonstrate that the framework provides a flexible and adaptive solution that balances buffer usage while maintaining over 95% reliability in most queries. Full article
(This article belongs to the Section Internet of Things (IoT) and Industrial IoT)
Show Figures

Figure 1

16 pages, 1630 KiB  
Article
Time Management in Wireless Sensor Networks for Industrial Process Control
by Andrei Rusu, Petru Dobra, Mihai Hulea and Radu Miron
Algorithms 2025, 18(7), 382; https://doi.org/10.3390/a18070382 - 24 Jun 2025
Viewed by 374
Abstract
This paper addresses the critical challenge of time management in wireless sensor networks (WSNs) applied to industrial process control. Although wireless technologies have gained ground in industrial monitoring, their adoption in control applications remains limited due to concerns around reliability and timing accuracy. [...] Read more.
This paper addresses the critical challenge of time management in wireless sensor networks (WSNs) applied to industrial process control. Although wireless technologies have gained ground in industrial monitoring, their adoption in control applications remains limited due to concerns around reliability and timing accuracy. This study proposes a practical, low-cost solution based on commercial off-the-shelf (COTS) components, leveraging the IEEE 802.15.4-2020 standard in Time-Slotted Channel-Hopping (TSCH) mode. A custom time management algorithm is developed and implemented on STM32 microcontrollers paired with AT86RF212B transceivers. The proposed system ensures a sub-millisecond synchronization drift across nodes by dividing communication into a structured slot frame and implementing precise scheduling and enhanced beacon-based synchronization. Validation is performed through experimental setups monitored with logic analyzers, demonstrating a time drift consistently below 600 microseconds. The results confirm the feasibility of using synchronized wireless nodes for real-time industrial control tasks, suggesting that further improvements in hardware precision could enable even tighter synchronization and broader applicability in fast and critical processes. Full article
Show Figures

Figure 1

11 pages, 841 KiB  
Data Descriptor
Sensor-Based Monitoring Data from an Industrial System of Centrifugal Pumps
by Angelo Martone, Alessia D’Ambrosio, Michele Ferrucci, Assuntina Cembalo, Gianpaolo Romano and Gaetano Zazzaro
Data 2025, 10(6), 91; https://doi.org/10.3390/data10060091 - 19 Jun 2025
Viewed by 563
Abstract
We present a detailed dataset collected via a wireless IoT sensor network monitoring three industrial centrifugal pumps (units A, B, and C) at the Italian Aerospace Research Centre (CIRA), along with the methods for data collection and structuring. Background: Centrifugal pumps are [...] Read more.
We present a detailed dataset collected via a wireless IoT sensor network monitoring three industrial centrifugal pumps (units A, B, and C) at the Italian Aerospace Research Centre (CIRA), along with the methods for data collection and structuring. Background: Centrifugal pumps are critical in industrial plants, and monitoring their condition is essential to ensure reliability, safety, and efficiency. High-quality operational data under normal operating conditions are fundamental for developing effective maintenance strategies and diagnostic models. Methods: Data were gathered by means of smart sensors measuring motor and pump vibrations, temperatures, outlet fluid pressures, and environmental conditions. Data were transmitted over a WirelessHART mesh network and acquired through an IoT architecture. Results: The dataset consists of eight CSV files, each representing a specific pump during a distinct operational day. Each file includes timestamped measurements of displacement, peak vibration values, sensor temperatures, fluid pressure, ambient temperature, and atmospheric pressure. Conclusions: This dataset supports advanced methodologies in feature extraction, multivariate signal analysis, unsupervised pattern discovery, vibration analysis, and the development of digital twins and soft sensing models for predictive maintenance optimization. Full article
Show Figures

Figure 1

Back to TopTop