Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = wire and dot devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 4084 KB  
Article
Electrostatically Interacting Wannier Qubits in Curved Space
by Krzysztof Pomorski
Materials 2024, 17(19), 4846; https://doi.org/10.3390/ma17194846 - 30 Sep 2024
Cited by 5 | Viewed by 1949
Abstract
A derivation of a tight-binding model from Schrödinger formalism for various topologies of position-based semiconductor qubits is presented in the case of static and time-dependent electric fields. The simplistic tight-binding model enables the description of single-electron devices at a large integration scale. The [...] Read more.
A derivation of a tight-binding model from Schrödinger formalism for various topologies of position-based semiconductor qubits is presented in the case of static and time-dependent electric fields. The simplistic tight-binding model enables the description of single-electron devices at a large integration scale. The case of two electrostatically Wannier qubits (also known as position-based qubits) in a Schrödinger model is presented with omission of spin degrees of freedom. The concept of programmable quantum matter can be implemented in the chain of coupled semiconductor quantum dots. Highly integrated and developed cryogenic CMOS nanostructures can be mapped to coupled quantum dots, the connectivity of which can be controlled by a voltage applied across the transistor gates as well as using an external magnetic field. Using the anti-correlation principle arising from the Coulomb repulsion interaction between electrons, one can implement classical and quantum inverters (Classical/Quantum Swap Gate) and many other logical gates. The anti-correlation will be weakened due to the fact that the quantumness of the physical process brings about the coexistence of correlation and anti-correlation at the same time. One of the central results presented in this work relies on the appearance of dissipation-like processes and effective potential renormalization building effective barriers in both semiconductors and in superconductors between not bended nanowire regions both in classical and in quantum regimes. The presence of non-straight wire regions is also expressed by the geometrical dissipative quantum Aharonov–Bohm effect in superconductors/semiconductors when one obtains a complex value vector potential-like field. The existence of a Coulomb interaction provides a base for the physical description of an electrostatic Q-Swap gate with any topology using open-loop nanowires, with programmable functionality. We observe strong localization of the wavepacket due to nanowire bending. Therefore, it is not always necessary to build a barrier between two nanowires to obtain two quantum dot systems. On the other hand, the results can be mapped to the problem of an electron in curved space, so they can be expressed with a programmable position-dependent metric embedded in Schrödinger’s equation. The semiconductor quantum dot system is capable of mimicking curved space, providing a bridge between fundamental and applied science in the implementation of single-electron devices. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

9 pages, 1878 KB  
Article
Self-Assembled Hybrid Halide Perovskite Quantum Wire Bundle/Dot for Multiband Applications
by Hee Chang Jeon, Seonghwan Kim and Young-Seong Kim
Nanomaterials 2024, 14(17), 1443; https://doi.org/10.3390/nano14171443 - 4 Sep 2024
Viewed by 1714
Abstract
In this study, self-assembled halide perovskite quantum wire bundles (QWBs)/quantum dots (QDs) are fabricated using a room temperature-based formation method. The one-dimensional (1D) perovskite-based QWB structures incorporate zero-dimensional QDs within a composite quantum structure. Transmission electron microscopy reveals that quantum wires with diameters [...] Read more.
In this study, self-assembled halide perovskite quantum wire bundles (QWBs)/quantum dots (QDs) are fabricated using a room temperature-based formation method. The one-dimensional (1D) perovskite-based QWB structures incorporate zero-dimensional QDs within a composite quantum structure. Transmission electron microscopy reveals that quantum wires with diameters ranging from tens of nanometers to approximately 200 nm maintain a single-crystal atomic arrangement in a bundle form. Conversely, QDs are uniformly distributed within the single-phase wire and appear as black dots < 10 nm. Photoluminescence analysis identifies the multiband characteristics of the emissions. The 420–440 nm band is attributed to 1D QWB, whereas the peak appearing in the 530–550 nm range corresponds to lead halide PbBr2 QDs. Thus, the proposed self-assembled 1D QWB/QD composite structure exhibits novel multiband physical properties in the 420–440 and 530–550 nm bands; it offers new opportunities for designing materials with potential applications in optoelectronic devices. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

12 pages, 5517 KB  
Article
Lithographically Ordered FePt L10 Dots with High Coercivity for Logic-Conditioned Magnetic Nanostructures
by Ovidiu Crisan and Alina Daniela Crisan
Crystals 2024, 14(1), 58; https://doi.org/10.3390/cryst14010058 - 31 Dec 2023
Viewed by 1685
Abstract
In order to develop the building blocks for future biosensing and spintronic applications, an engraving technique using electron beam lithography is employed in order to develop nanomagnetic pre-patterned structures with logic potential. The paper describes the realization and morphological and magnetic characterization of [...] Read more.
In order to develop the building blocks for future biosensing and spintronic applications, an engraving technique using electron beam lithography is employed in order to develop nanomagnetic pre-patterned structures with logic potential. The paper describes the realization and morphological and magnetic characterization of potentially logic-conditioned substrates, a building block to be further used as an integration platform upon which nanodevices, such as magnetic wires, or various geometrical shapes, circles, triangles, can be considered as pre-requisite for full integration into logic devices. As a proof of concept, regular arrays of FePt circles or magnetic dots were devised and structural characterization by X-ray diffraction and transmission electron microscopy proved the occurrence of the tetragonal L10 phase. Moreover, the magnetic characterization provided more insight into the potential of such arrays of magnetic devices as the hysteresis provided good values of magnetic coercivity, remanent and saturation magnetization. These findings show good potential for developing regular arrays of uniformly shaped magnetic entities with encouraging magnetic performances in view of potential applications in various applications. Full article
(This article belongs to the Topic Advanced Magnetic Alloys)
Show Figures

Figure 1

12 pages, 525 KB  
Article
Position-Dependent Effective Mass and Asymmetry Effects on the Electronic and Optical Properties of Quantum Wells with Improved Rosen–Morse Potential
by Esin Kasapoglu, Melike Behiye Yücel and Carlos A. Duque
Condens. Matter 2023, 8(4), 86; https://doi.org/10.3390/condmat8040086 - 5 Oct 2023
Cited by 9 | Viewed by 2875
Abstract
In this study, we investigated, for the first time, the effects of the spatially varying effective mass, asymmetry parameter, and well width on the electronic and optical properties of a quantum well which has an improved Rosen–Morse potential. Calculations were made within the [...] Read more.
In this study, we investigated, for the first time, the effects of the spatially varying effective mass, asymmetry parameter, and well width on the electronic and optical properties of a quantum well which has an improved Rosen–Morse potential. Calculations were made within the framework of the effective mass and parabolic band approximations. We have used the diagonalization method by choosing a wave function based on the trigonometric orthonormal functions to find eigenvalues and eigenfunctions of the electron confined within the improved Rosen–Morse potential. Our results show that the position dependence mass, asymmetry, and confinement parameters cause significant changes in the electronic and optical properties of the structure we focus on since these effects create a significant increase in electron energies and a blue shift in the absorption spectrum. The increase in energy levels enables the development of optoelectronic devices that can operate at wider wavelengths and absorb higher-energy photons. Through an appropriate choice of parameters, the Rosen–Morse potential offers, among many advantages, the possibility of simulating heterostructures close to surfaces exposed to air or vacuum, thus giving the possibility of substantially enriching the allowed optical transitions given the breaking of the system´s symmetries. Similarly, the one-dimensional Rosen–Morse potential model proposed here can be extended to one- and zero-dimensional structures such as core/shell quantum well wires and quantum dots. This offers potential advancements in fields such as optical communication, imaging technology, and solar cells. Full article
(This article belongs to the Special Issue Physics of Light-Matter Coupling in Nanostructures)
Show Figures

Figure 1

17 pages, 2632 KB  
Review
Recent Advances in Si-Compatible Nanostructured Photodetectors
by Rahaf Douhan, Kirill Lozovoy, Andrey Kokhanenko, Hazem Deeb, Vladimir Dirko and Kristina Khomyakova
Technologies 2023, 11(1), 17; https://doi.org/10.3390/technologies11010017 - 24 Jan 2023
Cited by 21 | Viewed by 5726
Abstract
In this review the latest advances in the field of nanostructured photodetectors are considered, stating the types and materials, and highlighting the features of operation. Special attention is paid to the group-IV material photodetectors, including Ge, Si, Sn, and their solid solutions. Among [...] Read more.
In this review the latest advances in the field of nanostructured photodetectors are considered, stating the types and materials, and highlighting the features of operation. Special attention is paid to the group-IV material photodetectors, including Ge, Si, Sn, and their solid solutions. Among the various designs, photodetectors with quantum wells, quantum dots, and quantum wires are highlighted. Such nanostructures have a number of unique properties, that made them striking to scientists’ attention and device applications. Since silicon is the dominating semiconductor material in the electronic industry over the past decades, and as germanium and tin nanostructures are very compatible with silicon, the combination of these factors makes them the promising candidate to use in future technologies. Full article
(This article belongs to the Section Quantum Technologies)
Show Figures

Figure 1

11 pages, 3737 KB  
Article
Multiple Exciton Generation in 3D-Ordered Networks of Ge Quantum Wires in Alumina Matrix
by Marija Tkalčević, Denis Boršćak, Ivana Periša, Iva Bogdanović-Radović, Iva Šarić Janković, Mladen Petravić, Sigrid Bernstorff and Maja Mičetić
Materials 2022, 15(15), 5353; https://doi.org/10.3390/ma15155353 - 3 Aug 2022
Cited by 8 | Viewed by 2344
Abstract
Thin films containing 3D-ordered semiconductor quantum wires offer a great tool to improve the properties of photosensitive devices. In the present work, we investigate the photo-generated current in thin films consisting of an interconnected 3D-ordered network of Ge quantum wires in an alumina [...] Read more.
Thin films containing 3D-ordered semiconductor quantum wires offer a great tool to improve the properties of photosensitive devices. In the present work, we investigate the photo-generated current in thin films consisting of an interconnected 3D-ordered network of Ge quantum wires in an alumina matrix. The films are prepared using nitrogen-assisted magnetron sputtering co-deposition of Ge and Al2O3. We demonstrate a strong photocurrent generation in the films, much stronger than in similar films containing Ge quantum dots. The enhanced photocurrent generation is the consequence of the multiple exciton generation and the films’ specific structure that allows for efficient carrier transport. Thin film with the largest nitrogen content showed enhanced performance compared to other thin films with 1.6 excitons created after absorption of a single photon at an energy nearly equal to the double bandgap value. The bandgap value depends on the geometrical properties of the quantum wires, and it is close to the maximum of the solar irradiance in this case. In addition, we show that the multiple exciton generation is the most pronounced at the photon energy values equal to multiple values of the thin film bandgap. Full article
(This article belongs to the Special Issue Advances in Semiconductor Materials for Sensors and Devices)
Show Figures

Figure 1

8 pages, 1399 KB  
Article
Simulation of Resonant Cavity-Coupled Colloidal Quantum-Dot Detectors with Polarization Sensitivity
by Pengfei Zhao, Ge Mu, Menglu Chen and Xin Tang
Coatings 2022, 12(4), 499; https://doi.org/10.3390/coatings12040499 - 7 Apr 2022
Cited by 5 | Viewed by 2551
Abstract
Infrared detectors with polarization sensitivity could extend the information dimension of the detected signals and improve target recognition ability. However, traditional infrared polarization detectors with epitaxial semiconductors usually suffer from low extinction ratio, complexity in structure and high cost. Here, we report a [...] Read more.
Infrared detectors with polarization sensitivity could extend the information dimension of the detected signals and improve target recognition ability. However, traditional infrared polarization detectors with epitaxial semiconductors usually suffer from low extinction ratio, complexity in structure and high cost. Here, we report a simulation study of colloidal quantum dot (CQD) infrared detectors with monolithically integrated metal wire-grid polarizer and optical cavity. The solution processibility of CQDs enables the direct integration of metallic wire-grid polarizers with CQD films. The polarization selectivity of HgTe CQDs with resonant cavity-enhanced wire-grid polarizers are studied in both short-wave and mid-wave infrared region. The extinction ratio in short-wave and mid-wave region can reach up to 40 and 60 dB, respectively. Besides high extinction ratio, the optical cavity enhanced wire-grid polarizer could also significantly improve light absorption at resonant wavelength by a factor of 1.5, which leads to higher quantum efficiency and better spectral selectivity. We believe that coupling CQD infrared detector with wire-grid polarizer and optical cavity can become a promising way to realize high-performance infrared optoelectronic devices. Full article
(This article belongs to the Special Issue Application of Advanced Quantum Dots Films in Optoelectronics)
Show Figures

Figure 1

10 pages, 5146 KB  
Article
Influence of Impurity Scattering on Surface Plasmons in Graphene in the Lindhard Approximation
by Mousa Bahrami and Panagiotis Vasilopoulos
Appl. Sci. 2021, 11(21), 10147; https://doi.org/10.3390/app112110147 - 29 Oct 2021
Cited by 1 | Viewed by 3081
Abstract
We study the influence of impurity scattering on transverse magnetic (TM) and transverse electric (TE) surface plasmons (SPs) in graphene using the Lindhard approximation. We show how the behaviour and domains of TM SPs are affected by the impurity strength γ and determine [...] Read more.
We study the influence of impurity scattering on transverse magnetic (TM) and transverse electric (TE) surface plasmons (SPs) in graphene using the Lindhard approximation. We show how the behaviour and domains of TM SPs are affected by the impurity strength γ and determine the critical value γc below which no SPs exist. The quality factor of TM SPs, for single-band and two-band transitions, is proportional to the square of αλSP/γ, with α being the fine-structure constant and λSP being the plasmon wavelength. In addition, we show that impurity scattering suppresses TE SPs. Full article
(This article belongs to the Special Issue Practical Application of Functionalized Carbon-Based Nanomaterials)
Show Figures

Figure 1

15 pages, 11925 KB  
Article
Magnetically Guided Micromanipulation of Magnetic Microrobots for Accurate Creation of Artistic Patterns in Liquid Environment
by Xingfu Li and Toshio Fukuda
Micromachines 2020, 11(7), 697; https://doi.org/10.3390/mi11070697 - 18 Jul 2020
Cited by 9 | Viewed by 5154
Abstract
In this paper, a magnetically guided micromanipulation method is proposed to accurately create artistic patterns with magnetic microrobots in a liquid environment for tissue engineering. A magnetically guided device is developed depend on symmetrical combination of square permanent magnets and array layout of [...] Read more.
In this paper, a magnetically guided micromanipulation method is proposed to accurately create artistic patterns with magnetic microrobots in a liquid environment for tissue engineering. A magnetically guided device is developed depend on symmetrical combination of square permanent magnets and array layout of soft magnetic wires, which changed the space distribution of magnetic field of conventional permanent magnet and generated powerful magnetic flux density and high magnetic field gradient. Furthermore, the morphological structure of the magnetic microrobot is flexibly adjusted via precise control of the volumetric flow rates inside the microfluidic device and the magnetic nanoparticles are taken along to enable its controllability by rapid magnetic response. And then, the spatial posture of the magnetic microrobot is contactless controlled by the magnetically guided manipulator and it is released under the influence of surface tension and gravity. Subsequently, the artistic fashions of the magnetic microrobots are precisely distributed via the dot-matrix magnetic flux density of the magnetically guided device. Finally, the experimental results herein demonstrate the accuracy and diversity of the pattern structures in the water and the developed method will be providing a new way for personalized functional scaffold construction. Full article
(This article belongs to the Special Issue Magnetic Microrobots)
Show Figures

Figure 1

12 pages, 4064 KB  
Article
The Photothermal Stability Study of Quantum Dots Embedded in Sodium Chlorides
by Yu-Ming Huang, Shun-Chieh Hsu, Ning Li, Chung-Ping Yu, Li-Ann Ke, Chung-Ping Huang, Shu-Hsiu Chang, Yu-Lun Chueh, Hao-Chung Kuo and Chien-Chung Lin
Crystals 2020, 10(1), 2; https://doi.org/10.3390/cryst10010002 - 18 Dec 2019
Cited by 3 | Viewed by 4211
Abstract
An efficient and useful method for the incorporation of colloidal quantum dots (QDs) into ionic matrices is demonstrated. We prepared three different synthesis methods, which are traditional saturated-salt water, methanol-assisted, and ethanol-assisted methods. The continuous thermal and photonic stress tests indicate that the [...] Read more.
An efficient and useful method for the incorporation of colloidal quantum dots (QDs) into ionic matrices is demonstrated. We prepared three different synthesis methods, which are traditional saturated-salt water, methanol-assisted, and ethanol-assisted methods. The continuous thermal and photonic stress tests indicate that the high temperature, instead of photonic excitation stress, is more detrimental to the illumination capability of the quantum dots. While the traditional saturated-salt water synthesis and methanol-assisted method are quite effective in low temperature and low photon excitation intensity, the quantum dots sealed by the ethanol-assisted method cannot hold under all conditions. An over-1000-h aging test can provide crucial information for the longevity of these quantum dots, and more than 10,000 h of lifetime can be expected. Full article
(This article belongs to the Special Issue GaN-Based Optoelectronic Materials and Light Emitting Devices)
Show Figures

Figure 1

Back to TopTop