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Abstract: In this review the latest advances in the field of nanostructured photodetectors are consid-
ered, stating the types and materials, and highlighting the features of operation. Special attention is
paid to the group-IV material photodetectors, including Ge, Si, Sn, and their solid solutions. Among
the various designs, photodetectors with quantum wells, quantum dots, and quantum wires are
highlighted. Such nanostructures have a number of unique properties, that made them striking to
scientists’ attention and device applications. Since silicon is the dominating semiconductor material
in the electronic industry over the past decades, and as germanium and tin nanostructures are very
compatible with silicon, the combination of these factors makes them the promising candidate to use
in future technologies.
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1. Introduction

During the last century, light detection methods have improved significantly, from
thermal detectors to photon detectors, focal plane arrays, and single-photon avalanche
detectors [1]. Nowadays you can reach any piece of information in a matter of milliseconds,
or even less, due to the technological developments that have happened in the past several
decades. The world is now full of different technologies that have made our lives much
easier. It is so easy to communicate using many different means from landlines to optical
fibers and satellite communications. The more communication methods develop, the more
secure and fast transmission technology is needed. This fact forces the scientific community
to develop light-transmitting systems and these needs support a big interest in the light
detection area.

Currently, nanostructures with quantum wells (QW) and quantum dots (QD) are very
widely used to create photodetectors in the visible and infrared ranges. At the same time,
for various applications, various semiconductor material systems are used that most fully
satisfy the specific requirements for device structures: III–V (GaAs, AlGaAs, etc.), II–VI
(CdHgTe), IV–IV (GeSi, GeSn, GeSiSn), and others. However, all their potentialities are
not implemented so far and they remain one of the most promising structures for creating
optoelectronic devices.

A characteristic feature of all types of low-dimensional structures is the manifestation
of the effects of spatial (dimensional) quantization, caused by the limitation of the free
movement of charge carriers in one or several directions. Size quantization effects lead to
a significant change in the energy spectrum of electrons and holes and the appearance of
discrete energy levels and intermediate-allowed energy bands entirely located in the band
gap of the semiconductor. This, in turn, leads to the appearance of new unique properties
of such structures, which make it possible to create completely new types of optoelectronic
devices on their basis [2].

For the first time, the existence of spatial quantization effects in low-dimensional
semiconductor structures (nanostructures) was experimentally demonstrated by Dingle
et al. in the first half of the 1970s when studying optical properties of AlGaAs-GaAs
heterostructures with GaAs quantum well [3]. Germanium quantum dots in silicon became
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one of the central themes of research in the early 1990s, when they were first obtained in
the experiments by Eaglesham, Mo et al. [4,5]. Almost immediately, quantum-well effects
were observed experimentally in this system [6].

The main requirements for choosing photodetectors are good performance, operation
at the highest possible temperatures, and low manufacturing costs. In addition, today
it seems necessary to create on a single chip the entire set of components of fiber-optic
communication lines, including light-emitting devices and photodetectors. To reduce the
costs of such systems, it is necessary that a larger number of components be made on the
basis of typical silicon technology methods.

Silicon itself is transparent to radiation with a wavelength greater than 1.1 microns.
Good photosensitivity in the region of λ ≈ 1.5 µm is possessed by germanium photodetec-
tors. The Ge/Si system may be also supplemented by tin, which extends the responsivity
up to 2 µm. In this regard, prospects are outlined for the creation of high-speed photodetec-
tors based on Si–Ge–Sn heterostructures with high sensitivity at room temperature in the
spectral range of quartz fiber transparency of 1.3 and 1.55 µm.

Besides that, the adding of tin provides an opportunity to control the lattice constant
and energy gap independently. Among the other advantages of group-IV materials is
the possibility to create multispectral detectors, rather high mobility of carriers, and fast-
speed operation, along with low noise, simple design, and highly-developed technology
of synthesis.

The integration of silicon, germanium, and tin heterostructures with a silicon chip
and their compatibility with silicon electronic and photonic circuits has great potential for
the development of low-cost telecommunication optoelectronic modules for fiber optic
communication lines operating in the telecommunication wavelength range [7–13].

One of the main methods for obtaining low-dimensional structures today is molecular
beam epitaxy, the main advantages of which include low temperatures and growth rates,
the possibility of abrupt interruption and resumption of growth, and precise control of the
composition of the main substance and impurity concentrations. In this case, the analysis
of the grown structures and the control of the necessary parameters can be carried out
directly in the synthesis process.

Molecular beam epitaxy and other modern technological and material advances in
semiconductors have brought the possibility of fabricating heterostructures utilizing quan-
tum mechanical features. For example, creating quantum wells and self-assembled quantum
dots allowed researchers to manufacture better photodetectors with higher performance.

In this review, we considered the latest and most modern photodetectors in the current
scientific literature, stating the types and materials while highlighting the features of each
work with special attention to Ge-Si photodetectors. These heterostructures with quantum
wells and dots have a number of unique properties that made it striking to scientists’
attention and device applications. Since silicon is the dominating semiconductor material
in the electronic industry over the past decades, and as germanium nanostructures are
very compatible with silicon, that made them a better fit and promising candidate to use in
future technologies.

2. Thin Film and Quantum Well Photodetectors

A quantum well is a very thin layer of one material with narrow bandgap is situated
between two materials with wider bandgaps. As a result a potential step is formed. This
potential well limits the motion of carriers in one direction while they are free to move in
two other directions. When the width of the potential well is small enough, the energy
spectrum of carriers becomes discrete and their motion in the thin layer becomes quantized.
In this review we will consider one of the simplest quantum well devices—quantum
well photodetector.

The quantum well photodetector operation relies on the intersubband absorption
within either the conduction band (for electrons) or the valence band (for holes). The
principle of operation of a quantum well photodetector can be explained by the basic laws
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of quantum mechanics. The quantum well is equivalent to the classical problem of motion
of a particle in a box. To obtain the energy spectrum of such particle the time independent
Schrödinger equation should be solved.

The SiGe/Si material system almost immediately proved to be perspective for various
applications of nanostructures in electronics and optoelectronics. Then, SiGeSn material
system in various combinations of constituent elements became very promising, since
within their framework it is possible to control the band gap and obtain direct-gap semicon-
ductors. These materials can be used to create photodetectors, solar cells, and light-emitting
devices, successfully competing with materials traditionally for optoelectronics based on
III–V and II–VI compounds [14–23].

GeSn techniques have drawn a lot of attention of Si-based technology in the last couple
decades because the operating wavelengths range of this system spreads into the near
infrared and short-wave infrared regions. Generally, scientific research on GeSn detectors
has involved an increase in the past decade leading to the development of high-performance
GeSn detectors. Today, there are several photodetectors based on Si-Ge. One of them is
Ge-Si-Sn alloy, which is widely used in quantum well infrared photodetectors.

For example, in the work [24] a photoconductor detector made of one layer of GeSn
on Ge, and working in the range between 1.5–2 µm, was shown (Figure 1).
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Figure 1. Cross-section view of the one-layer GeSn on Ge photoconductor.

The photoconductor GeSn samples used in this photodetector were grown using a
reduced-pressure chemical vapor deposition technology. A study has been conducted on
this photoconductor using 0.9, 3.2, and 7% Sn. Electrical and optical characteristics under
300 to 77 K were measured and the results of the detectivity, dark current, and responsivity
were observed and measured under equivalent conditions. It was noted that the higher
the temperature the less the performance of this photodetector is, which is caused by the
decrease in the number of thermally activated carriers. This leads to a higher noise currents,
while the responsivity of the photoconductor shows the linear increase with applied voltage
that is indicative of the photoconductive gain [24].

Another study has been made on GeSn alloy where a photodiode with one layer of Ge
quantum well was investigated [25]. The structure was grown on Si by molecular beam
epitaxy. Figure 2 shows a schematic cross-section of the p-i-n photodetector structure. The
photodetector was fabricated with quasiplanar technology.

The 1550 nm photodiode was investigated and the electrical and optical characteristics
were measured under certain conditions. The dark current density of the photodiode
increased by more than one order of magnitude, which was due to the high Sn concentration
in this sample. The optical responsivity of the photodetector was also studied, which had
shown the excellent quality of the fabricated GeSn layers.

A different study had been done based on one layer GeSn on Si [26]. The GeSn samples
were grown using reduced-pressure chemical vapor deposition technologies and mesa
structures were fabricated by photolithography and wet chemical etch processes. Figure 3
shows a schematic cross-sectional view of the photodetector.
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There were two samples with 7% and 10% tin. Electrical and optical characteristics
were investigated for both samples. The reverse current density increased with the temper-
ature as a result larger number of thermally activated carriers. The 10% Sn device showed
higher current densities compared to that of the 7% Sn device at equal conditions due to the
narrower bandgap, which also resulted in the larger number of thermally excited carriers.
Other parameters were also studied such as detectivity for both samples. They have shown
very close values under the same conditions [26]. This study has shown good performance
and detectivity compared with the detectors dominating the market.

The next study with one layer structure used Ge on the Si system [27]. This paper
considered a photodiode working at 1550 nm and consisting of a 300 nm thick Ge layer,
which was fabricated using molecular beam epitaxy and standard etching and lithography
techniques. The Ge p-i-n diode was grown on the Si substrate and covered by doped silicon
capping layer. After the fabrication of p-i-n photodiode, the back side of the substrate was
covered by black silicon. Optical power was induced from the rear side. The diameter of
the mesa-structure was 400 µm, which is shown in Figure 4.

It was noted that the black silicon nanostructure did not spoil the I-V characteristics
and acted similar to waveguide structures. This article established that the application
of black silicon light-trapping structures is a possible technology to increase the respon-
sivity of Ge-on-Si photodiodes. Besides that, rather good combination of bandwidth and
responsivity was achieved, making these structures viable for ultra-fast applications for
communication [27].

To enhance the absorption efficiency of the detector multiple layers with quantum
wells may be used. One example with a GeSn/Ge multiple quantum wells (MQW) detector
was shown in the recent work by Zhou et al. [28]. The multilayer p-i-n structure was
grown on a 300-mm Ge-buffered Si substrate by reduced pressure chemical vapor depo-
sition. Figure 5 shows a schematic diagram of the photodetector with a photon-trapping
microstructure.
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Characteristics investigations were made which have shown a flat photo response
curve under a reverse bias voltage that indicates an efficient collection of photon-generated
carriers and the capability of the photodetector regarding low-energy consumption. The
dark current was investigated with and without a photon-trapping structure at room
temperature. A low dark current density of 31.5 mA/cm2 was achieved which is higher if
compared with other photodetectors, and is also considered to be among the lowest for
group-IV photodetectors. The dark current density increased to 45.2 mA/cm2 at −1 V when
the photon-trapping microstructure was incorporated. It was investigated and revealed
that the increased dark current density mainly results from the increased surface leakage
current introduced by the photon-trapping microstructure [28].

To sum up, these works enable group-IV photodetectors to be very perspective for
various infrared systems. It is also desirable to monolithically integrate these detectors
with lasers, transistors, waveguides, modulators and other devices on one silicon platform.
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A lattice matched SiGeSn multiple quantum well structures should be developed to reduce
the noise currents of this type of photodetectors in the future [28].

3. Quantum Dot Photodetectors

A quantum dot is a nanometer-sized semiconductor particle. The concept of “artificial
atoms”, or quantum dots, has emerged since the implement of molecular beam epitaxy and
the first work on the reduced dimensionality of semiconductors. Quantum dots are widely
used for their fully discrete energy spectrum and unique optical properties due to quantum
size effects. They absorb and emit light of specific wavelengths if their energy spectra
are matched. These wavelengths can be accurately controlled by changing size, shape or
material composition of the particle. Hence, quantum dots are exploited in active layers for
many widely-spread devices, for example, quantum dot displays and photon detectors.

Thus, an alternative to photodetectors based on quantum wells can be photodetec-
tors with quantum dots. Such heterostructures are promising for photovoltaic applica-
tions and as receiving modules in fiber optic communication lines. Quantum dots have
been successfully integrated in existing types of photodetectors, significantly enhancing
their performance.

To realize all the potential advantages of photodetectors with quantum dots for the
near-infrared range (increased sensitivity to normally incident radiation, high photoelectric
multiplication factor, low thermal generation rate, narrow sensitivity range), the photosen-
sitive region of the detector must contain an array of quantum dots with high density (on
the order of 1011–1012 cm−2) [7,29–31].

The principles of operation of a photodetector with quantum dots are similar to those
with quantum wells. The only difference is that in a quantum dot, the carrier is limited
in its movement in all three directions, hence, zero-dimensional systems of carriers are
realized [32]. It is expected that due to this limitation, quantum dot photodetectors can
provide a better performance, namely higher operating temperatures (due to longer carrier
lifetimes), low dark current, and high photoelectric gain [33], which ultimately translates
into high sensitivity and detectability [34]. In addition, due to different selection rules for
the absorption of light in photodetectors with quantum dots, it becomes possible to absorb
incident radiation polarized along the normal to the layers of quantum dots.

In order to achieve this regime, self-assembled islands are embedded into layers of
semiconductors with a larger energy gap and appropriate band discontinuities. Due to
their properties, quantum dots are of high interest to modern technologies.

Silicon-based semiconductor materials with nanosized germanium inclusions have
been actively studied since the early 1990s [4,5]. Such nanoheterostructures with self-
organizing germanium quantum dots on silicon, grown by molecular beam epitaxy, exhibit
a number of new nanoscale effects (associated with low-dimensional quantization ef-
fects), which are promising from the point of view of their application in optoelectronic
devices [35–40].

Next, we will introduce some of the recent scientific studies that contained a quantum
dot infrared photodetector with different silicon-related materials and a different number
of quantum dot layers.

Starting with one layer of quantum dots, the following study shows an ultrathin layer
photodetector with Ge quantum dots [41]. A 13 nm active layer of Ge quantum dots in SiO2
matrix was fabricated on n-Ge substrate with (100) orientation. Quantum dots diameters
varied from approximately 3 to 8 nm. The schematic diagram of the photodetector is shown
in Figure 6.
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The current-voltage characteristics of the photodetector were studied at various tem-
peratures which varied from 77 K to 300 K in the dark and under illumination with the
640 and 1550 nm light. Reducing the active layer thickness to an ultrathin regime produced
a high dark current at ambient conditions. Rise and fall times below 10 ns and 25 ns were
achieved at −1 V in the visible and near-infrared ranges which is very promising [41].
This work has demonstrated that high quantum efficiency and fast response speed can be
achieved in Ge quantum dot based photodetectors simultaneously at low voltage. Also,
this work highlighted the importance of the thickness dependence of response speed in Ge
quantum dot photodetectors.

A new example of quantum dot photodetectors was shown in the work [42]. Here a
Ge quantum dot photodetector with one layer of quantum dots that has a thickness of 160
nm was fabricated. Ge and SiO2 were cosputtered on the n-Ge substrate. The schematic
diagram of the photodetector is shown in Figure 7.
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The current-voltage characteristics were investigated in the range of wavelengths from
400 to 1550 nm. Results on the responsivity, reflectance, and quantum efficiency of the
detector were presented and it was shown that the detector had its best performance and
efficiency between 500–600 nm. High detectivity was achieved at the temperature range of
100–300 K [42].

Next, a midinfrared photodetector based on Ge quantum dots in Si has been pre-
sented [43]. The multilayer Si/Ge samples were synthesized by molecular beam epitaxy on
the p+-Si(001) substrate. The schematic design of the detector is shown in Figure 8.
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Figure 8. Schematic drawing of the Ge/Si photodetector with 10 layers of quantum dots.

Ten layers of germanium quantum dots separated by 50 nm silicon barriers served as
active layers. Each Si barrier contained a boron delta-doping layer inserted 5 nm below the
Ge-wetting layer. The active region was sandwiched between the 200-nm-thick intrinsic Si
buffer and the cap layers. Finally, a 200-nm-thick p+−Si top contact layer was deposited.
The noise current, detectivity, and responsivity as a function of voltage and temperature
were considered and the study has shown that such a device exhibited low dark current
and operated until 200 K [43].

One more study with a multilayer quantum dot photodetector was introduced next
where the multiple germanium quantum dot layers were grown on Si0.82Ge0.18 virtual
substrate [44]. Ten layers of germanium quantum dots were separated by 35-nm Si0.82Ge0.18
barriers (Figure 9).

In this study another photodetector sample was fabricated based on pure silicon
instead of SiGe for performance comparison purpose. Both samples have shown a respon-
sivity in the whole mid-wave infrared range. Also, there was a significant improvement in
the Ge/SiGe detector sensitivity over the wavelength region from 3 to 5 µm, as compared
to the Ge/Si heterostructure. This is associated with the smaller hole effective mass in SiGe
layers, which enables more efficient light absorption and photoexcited hole transportation.
The photoconductive gain was studied and the noise characteristics were measured, and the
SiGe detector has shown a larger gain, probably due to the increase of the hole mobility, and,
therefore, the decrease of the hole transit time through the device. Moreover, in this work, a
metallic plasmonic structure was added to the detector to achieve better performance of the
quantum dot photodetector. The measured responsivity of the SiGe-based photodetector
with and without the plasmonic structure have shown that plasmonic structures enhance
photocurrent at the plasmon resonance frequencies compared with bare detectors [44].

The development of these works led to the emergence of the idea of using plas-
monic effects and microresonators in order to enhance the properties of silicon-germanium
photosensitive structures [45]. These attempts have shown a significant increase in the
photodetector parameters, such as resonant responsivity, when using such plasmonic
structures [46].
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Figure 9. Schematic diagram of the Ge/SiGe photodetector with 10 layers of quantum dots.

Finally, we will discuss a study that has been made on a photodetector with mixed
technologies for producing nanowires and quantum dots. Nanowires are structures where
motion of carriers is limited in two of three directions.

In work [47], a silicon-on-insulator substrate was used for the growth of Ge quantum
dots on silicon with subsequent fabrication of a quantum wire. Ge quantum dots were
synthesized by molecular beam epitaxy. Quantum wires with the length of 10 µm and the
width of 100 nm were fabricated by electron lithography. Figure 10 shows the cross-section
of the fabricated photodetector.
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This study demonstrated a simple and scalable fabrication process for achieving
high-performance short-wave infrared photodetectors using Ge quantum dots in a sin-
gle Si nanowire on CMOS-compatible SOI platforms. Moreover, the measurement of
photocurrents with varying polarization of light revealed that the device can act as a
polarization-sensitive photodetector [47].

4. Future Directions

Further development of the works on the fabrication of GeSn/Ge multiple-quantum-
well p-i-n photodiodes has resulted in the simultaneous realization of low dark current
and high detectivity in the structures similar to those shown in Figure 5. An ultralow dark
current density of 16.3 mA/cm2 was achieved in the work [48] due to the low threading
dislocation density in the pseudomorphic GeSn layer [49], along with the high responsivity
of 0.307 A/W and specific detectivity of 1.37 × 1010 cm·Hz1/2·W−1 at 1550 nm. Even higher
values of performance characteristics are theoretically predicted for the GeSn multiple quan-
tum well photodetector with alternating layers of GeSn with different compositions [50].
The recently proposed approach suggests the use of a GeSn-on-insulator platform for the
creation of metal-semiconductor-metal photodetectors with a sensitivity in the spectral
range of up to 2.2 µm [51].

The works on using of GeSiSn solid solution layers have also confirmed that this
material family is very promising for the fabrication of photodetectors in terms of extending
their range of operating wavelengths and enhancing sensitivity [52–56].

The main problems of the application of nanostructures in photodetectors are con-
nected with the low quality of the obtained structures. The improvement of technologies of
synthesis should significantly increase the performance of quantum well and quantum dot
photodetectors. The necessity to decrease the threading dislocation density, the number
of different phase boundaries on the surface, and micro-cracks (caused by lattice mis-
match) to suppress dark currents was stated repeatedly in the literature. On the other hand,
tensile-strained layers may be used for the directed strain engineering of the energy spectra.

Where quantum dots are concerned, they have lower dark currents than quantum
well structures due to their higher activation energy of thermionic emission (because of
strong quantum confinement of carriers) and reduced phonon scattering, resulting in
a longer carrier lifetime. However, it is very important to achieve the highest possible
homogeneity of the ensemble of nanoislands in terms of their shape and size to reduce
dark current densities. Special growth modes or prepattering of the surface for the creation
of sites of preferable formation of nanoislands (selective growth) are used to improve
the homogeneity. Another method of suppressing noise currents is the use of hybrid
designs such as quantum dots in a quantum well and quantum dots in a quantum wire,
which allows the researchers to achieve lower dark current densities and higher operating
temperatures by proper control and optimization of the thickness of a well or nanowire.

The performance characteristics of the photodetectors reviewed in the previous sec-
tions are summarized in Table 1. It may be concluded that in terms of their performance
photodetectors based on group-IV elements approach their III–V and II–VI competitors,
showing values of detectivities of an order of 1012 cm·Hz1/2·W−1 [57,58].

The use of various photon-trapping structures [59,60] and the creation of artificial
roughness on one side of the detector is a typical route to increase the absorption coefficient
and quantum efficiency of the device. For example, alternating materials with different
refractive indices by heteroepitaxy results in a significant reflection at the interfaces. This is
used to create optical Fabry-Perot resonators that reflect light back to the optical absorbing
layer, thus effectively increasing the width of the physically thin absorbing layer. These
techniques may also include exploiting distributed Bragg reflectors [61], capping the photo-
sensitive structure with antireflection coatings [62], or using waveguide structures [63–71].
Works on the development of new designs of nanostructures [72,73], using graphene-like 2D
materials [74–78] and exploiting the resonant cavity [79–81] and plasmonic effects [82,83]
are also constantly being carried out.
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Table 1. Comparison of the performance characteristics of various types of photodetectors.

Model Wavelength Responsivity Dark Current Density Detectivity

nm A/W mA/cm2 cm·Hz1/2·W−1

One layer GeSn/Ge
photoconductor [24]

1550–
2000 0.18 – 1.0·109

One layer Ge/GeSn/Ge p-i-n
photodiode [25] 1550 0.22 70 –

One layer Ge/GeSn/Ge
photodetector [26]

1550–
2600 0.30 10 4.0·109

Black silicon Ge-on-Si p-i-n
photodiode [27] 1550 0.34 150 –

Multiple quantum wells GeSn/Ge
photodetector [28]

1550–
2200 0.11 40 2.1·108

Multiple quantum wells GeSn/Ge
photodetector [48]

1550–
2200 0.31 16 1.4·1010

One layer SiO2: Ge QDs/Ge
photodetector [41]

640–
1550 0.47 – –

One layer SiO2: Ge QDs/Ge
photodetector [42]

400–
1550 1.12 – 2.0·1010

Multiple layer Ge QDs/Si
photodetector [43]

up to
4000 0.43 10−6 6.2·1010

Multiple layer Ge QDs/SiGe
photodetector [44]

up to
6000 40 – 1.4·1011

Si nanowire: Ge QDs/SiO2/Si
phototransistor [47]

1200–
1700 5.50 – 9.3·1011

One more complex way for the integration of photodetectors on a silicon chip is
the fabrication of III–V epitaxial structures [84] or colloidal quantum dots [85–88] on a
silicon substrate. Elements of other groups may also be used as a dopant in silicon or
germanium [89,90]. Moreover, germanium photodiodes manufactured on Ge-on-insulator
substrate, already showing very high performance, also fit the requirements of silicon-based
technology [91]. Search for exotic nongroup IV elements combined with silicon is another
route for the evolution of Si-compatible detectors [92].

In pace with the development of silicon-based photodetectors, a huge amount of work
on the creation of group IV avalanche detectors (including single-photon avalanche diodes,
SPAD) is carried out [93–95]. They are vital for a wide range of employment, from medical
and LIDAR applications to quantum communication technologies [96–98]. Over the past
decade, the academic and industrial community has achieved tremendous results in the
improvement of the performance of SPADs [99–101].

Another very promising direction of further development in the field of silicon-based
integration of electronic and photonic devices [102] is the creation of group IV light-emitting
structures [103–105]. In recent years significant progress was achieved in the realization
of GeSn [106–108] and diamond [109] laser-active media. The use of the GeSiSn ternary
compound to improve the light-emitting characteristics of such structures also appears
to be very promising [110]. Quantum dots are also considered important light-emitting
nanostructures and have been intensively studied for several decades from the point of
view of experimental aspects of the synthesis [111–120], their optical properties [121], and
applications [122–125]. Finally, efficient group-IV single photon sources and semiconductor
qubits [126–130] were recently shown, supporting the development of on-chip quantum
information processing.
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5. Conclusions

The performance of various types of photodetectors based on silicon, germanium,
and tin is rapidly improving due to the dedicated efforts of many research groups. The
bandwidth and quantum efficiency of such devices are comparable to those of their com-
petitors in the face of devices based on III–V compounds and are sufficient for a number of
applications. Thus, at present, no serious barriers are foreseen for the widespread use of
Si-compatible group-IV-based nanostructured photodetectors.

The main advantages of silicon-based electronics and photonics, including their rel-
ative cheapness, highly-developed technology of synthesis, compatibility with silicon
integrated circuits and CMOS-compatibility, opportunity to create multi-spectral detectors,
and many others, make the research and industrial community confident in the long and
bright future of this material system.

The reviewed devices may play a pivotal role in the establishment of anticipated
low-cost and high-performance Si-based photonic-integrated circuits. All these results
allow us to count on solving the problem of integrating all optoelectronic components on a
single silicon chip in the nearest future.
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