Multiple Exciton Generation in 3D-Ordered Networks of Ge Quantum Wires in Alumina Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Characterization
3. Results
3.1. Structural Properties
Ge QWs Network Properties
3.2. Atomic Composition and Ge Oxidation
3.3. Optical Properties
3.4. Electrical Properties and Photocurrent
3.5. Quantum Efficiency Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edvinsson, T. Optical Quantum Confinement and Photocatalytic Properties in Two-, One- and Zerodimensional Nanostructures. R. Soc. Open Sci. 2018, 5, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Xu, J.; Ge, Z.; Zhai, Y.; Li, W.; Jiang, X.; Chen, K. Enhanced Broadband Spectral Response and Energy Conversion Efficiency for Hetero-Junction Solar Cells with Graded-Sized Si Quantum Dots/SiC Multilayers. J. Mater. Chem. C 2015, 3, 12061–12067. [Google Scholar] [CrossRef]
- Jaeger, H.M.; Fischer, S.; Prezhdo, O.V. The Role of Surface Defects in Multi-Exciton Generation of Lead Selenide and Silicon Semiconductor Quantum Dots. J. Chem. Phys. 2012, 136, 064701. [Google Scholar] [CrossRef]
- Saeed, S.; De Weerd, C.; Stallinga, P.; Spoor, F.C.; Houtepen, A.J.; Siebbeles, L.D.A.; Gregorkiewicz, T. Carrier Multiplication in Germanium Nanocrystals. Light Sci. Appl. 2015, 4, e251. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, H.; Jellicoe, T.C.; Davis, N.J.L.K.; Böhm, M.L. Multiple Exciton Generation in Quantum Dot-Based Solar Cells. Nanophotonics 2018, 7, 111–126. [Google Scholar] [CrossRef]
- Lehninger, D.; Beyer, J.; Heitmann, J. A Review on Ge Nanocrystals Embedded in SiO2 and High-k Dielectrics. Phys. Status Solidi Appl. Mater. Sci. 2018, 215, 1–13. [Google Scholar] [CrossRef]
- Cojocaru, O.; Lepadatu, A.M.; Nemnes, G.A.; Stoica, T.; Ciurea, M.L. Bandgap Atomistic Calculations on Hydrogen-Passivated GeSi Nanocrystals. Sci. Rep. 2021, 11, 13582. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Liu, J.; Kimerling, L.C.; Michel, J. Toward a Germanium Laser for Integrated Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 124–131. [Google Scholar] [CrossRef]
- Lin, G.; Liang, D.; Yu, C.; Hong, H.; Mao, Y.; Li, C.; Chen, S. Broadband 400-2400 Nm Ge Heterostructure Nanowire Photodetector Fabricated by Three-Dimensional Ge Condensation Technique. Opt. Express 2019, 27, 32801. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.L.; Lee, P.S. Enhanced Charge Storage Capability of Ge/GeO2 Core/Shell Nanostructure. Nanotechnology 2008, 19, 355206. [Google Scholar] [CrossRef] [PubMed]
- Sett, S.; Ghatak, A.; Sharma, D.; Kumar, G.V.P.; Raychaudhuri, A.K. Broad Band Single Germanium Nanowire Photodetectors with Surface Oxide-Controlled High Optical Gain. J. Phys. Chem. C 2018, 122, 8564–8572. [Google Scholar] [CrossRef]
- Liu, B.; Hu, J.; Jia, L.; Liu, J.; Ren, X.; Zhang, X.; Guo, X.; Liu, S. Ge Quantum-Dot Enhanced c-Si Solar Cell for Improved Light Trapping Efficiency. Sol. Energy 2018, 167, 102–107. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Z.; Deng, X.; Yan, B.; Wang, Z.; Chen, X.; Sun, Z.; Huang, S. Enhancing Photovoltaic Performance of Perovskite Solar Cells Utilizing Germanium Nanoparticles. Sol. Energy 2019, 188, 839–848. [Google Scholar] [CrossRef]
- Gusev, E. Defects in High-k Gate Dielectric Stacks: Nano-Electronic Semiconductor Devices; Springer Science & Business Media: New York, NY, USA, 2006; ISBN 9781402043666. [Google Scholar]
- Sandeep, C.S.S.; ten Cate, S.; Schins, J.M.; Savenije, T.J.; Liu, Y.; Law, M.; Kinge, S.; Houtepen, A.J.; Siebbeles, L.D.A. High Charge-Carrier Mobility Enables Exploitation of Carrier Multiplication in Quantum-Dot Films. Nat. Commun. 2013, 4, 2360. [Google Scholar] [CrossRef] [Green Version]
- Gordi, M.; Ramezani, H.; Moravvej-Farshi, M.K. Multiple Exciton Generation in Si and Ge Nanocrystals: An Ab Initio Comparative Study. J. Phys. Chem. C 2017, 121, 6374–6379. [Google Scholar] [CrossRef]
- Gavartin, J.L.; Shluger, A.L.; Foster, A.S.; Bersuker, G.I. The Role of Nitrogen-Related Defects in High-k Dielectric Oxides: Density-Functional Studies. J. Appl. Phys. 2005, 97, 053704. [Google Scholar] [CrossRef] [Green Version]
- Kuganathan, N.; Grimes, R.W.; Chroneos, A. Nitrogen-Vacancy Defects in Germanium. AIP Adv. 2022, 12, 045110. [Google Scholar] [CrossRef]
- Tkalčević, M.; Basioli, L.; Salamon, K.; Šarić, I.; Parramon, J.S.; Bubaš, M.; Bogdanović-Radović, I.; Bernstorff, S.; Fogarassy, Z.; Balázsi, K.; et al. Ge Quantum Dot Lattices in Alumina Prepared by Nitrogen Assisted Deposition: Structure and Photoelectric Conversion Efficiency. Sol. Energy Mater. Sol. Cells 2020, 218, 110722. [Google Scholar] [CrossRef]
- Hesse, R.; Chassé, T.; Szargan, R. Peak Shape Analysis of Core Level Photoelectron Spectra Using UNIFIT for WINDOWS. Fresenius. J. Anal. Chem. 1999, 365, 48–54. [Google Scholar] [CrossRef]
- Basioli, L.; Tkalčević, M.; Bogdanović-Radović, I.; Dražić, G.; Nadazdy, P.; Siffalovic, P.; Salamon, K.; Mičetić, M. 3D Networks of Ge Quantum Wires in Amorphous Alumina Matrix. Nanomaterials 2020, 10, 1363. [Google Scholar] [CrossRef] [PubMed]
- Tkalčević, M.; Sancho-Parramon, J.; Basioli, L.; Bubaš, M.; Dražić, G.; Nadazdy, P.; Siffalovica, P.; Mičetić, M. 3D Networks of Nanopores in Alumina: Structural and Optical Properties. Microporous Mesoporous Mater. 2021, 325, 111306. [Google Scholar] [CrossRef]
- Buljan, M.; Radić, N.; Ivanda, M.; Bogdanović-Radović, I.; Karlušić, M.; Grenzer, J.; Prucnal, S.; Dražić, G.; Pletikapić, G.; Svetličić, V.; et al. Ge Quantum Dot Lattices in Al2O3 Multilayers. J. Nanoparticle Res. 2013, 15, 1485. [Google Scholar] [CrossRef]
- Tabet, N.A.; Salim, M.A.; Al-Oteibi, A.L. XPS Study of the Growth Kinetics of Thin Films Obtained by Thermal Oxidation of Germanium Substrates. J. Electron. Spectros. Relat. Phenom. 1999, 101, 233–238. [Google Scholar] [CrossRef]
- Cosentino, S.; Mio, A.M.; Barbagiovanni, E.G.; Raciti, R.; Bahariqushchi, R.; Miritello, M.; Nicotra, G.; Aydinli, A.; Spinella, C.; Terrasi, A.; et al. The Role of the Interface in Germanium Quantum Dots: When Not Only Size Matters for Quantum Confinement Effects. Nanoscale 2015, 7, 11401–11408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, W.; Karatutlu, A.; Bolmatov, D.; Trachenko, K.; Sapelkin, A.V.; Cibin, G.; Taylor, R.; Mosselmans, F.; Dent, A.J.; Mountjoy, G. Structural Origin of Light Emission in Germanium Quantum Dots. Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, S.; Hideshima, I.; Minoura, Y.; Yamamoto, T.; Yasui, A.; Miyata, H.; Kimura, K.; Ito, T.; Hosoi, T.; Shimura, T.; et al. Interface Engineering between Metal Electrode and GeO2 Dielectric for Future Ge-Based Metal-Oxide-Semiconductor Technologies. Appl. Phys. Lett. 2012, 101, 7372. [Google Scholar] [CrossRef]
- Slav, A.; Dascalescu, I.; Lepadatu, A.M.; Palade, C.; Zoita, N.C.; Stroescu, H.; Iftimie, S.; Lazanu, S.; Gartner, M.; Buca, D.; et al. GeSn/SiO2 Multilayers by Magnetron Sputtering Deposition for Short-Wave Infrared Photonics. ACS Appl. Mater. Interfaces 2020, 12, 56161–56171. [Google Scholar] [CrossRef] [PubMed]
- Semonin, O.E.; Luther, J.M.; Beard, M.C. Quantum Dots for Next-Generation Photovoltaics. Mater. Today 2012, 15, 508–515. [Google Scholar] [CrossRef]
Sample Name | P (Al2O3)/W | P (Ge)/W | T/℃ | FN/sccm |
---|---|---|---|---|
N1 | 130 | 10 | 500 | 0 |
N2 | 130 | 10 | 500 | 2 |
N3 | 130 | 10 | 500 | 3 |
Sample Name | a | c | D | L | d | |||||
---|---|---|---|---|---|---|---|---|---|---|
N1 | 4.1 | 3.6 | 1.3 | 0.68 | 0.67 | 0.1 | 1.08 | 2.8 | 0.33 | 51 |
N2 | 4.3 | 3.7 | 1.4 | 1.2 | 0.97 | 0.56 | 1.14 | 2.9 | 0.37 | 54 |
N3 | 3.9 | 3.9 | 1.5 | 1.2 | --- | --- | 1.04 | 2.9 | 0.33 | 59 |
Sample Name | N ag | Ge ag | O ag | Al ag | N an | Ge an | O al | Al an |
---|---|---|---|---|---|---|---|---|
N1 | 0.6 ± 0.1 | 55 ± 3 | 28 ± 1 | 8.7 ± 0.8 | 0.3 ± 0.1 | 50 ± 3 | 30 ± 1 | 13.4 ± 10 |
N2 | 2.4 ± 03 | 54 ± 3 | 28 ± 1 | 1.5 ± 0.2 | 1.5 ± 0.2 | 44 ± 2 | 34 ± 2 | 11.0 ± 0.8 |
N3 | 3.6 ± 0.4 | 47 ± 2 | 34 ± 2 | 3.8 ± 0.4 | 3.8 ± 0.4 | 44 ± 2 | 32 ± 2 | 4.8 ± 1 |
Sample Name | Ge (0) | GeO2 | GeOx |
---|---|---|---|
N1 ag | 92.6 | 7.4 | 0.0 |
N1 an | 84.5 | 6.5 | 6.5 |
N3 ag | 86.0 | 10.4 | 3.6 |
N3 an | 94.9 | 5.1 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkalčević, M.; Boršćak, D.; Periša, I.; Bogdanović-Radović, I.; Šarić Janković, I.; Petravić, M.; Bernstorff, S.; Mičetić, M. Multiple Exciton Generation in 3D-Ordered Networks of Ge Quantum Wires in Alumina Matrix. Materials 2022, 15, 5353. https://doi.org/10.3390/ma15155353
Tkalčević M, Boršćak D, Periša I, Bogdanović-Radović I, Šarić Janković I, Petravić M, Bernstorff S, Mičetić M. Multiple Exciton Generation in 3D-Ordered Networks of Ge Quantum Wires in Alumina Matrix. Materials. 2022; 15(15):5353. https://doi.org/10.3390/ma15155353
Chicago/Turabian StyleTkalčević, Marija, Denis Boršćak, Ivana Periša, Iva Bogdanović-Radović, Iva Šarić Janković, Mladen Petravić, Sigrid Bernstorff, and Maja Mičetić. 2022. "Multiple Exciton Generation in 3D-Ordered Networks of Ge Quantum Wires in Alumina Matrix" Materials 15, no. 15: 5353. https://doi.org/10.3390/ma15155353
APA StyleTkalčević, M., Boršćak, D., Periša, I., Bogdanović-Radović, I., Šarić Janković, I., Petravić, M., Bernstorff, S., & Mičetić, M. (2022). Multiple Exciton Generation in 3D-Ordered Networks of Ge Quantum Wires in Alumina Matrix. Materials, 15(15), 5353. https://doi.org/10.3390/ma15155353