Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = wild almond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1955 KiB  
Review
Prunus Movement Across the Silk Road: An Integrated Evolutionary and Breeding Analysis
by Lucía Rodríguez-Robles, Sama Rahimi Devin, Xia Ye, Halil Ibrahim Sagbas, Sayyed Mohammad Ehsan Mahdavi, Eric Bishop-von Wettberg, Jiancan Feng, Manuel Rubio and Pedro Martínez-Gómez
Horticulturae 2024, 10(12), 1381; https://doi.org/10.3390/horticulturae10121381 - 23 Dec 2024
Cited by 1 | Viewed by 2228
Abstract
In the past, the Silk Road was a vital trade route that spanned Eurasia, connecting East Asia to the Mediterranean Sea. The genus Prunus, belonging to the Rosaceae family and encompassing plums, peaches, apricots, cherries, and almonds, thrived as human travel along [...] Read more.
In the past, the Silk Road was a vital trade route that spanned Eurasia, connecting East Asia to the Mediterranean Sea. The genus Prunus, belonging to the Rosaceae family and encompassing plums, peaches, apricots, cherries, and almonds, thrived as human travel along the Silk Road increased. The majority of fruits within this genus, whether wild or cultivated, are naturally sweet and easily preserved by drying for storage and transport. The interaction along the Silk Road between wild populations and diverse varieties of Prunus fruits led to the development of various hybrids. This article provides a summary of archaeological findings related to prominent Prunus fruits such as peaches, apricots, plums, cherries, and almonds, shedding light on their evolutionary history, genetic diversity, population structure, and historical dynamics crucial for species conservation. The origins of biodiversity may involve factors like migration of pre-adapted lineages, in situ variation, or the persistence of ancestral lineages. Furthermore, climate change is affecting spatial genetic patterns and potentially further threatening rare Prunus species. Evaluating the scope and composition of genetic diversity within germplasm collections is essential for enhancing plant breeding initiatives and preserving genetic resources in this changing context. From a molecular point of view, techniques such as genome-wide association studies (GWASs) and the identification of quantitative trait loci (QTLs) and genes responsible for phenotypic changes in cultivars and germplasm collections should be of great interest in these breeding programs, while genomic estimated breeding values (GEBVs) derived from genome-wide DNA polymorphism information can facilitate the selection of superior genotypes. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

4 pages, 231 KiB  
Proceeding Paper
Obtaining Carotenoids and Capsaicinoids (Capsicum chacoense) with a Green Solvent (Acrocomia aculeata Almond Oil)
by Eva Coronel, Laura Correa, Malena Russo, Carlos Zaracho, Maria Caravajal, Silvia Caballero, Rocio Villalba and Laura Mereles
Biol. Life Sci. Forum 2024, 37(1), 18; https://doi.org/10.3390/blsf2024037018 - 21 Nov 2024
Viewed by 550
Abstract
Capsicum chacoense (wild red pepper) and Acrocomia aculeata almond (Paraguayan coconut) are fruits native to Paraguay which are little-used and can be sources of important bioactive compounds. The aim of this work was to evaluate the use of Paraguayan coconut kernel [...] Read more.
Capsicum chacoense (wild red pepper) and Acrocomia aculeata almond (Paraguayan coconut) are fruits native to Paraguay which are little-used and can be sources of important bioactive compounds. The aim of this work was to evaluate the use of Paraguayan coconut kernel oil as a green solvent for the extraction of carotenoids and capsaicinoids from wild red pepper. Ultrasound-assisted extraction was performed (solvent ratio; 0.7 g/mL, amplitude 80%, for 17 min). The freeze-dried red pepper fruit, coconut oil, and coconut+red pepper oil were characterized by total carotenoids, total capsaicinoids, total phenolic compounds (TPCs), total antioxidant capacity (TAC), fatty acid (FA) profile, and color. It was possible to extract 46.7% of the carotenoids and 42.5% of the capsaicinoids present in the red pepper. However, only about 7% of TCP and TAC were maintained in the coconut+red pepper oil obtained. In the FA profile of red pepper oil, oleic acid and palmitic acid were observed as the main FAs. Conversely, in coconut oil, lauric acid and oleic acid were observed as the main components. In coconut+red pepper oil, the same main FAs were found, but in a lower percentage of lauric acid and higher percentage of oleic acid. Based on the results, coconut oil is a green solvent for the extraction of lipophilic secondary metabolites such as carotenoids and capsaicinoids. These can provide sensory characteristics such as color and flavor to coconut oil from Capsicum chacoense. In the oil obtained (coconut+red pepper), a significant difference in the FA profile was also seen, where the majority FA was oleic acid. Full article
(This article belongs to the Proceedings of VI International Congress la ValSe-Food)
19 pages, 8646 KiB  
Article
Origins and Genetic Characteristics of Egyptian Peach
by Mohamed Ezzat, Weihan Zhang, Mohamed Amar, Elsayed Nishawy, Lei Zhao, Mohammad Belal, Yuepeng Han and Liao Liao
Int. J. Mol. Sci. 2024, 25(15), 8497; https://doi.org/10.3390/ijms25158497 - 3 Aug 2024
Viewed by 2359
Abstract
Peach (Prunus persica), a significant economic fruit tree in the Rosaceae family, is extensively cultivated in temperate and subtropical regions due to its abundant genetic diversity, robust adaptability, and high nutritional value. Originating from China over 4000 years ago, peaches were [...] Read more.
Peach (Prunus persica), a significant economic fruit tree in the Rosaceae family, is extensively cultivated in temperate and subtropical regions due to its abundant genetic diversity, robust adaptability, and high nutritional value. Originating from China over 4000 years ago, peaches were introduced to Persia through the Silk Road during the Han Dynasty and gradually spread to India, Greece, Rome, Egypt, Europe, and America. Currently grown in more than 80 countries worldwide, the expansion of peach cultivation in Egypt is mainly due to the development and utilization of peach varieties with low chilling requirements. These varieties exhibit unique phenotypic characteristics such as early maturity, reduced need for winter cold temperatures, low water requirements, and high economic value. In this study, a systematic analysis was conducted on the genetic characteristics and kinship relationships of peaches with low chilling requirements in Egypt. We conducted a comprehensive evolutionary and Identity-by-Descent (IBD) analysis on over 300 peach core germplasm resources, including Egyptian cultivars with low chilling requirements, to investigate their origin and genetic characteristics. The evolutionary analysis revealed that ‘Bitter almond’ is closely related to China’s wild relative species Prunus tangutica Batal, while ‘Early grand’ shares one branch with Chinese ornamental peach cultivars, and ‘Nemaguard’ clusters with some ancient local varieties from China. The IBD analysis also indicated similar genetic backgrounds, suggesting a plausible origin from China. Similarly, the analysis suggested that ‘Swelling’ may have originated from the Czech Republic while ‘Met ghamr’ has connections to South Africa. ‘Desert red’, ‘Early swelling’, and ‘Florida prince’ are likely derived from Brazil. These findings provide valuable insights into the genetic characteristics of Egyptian peach cultivars. They offer a significant foundation for investigating the origin and spread of cultivated peaches worldwide and serve as a valuable genetic resource for breeding low chilling requirement cultivars, which is of considerable significance for the advancement of peach cultivation in Egypt. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3187 KiB  
Article
Genetic Divergence and Evolutionary Adaption of Four Wild Almond Species (Prunus spp. L.)
by Hong-Xiang Zhang, Xiao-Fang Zhang and Jian Zhang
Forests 2024, 15(5), 834; https://doi.org/10.3390/f15050834 - 10 May 2024
Cited by 1 | Viewed by 1393
Abstract
Parallel evolution usually occurs among related species with similar morphological characters in adaptation to particular environments. Four wild almond species (Prunus) sharing the character of dry mesocarp splitting are distributed in China, most of which occur in arid Northwestern China. In [...] Read more.
Parallel evolution usually occurs among related species with similar morphological characters in adaptation to particular environments. Four wild almond species (Prunus) sharing the character of dry mesocarp splitting are distributed in China, most of which occur in arid Northwestern China. In the present study, we aimed to clarify the phylogenetic relationship, evolutionary history, and environmental adaptation of these wild almond species based on genome-wide SNP data and chloroplast genomes. Chloroplast phylogeny showed P. pedunculata and P. tenella were clustered with wild cherry species (Prunus), while P. mongolica and P. tangutica were clustered with wild peach species (Prunus). Genomic phylogeny suggested P. tenella formed an independent clade. An ABC-RF approach showed P. pedunculata was merged with P. tenella and, then, diverged from the ancestor of P. mongolica and P. tangutica. P. tenella was split from other wild almond species at ca. 7.81 to 17.77 Ma. Genetic environment association analysis showed precipitation variables contributed the most to genetic variations between P. mongolica from an arid environment and P. tangutica from a humid environment. Finally, a total of 29 adaptive loci were successfully annotated, which were related to physiological processes in response to abiotic stresses. Inconsistent genomic and chloroplast phylogenetic positions of P. tenella suggested this species could have originated from historical hybridization among different clades of Prunus. Physiological mechanisms promoted P. mongolica in adapting to the arid environment in Northwestern China. Full article
Show Figures

Figure 1

16 pages, 6035 KiB  
Article
Overview of Cyanide Poisoning in Cattle from Sorghum halepense and S. bicolor Cultivars in Northwest Italy
by Stefano Giantin, Alberico Franzin, Fulvio Brusa, Vittoria Montemurro, Elena Bozzetta, Elisabetta Caprai, Giorgio Fedrizzi, Flavia Girolami and Carlo Nebbia
Animals 2024, 14(5), 743; https://doi.org/10.3390/ani14050743 - 27 Feb 2024
Cited by 10 | Viewed by 3974
Abstract
Sorghum plants naturally produce dhurrin, a cyanogenic glycoside that may be hydrolysed to cyanide, resulting in often-lethal toxicoses. Ruminants are particularly sensitive to cyanogenic glycosides due to the active role of rumen microbiota in dhurrin hydrolysis. This work provides an overview of a [...] Read more.
Sorghum plants naturally produce dhurrin, a cyanogenic glycoside that may be hydrolysed to cyanide, resulting in often-lethal toxicoses. Ruminants are particularly sensitive to cyanogenic glycosides due to the active role of rumen microbiota in dhurrin hydrolysis. This work provides an overview of a poisoning outbreak that occurred in 5 farms in Northwest Italy in August 2022; a total of 66 cows died, and many others developed acute toxicosis after being fed on either cultivated (Sorghum bicolor) or wild Sorghum (Sorghum halepense). Clinical signs were recorded, and all cows received antidotal/supportive therapy. Dead animals were subjected to necropsy, and dhurrin content was determined in Sorghum specimens using an LC–MS/MS method. Rapid onset, severe respiratory distress, recumbency and convulsions were the main clinical features; bright red blood, a bitter almond smell and lung emphysema were consistently observed on necropsy. The combined i.v. and oral administration of sodium thiosulphate resulted in a rapid improvement of clinical signs. Dhurrin concentrations corresponding to cyanide levels higher than the tolerated threshold of 200 mg/kg were detected in sorghum specimens from 4 out of 5 involved farms; thereafter, such levels declined, reaching tolerable concentrations in September–October. Feeding cattle with wild or cultivated Sorghum as green fodder is a common practice in Northern Italy, especially in summer. However, care should be taken in case of adverse climatic conditions, such as severe drought and tropical temperatures (characterising summer 2022), which are reported to increase dhurrin synthesis and storage. Full article
(This article belongs to the Special Issue Pasture-Associated Poisoning in Grazing Animals)
Show Figures

Figure 1

14 pages, 1322 KiB  
Article
A Regional Perspective of Socio-Ecological Predictors for Fruit and Nut Tree Varietal Diversity Maintained by Farmer Communities in Central Asia
by Muhabbat Turdieva, Agnès Bernis-Fonteneau, Maira Esenalieva, Abdihalil Kayimov, Ashirmuhammed Saparmyradov, Khursandi Safaraliev, Kairkul Shalpykov, Paolo Colangelo and Devra I. Jarvis
World 2024, 5(1), 22-35; https://doi.org/10.3390/world5010002 - 11 Jan 2024
Cited by 1 | Viewed by 2098
Abstract
The five independent countries of Central Asia, namely Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan, contain one of the richest areas in the world for the specific and intraspecific diversity of temperate fruit and nut tree species. Research was carried out via the collaboration [...] Read more.
The five independent countries of Central Asia, namely Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan, contain one of the richest areas in the world for the specific and intraspecific diversity of temperate fruit and nut tree species. Research was carried out via the collaboration of national research and education institutes with local community-based agencies and farmer communities. Raw data (2014 observations) for almond, apple, apricot, cherry plum, currant, grapevine, pear, pomegranate, and walnut were collected at the household (HH) level across the five countries: Uzbekistan, Kazakhstan, Tajikistan, Turkmenistan, and Kyrgyzstan. A set of models was used, including household variety richness as the dependent variable, to understand the influence of socio-ecological variables on the amount and distribution of crop varietal diversity in the farmers’ production systems. Four variables were included as explanatory variables of variety richness (fixed factors): ecoregion, ethno-linguistic group, management, and abiotic stress. The results show clear evidence that abiotic stress determines a higher richness of intra-specific diversity in the form of local varieties grown by farmers living in climatically unfavorable areas. The results for the studied ecoregions follow the same trend, with ecoregions with harsher conditions displaying a higher positive correlation with diversity. Mild environments such as the Central Asian riparian woodlands show an unexpectedly lower diversity than other harsher ecoregions. Ethno-linguistic groups also have an effect on the level of varietal diversity used, related to both historic nomadic practices and a culture of harvesting wild fruit and nuts in mountainous areas. The home garden management system hosts a higher diversity compared to larger production systems such as orchards. In Central Asia, encouraging the cultivation of local varieties of fruit and nut trees provides a key productive and resilient livelihood strategy for farmers living under the harsh environmental conditions of the region while providing a unique opportunity to conserve a genetic heritage of global importance. Full article
Show Figures

Figure 1

15 pages, 5397 KiB  
Article
Genome-Wide Analysis of DREB Family Genes and Characterization of Cold Stress Responses in the Woody Plant Prunus nana
by Cheng Qian, Lulu Li, Huanhuan Guo, Gaopu Zhu, Ning Yang, Xiaoyan Tan and Han Zhao
Genes 2023, 14(4), 811; https://doi.org/10.3390/genes14040811 - 28 Mar 2023
Cited by 4 | Viewed by 2704
Abstract
Dehydration response element binding factor (DREB) is a family of plant-specific transcription factors, whose members participate in the regulation of plant responses to various abiotic stresses. Prunus nana, also known as the wild almond, is a member of the Rosaceae family that [...] Read more.
Dehydration response element binding factor (DREB) is a family of plant-specific transcription factors, whose members participate in the regulation of plant responses to various abiotic stresses. Prunus nana, also known as the wild almond, is a member of the Rosaceae family that is rare and found to grow in the wild in China. These wild almond trees are found in hilly regions in northern Xinjiang, and exhibit greater drought and cold stress resistance than cultivated almond varieties. However, the response of P. nana DREBs (PnaDREBs) under low temperature stress is still unclear. In this study, 46 DREB genes were identified in the wild almond genome, with this number being slightly lower than that in the sweet almond (Prunus dulcis cultivar ‘Nonpareil’). These DREB genes in wild almond were separated into two classes. All PnaDREB genes were located on six chromosomes. PnaDREB proteins that were classified in the same groups contained specific shared motifs, and promoter analyses revealed that PnaDREB genes harbored a range of stress-responsive elements associated with drought, low-temperature stress, light responsivity, and hormone-responsive cis-regulatory elements within their promoter regions. MicroRNA target site prediction analyses also suggested that 79 miRNAs may regulate the expression of 40 of these PnaDREB genes, with PnaDREB2. To examine if these identified PnaDREB genes responded to low temperature stress, 15 of these genes were selected including seven homologous to Arabidopsis C-repeat binding factor (CBFs), and their expression was assessed following incubation for 2 h at 25 °C, 5 °C, 0 °C, −5 °C, or −10 °C. In summary, this analysis provides an overview of the P. nana PnaDREB gene family and provides a foundation for further studies of the ability of different PnaDREB genes to regulate cold stress responses in almond plants. Full article
(This article belongs to the Special Issue Genetic Studies of Ornamental Horticulture and Floriculture)
Show Figures

Figure 1

16 pages, 3272 KiB  
Article
Selection for Sustainable Preservation through In Vitro Propagation of Mature Pyrus spinosa Genotypes Rich in Total Phenolics and Antioxidants
by Styliani Alexandri, Maria Tsaktsira, Stefanos Hatzilazarou, Stefanos Kostas, Irini Nianiou-Obeidat, Athanasios Economou, Apostolos Scaltsoyiannes and Parthena Tsoulpha
Sustainability 2023, 15(5), 4511; https://doi.org/10.3390/su15054511 - 2 Mar 2023
Cited by 5 | Viewed by 2043
Abstract
Pyrus spinosa Forssk. (almond-leaved pear) is a wild-growing native tree of the hilly countryside of Greece, which has recently gained interest for its valuable endogenous substances. In the present work, the determination of the total phenol content (TPC) and antioxidant capacity (AC) was [...] Read more.
Pyrus spinosa Forssk. (almond-leaved pear) is a wild-growing native tree of the hilly countryside of Greece, which has recently gained interest for its valuable endogenous substances. In the present work, the determination of the total phenol content (TPC) and antioxidant capacity (AC) was carried out during 2021 and 2022 in leaves from 32 genotypes of mature wild-growing trees at four different locations of Central Macedonia District, Greece: Agia Anastasia, Chalkidiki, Lagadas and Pieria. The measurements taken from the leaf samples of all genotypes revealed a strong positive linear correlation between TPC and AC (R2 = 0.772). Two genotypes from Agia Anastasia, coded as AA2 and AA3, were comparatively the richest in TPC (44.86 for AA2 and 46.32 mg GAE/g fresh weight for AA3) and AC (70.31 and 71.21 μg AAE/g fresh weight for the same genotypes). For these two genotypes of high TPC and AC, an efficient micropropagation protocol was developed to preserve and multiply this valuable germplasm. Newly emerged shoot tips were excised from winter shoots and, after disinfestation, they were established on a modified Murashige and Skoog (MS) nutrient medium with 5 μΜ of 6-Benzyloaminopurine (BAP). For shoot multiplication, explants from clean cultures were transferred to Pear Medium 1 with 5 μΜ of BAP. The effect of the nutrient medium was tested by using five different nutrient media (modified MS, Pear Medium 1, Pear Medium 2, DKW and WPM) supplemented with 5 μΜ of BAP. Pear Medium 1 was the most effective in shoot formation. Among the four different BAP concentrations (0, 5, 10 and 20 μΜ) used in Pear Medium 1, 5 μΜ of BAP resulted in the production of the significantly highest number of shoots (22.7 shoots per explant, 2.4 cm long). The exposure of cultures to 10 μmol·m−2·s−1 for one week under light irradiance followed by 35 μmol·m−2·s−1 for four weeks increased both the number and length of the shoots produced. A 20-s dip of the shoot bases into 49.0 μΜ of Indole-3-butyric acid (IBA) in EtOH equally affected rooting in a modified rooting MS (79%) and Pear Medium 1 (80%). The root system developed better in the modified rooting MS medium (mean number of roots of 2.7 with a length of 3.9 cm). The acclimatization of the plantlets was successfully carried out (high survival rates five weeks after their establishment) on a perlite substrate under controlled environmental conditions. Full article
Show Figures

Figure 1

12 pages, 1595 KiB  
Communication
Development and Evaluation of an AxiomTM 60K SNP Array for Almond (Prunus dulcis)
by Henri Duval, Eva Coindre, Sebastian E. Ramos-Onsins, Konstantinos G. Alexiou, Maria J. Rubio-Cabetas, Pedro J. Martínez-García, Michelle Wirthensohn, Amit Dhingra, Anna Samarina and Pere Arús
Plants 2023, 12(2), 242; https://doi.org/10.3390/plants12020242 - 5 Jan 2023
Cited by 12 | Viewed by 3190
Abstract
A high-density single nucleotide polymorphism (SNP) array is essential to enable faster progress in plant breeding for new cultivar development. In this regard, we have developed an Axiom 60K almond SNP array by resequencing 81 almond accessions. For the validation of the array, [...] Read more.
A high-density single nucleotide polymorphism (SNP) array is essential to enable faster progress in plant breeding for new cultivar development. In this regard, we have developed an Axiom 60K almond SNP array by resequencing 81 almond accessions. For the validation of the array, a set of 210 accessions were genotyped and 82.8% of the SNPs were classified in the best recommended SNPs. The rate of missing data was between 0.4% and 2.7% for the almond accessions and less than 15.5% for the few peach and wild accessions, suggesting that this array can be used for peach and interspecific peach × almond genetic studies. The values of the two SNPs linked to the RMja (nematode resistance) and SK (bitterness) genes were consistent. We also genotyped 49 hybrids from an almond F2 progeny and could build a genetic map with a set of 1159 SNPs. Error rates, less than 1%, were evaluated by comparing replicates and by detection of departures from Mendelian inheritance in the F2 progeny. This almond array is commercially available and should be a cost-effective genotyping tool useful in the search for new genes and quantitative traits loci (QTL) involved in the control of agronomic traits. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

15 pages, 4505 KiB  
Article
Transfer of Self-Fruitfulness to Cultivated Almond from Peach and Wild Almond
by Thomas M. Gradziel
Horticulturae 2022, 8(10), 965; https://doi.org/10.3390/horticulturae8100965 - 18 Oct 2022
Cited by 6 | Viewed by 3252
Abstract
The almond [Prunus dulcis (Mill.) D.A. Webb] is normally self-sterile, requiring orchard placement of pollinizer cultivars and insect pollinators. Honeybees are the primary insect pollinators utilized, but climate change and the higher frequency of extreme weather events have reduced their availability to [...] Read more.
The almond [Prunus dulcis (Mill.) D.A. Webb] is normally self-sterile, requiring orchard placement of pollinizer cultivars and insect pollinators. Honeybees are the primary insect pollinators utilized, but climate change and the higher frequency of extreme weather events have reduced their availability to levels insufficient to meet the demands of current and anticipated almond acreage. The incorporation of self-fruitfulness may eliminate the need for both pollinizers and pollinators and allow the planting of single cultivar orchards that facilitate orchard management and reduce agrochemical inputs. Self-fruitfulness requires self-compatibility of self-pollen tube growth to fertilization, as well as a high level of consistent self-pollination or autogamy over the range of anticipated bloom environments. The Italian cultivar Tuono has been the sole source of self-compatibility for breeding programs world-wide, leading to high levels of inbreeding in current almond improvement programs. Both self-compatibility and autogamy have been successfully transferred to commercial almonds from cultivated peaches (Prunus persica L.), as well as wild peach and almond species. Self-compatibility was inherited as a novel major gene, but was also influenced by modifiers. Molecular markers developed for one species source often failed to function for other species’ sources. Autogamy was inherited as a quantitative trait. Breeding barriers were more severe in the early stages of trait introgression, but rapidly diminished by the second to third backcross. Increasing kernel size, which was similarly inherited as a quantitative trait, was a major regulator of the introgression rate. Self-fruitfulness, along with good commercial performance of tree and nut traits, was recovered from different species sources, including Prunus mira, Prunus webbii, P. persica, and the P. webbii-derived Italian cultivar Tuono. Differences in expression of self-fruitfulness were observed, particularly during field selection at the early growth stages. Introgression of self-fruitfulness from these diverse sources also enriched overall breeding germplasm, allowing the introduction of useful traits that are not accessible within traditional germplasm. Full article
(This article belongs to the Special Issue Frontiers in Nut Crop Genetics and Germplasm Diversity)
Show Figures

Figure 1

36 pages, 8247 KiB  
Article
A Proposed New Species Complex within the Cosmopolitan Ring Nematode Criconema annuliferum (de Man, 1921) Micoletzky, 1925
by Ilenia Clavero-Camacho, Juan Emilio Palomares-Rius, Carolina Cantalapiedra-Navarrete, Pablo Castillo, Gracia Liébanas and Antonio Archidona-Yuste
Plants 2022, 11(15), 1977; https://doi.org/10.3390/plants11151977 - 29 Jul 2022
Cited by 6 | Viewed by 2610
Abstract
Ring nematodes are obligate ectoparasites on cultivated and wild herbaceous and woody plants, inhabiting many types of soil, but particularly sandy soils. This study explored the morphometrical and molecular diversity of ring nematodes resembling Criconema annuliferum in 222 soil samples from fruit crops [...] Read more.
Ring nematodes are obligate ectoparasites on cultivated and wild herbaceous and woody plants, inhabiting many types of soil, but particularly sandy soils. This study explored the morphometrical and molecular diversity of ring nematodes resembling Criconema annuliferum in 222 soil samples from fruit crops in Spain, including almond, apricot, peach and plum, as well as populations from cultivated and wild olives, and common yew. Ring nematodes of the genus Criconema were detected in 12 samples from under Prunus spp. (5.5%), showing a low to moderate nematode soil densities in several localities from southeastern and northeastern Spain. The soil population densities of Criconema associated with Prunus spp. ranged from 1 nematode/500 cm3 of soil in apricot at Sástago (Zaragoza province) to 7950 and 42,491 nematodes/500 cm3 of soil in peach at Ricla and Calasparra (Murcia province), respectively. The integrative taxonomical analyses reveal the presence of two cryptic species identified using females, males (when available), and juveniles with detailed morphology, morphometry, and molecular markers (D2-D3, ITS, 18S, and COI), described herein as Criconema paraannuliferum sp. nov. and Criconema plesioannuliferum sp. nov. All molecular markers from each species were obtained from the same individuals, and these individuals were also used for morphological and morphometric analyses. Criconema paraannuliferum sp. nov. was found in a high soil density in two peach fields (7950 and 42,491 nematodes/500 cm3 of soil) showing the possibility of being pathogenic in some circumstances. Full article
Show Figures

Figure 1

7 pages, 568 KiB  
Article
Continuous Pest Surveillance and Monitoring Constitute a Tool for Sustainable Agriculture: Case of Xylella fastidiosa in Morocco
by Kaoutar El Handi, Majida Hafidi, Miloud Sabri, Michel Frem, Maroun El Moujabber, Khaoula Habbadi, Najat Haddad, Abdellatif Benbouazza, Raied Abou Kubaa and El Hassan Achbani
Sustainability 2022, 14(3), 1485; https://doi.org/10.3390/su14031485 - 27 Jan 2022
Cited by 10 | Viewed by 3162
Abstract
Climate and trade changes are reshaping the cartographic distribution of lethal pervasive pathogens. Among serious emerging challenges is Xylella fastidiosa (Xf), a xylem-limited phytopathogenic bacterium that produces losses and damages to numerous crops of high economic and agronomic importance. Lately, this [...] Read more.
Climate and trade changes are reshaping the cartographic distribution of lethal pervasive pathogens. Among serious emerging challenges is Xylella fastidiosa (Xf), a xylem-limited phytopathogenic bacterium that produces losses and damages to numerous crops of high economic and agronomic importance. Lately, this grave quarantine pathogen has expended its distribution by arriving to several European countries and infecting both wild and cultivated plants, and no cure has been identified so far. Countries without current outbreaks like Morocco, need to monitor theirs crops frequently because detecting diseases in the early stages may reduce the huge losses caused by Xf. For that purpose, inspections were managed in different regions in Morocco from March 2020 to July 2021 to assess the presence of Xf in several growing areas of vulnerable economic crops (i.e., almond, citrus and olive). To extend the likelihood of detection, hosts have been inspected and sampled randomly over different environments including symptomatic and asymptomatic plants. Each sample was screened for the existence of Xf by using the DAS-ELISA commercial kit, while, further analyses were carried out for doubtful samples, by PCR. Results of both tests did not show any positive sample in the investigated areas. This finding is an update on the Xf situation in Morocco and confirms that this country is still a free territory from this bacterium, at least in the monitored regions. Full article
(This article belongs to the Special Issue Sustainable Agriculture and Climate Resilience)
Show Figures

Figure 1

14 pages, 2493 KiB  
Perspective
Landscape Epidemiology of Xylella fastidiosa in the Balearic Islands
by Diego Olmo, Alicia Nieto, David Borràs, Marina Montesinos, Francesc Adrover, Aura Pascual, Pere A. Gost, Bàrbara Quetglas, Alejandro Urbano, Juan de Dios García, María Pilar Velasco-Amo, Concepción Olivares-García, Omar Beidas, Andreu Juan, Ester Marco-Noales, Margarita Gomila, Juan Rita, Eduardo Moralejo and Blanca B. Landa
Agronomy 2021, 11(3), 473; https://doi.org/10.3390/agronomy11030473 - 4 Mar 2021
Cited by 46 | Viewed by 5715
Abstract
Xylella fastidiosa (Xf) is a vascular plant pathogen native to the Americas. In 2013, it was first reported in Europe, implicated in a massive die-off of olive trees in Apulia, Italy. This finding prompted mandatory surveys across Europe, successively revealing that [...] Read more.
Xylella fastidiosa (Xf) is a vascular plant pathogen native to the Americas. In 2013, it was first reported in Europe, implicated in a massive die-off of olive trees in Apulia, Italy. This finding prompted mandatory surveys across Europe, successively revealing that the bacterium was already established in some distant areas of the western Mediterranean. To date, the Balearic Islands (Spain) hold the major known genetic diversity of Xf in Europe. Since October 2016, four sequence types (ST) belonging to the subspecies fastidiosa (ST1), multiplex (ST7, ST81), and pauca (ST80) have been identified infecting 28 host species, including grapevines, almond, olive, and fig trees. ST1 causes Pierce’s disease (PD) and together with ST81 are responsible for almond leaf scorch disease (ALSD) in California, from where they were introduced into Mallorca in around 1993, very likely via infected almond scions brought for grafting. To date, almond leaf scorch disease affects over 81% of almond trees and Pierce’s disease is widespread in vineyards across Mallorca, although producing on average little economic impact. In this perspective, we present and analyze a large Xf-hosts database accumulated over four years of field surveys, laboratory sample analyses, and research to understand the underlying causes of Xf emergence and spread among crops and wild plants in the Balearic Islands. The impact of Xf on the landscape is discussed. Full article
(This article belongs to the Special Issue Diagnosis, Population Biology and Management of Vascular Diseases)
Show Figures

Figure 1

11 pages, 1512 KiB  
Article
Use of a Managed Solitary Bee to Pollinate Almonds: Population Sustainability and Increased Fruit Set
by Jordi Bosch, Sergio Osorio-Canadas, Fabio Sgolastra and Narcís Vicens
Insects 2021, 12(1), 56; https://doi.org/10.3390/insects12010056 - 11 Jan 2021
Cited by 26 | Viewed by 3927
Abstract
Osmia spp. are excellent orchard pollinators but evidence that their populations can be sustained in orchard environments and their use results in increased fruit production is scarce. We released an Osmia cornuta population in an almond orchard and measured its population dynamics, as [...] Read more.
Osmia spp. are excellent orchard pollinators but evidence that their populations can be sustained in orchard environments and their use results in increased fruit production is scarce. We released an Osmia cornuta population in an almond orchard and measured its population dynamics, as well as visitation rates and fruit set at increasing distances from the nesting stations. Honeybees were 10 times more abundant than O. cornuta. However, the best models relating fruit set and bee visitation included only O. cornuta visitation, which explained 41% and 40% of the initial and final fruit set. Distance from the nesting stations explained 27.7% and 22.1% of the variability in initial and final fruit set. Of the 198 females released, 99 (54.4%) established and produced an average of 9.15 cells. Female population growth was 1.28. By comparing our results with those of previous O. cornuta studies we identify two important populational bottlenecks (female establishment and male-biased progeny sex ratios). Our study demonstrates that even a small population of a highly effective pollinator may have a significant impact on fruit set. Our results are encouraging for the use of Osmia managed populations and for the implementation of measures to promote wild pollinators in agricultural environments. Full article
(This article belongs to the Special Issue Non-Apis Pollinators and Global Change)
Show Figures

Figure 1

18 pages, 362 KiB  
Article
Temporal Response to Drought Stress in Several Prunus Rootstocks and Wild Species
by Pedro José Martínez-García, Jens Hartung, Felipe Pérez de los Cobos, Pablo Martínez-García, Sara Jalili, Juan Manuel Sánchez-Roldán, Manuel Rubio, Federico Dicenta and Pedro Martínez-Gómez
Agronomy 2020, 10(9), 1383; https://doi.org/10.3390/agronomy10091383 - 14 Sep 2020
Cited by 14 | Viewed by 4074
Abstract
Prunus species are important crops in temperate regions. In these regions, drought periods are predicted to occur more frequently due to climate change. In this sense, to reduce the impact of climate warming, obtaining new tolerant/resistant cultivars and rootstocks is a mandatory goal [...] Read more.
Prunus species are important crops in temperate regions. In these regions, drought periods are predicted to occur more frequently due to climate change. In this sense, to reduce the impact of climate warming, obtaining new tolerant/resistant cultivars and rootstocks is a mandatory goal in Prunus breeding. Therefore, the current study assembled three Prunus species including almond, (P. dulcis Mill D.A. Webb), apricot (P. armeniaca L.) and peach (P. persica L.) to model the temporal effects of drought. A hybrid peach × almond and a wild almond-relative species Prunus webbii were also included in the study. Physiological traits associated with photosynthetic activity, leaf water status, and chlorophyll content were assessed under three watering treatments. Results showed that effects of time, genotype, and treatment interact significantly in all traits. In addition, results confirmed that P. webbii have a greater tolerance to drought than commercial rootstocks. However, “Real Fino” apricot showed the fastest recovery after re-irrigation while being one of the most affected cultivars. In addition, from the better response to these watering treatments by the almond genotypes, two different trends were observed after re-irrigation treatment that clearly differentiate the response of the almond cultivar “Garrigue” from the rest of Prunus genotypes. A better characterization of the short-term drought response in Prunus, an accurate and more efficient evaluation of the genotype effect was obtained from the use of mixed models considering appropriate variance–covariance structures. Although the advantages of these approaches are rarely used in Prunus breeding, these methodologies should be undertaken in the future by breeders to increase efficiency in developing new breeding materials. Full article
(This article belongs to the Special Issue Recent Advances in Genomics and Genetics of Fruit Trees)
Back to TopTop