Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = wholegrain flour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2310 KiB  
Article
Changes in BMI and Fat Mass and Nutritional Behaviors in Children Between 10 and 14 Years of Age
by Katarzyna Ługowska, Elżbieta Krzęcio-Nieczyporuk, Joanna Trafiałek and Wojciech Kolanowski
Nutrients 2025, 17(7), 1264; https://doi.org/10.3390/nu17071264 - 3 Apr 2025
Cited by 1 | Viewed by 730
Abstract
Background/Objectives: Unhealthy nutritional behaviors and excess body weight constitute a serious challenge for public health in children and adolescents. The aim of this study was to examine changes in body mass index (BMI), body fat mass (FM), and nutritional behaviors in the [...] Read more.
Background/Objectives: Unhealthy nutritional behaviors and excess body weight constitute a serious challenge for public health in children and adolescents. The aim of this study was to examine changes in body mass index (BMI), body fat mass (FM), and nutritional behaviors in the same group of children during a 4-year observation between 10 and 14 years of age including the period of the COVID-19 pandemic. Methods: BMI and FM using bioelectrical impedance were assessed. To assess nutritional behavior, a questionnaire on eating behavior was used. The study was carried out in a group of 250 children, starting from the age of 10 and finishing at the age of 14. The measurements were collected in the years 2017 and 2021. The results were compared and analyzed. Results: Excessive BMI (overweight and obesity) was more often found in girls (28.29%) than boys (23.63%), while normal body weight was more often found in boys (65.76%) than girls (60.96%). Between the initial and final assessments, the percentage of children with normal body mass decreased from 65.65% to 61.07%. Excessive BMI (overweight and obesity) increased from 27.09% to 29.50% in girls, and from 21.26% to 26.00% in boys. The mean percentage of FM was higher in girls than boys (23.17% vs. 16.20%, respectively). The mean FM decreased from 17.80% to 14.60% in boys and increased from 21.77% to 24.57% in girls. Poor nutritional behaviors were observed in 20.35% of children, more often in boys (22.25%) than in girls (18.50%). Between the initial and final assessments, an increase in the mean consumption of fruit, whole-grain bread, and milk was noted. These were products that should be consumed more often to demonstrate a healthy diet. However, the consumption of products that should be limited for a healthy diet, such as fried flour dishes, fried meat dishes, fatty cheeses, butter, fast food, sweets, and carbonated drinks, also increased. Boys more often than girls consumed red meat and poultry meat, eggs, butter, and fast food, while girls more often than boys consumed fruit, vegetables, yogurts, cottage cheese, wholemeal bread, fruit, and sweets. Conclusions: Children usually showed moderate nutritional behavior. After four years, there was a significant increase in the consumption of fruit and whole-grain bread, i.e., products that should be consumed as part of a healthy diet, as well as fried flour and meat dishes, fatty cheeses, butter, fast food, and sweets, i.e., products whose consumption should be limited. With age, the percentage of children showing unfavorable nutritional behaviors and excessive body weight increased. More extreme levels of overweight and obesity and higher body fat contents were found in girls than boys. Although girls’ nutritional behaviors were healthier, they were at a higher risk of excessive body weight. Increased promotion of a healthy diet and regular monitoring of body fat content in school-aged children is strongly recommended. Full article
Show Figures

Figure 1

24 pages, 2256 KiB  
Article
Technological Challenges of Spirulina Powder as the Functional Ingredient in Gluten-Free Rice Crackers
by Ivana Nikolić, Ivana Lončarević, Slađana Rakita, Ivana Čabarkapa, Jelena Vulić, Aleksandar Takači and Jovana Petrović
Processes 2025, 13(3), 908; https://doi.org/10.3390/pr13030908 - 19 Mar 2025
Viewed by 1049
Abstract
Technological issues with the production of gluten-free rice crackers with spirulina powder were examined in this work through their rheological, textural, color, sensory, and nutritional aspects. A part of gluten-free whole-grain rice flour was replaced with 5, 10, and 15% spirulina powder in [...] Read more.
Technological issues with the production of gluten-free rice crackers with spirulina powder were examined in this work through their rheological, textural, color, sensory, and nutritional aspects. A part of gluten-free whole-grain rice flour was replaced with 5, 10, and 15% spirulina powder in an appropriate recipe for crackers. The rheological analysis presented obtained dough samples as viscoelastic systems with dominant elastic components (G′ > G″ and Tan δ = G″/G′ is less than 0). The addition of spirulina contributed to a softer dough consistency according to a statistically significant (p < 0.5) decrease of Newtonian viscosity during the creep phase for a maximum of 43.37%, compared to the control dough. The 10 and 15% quantities of spirulina powder led to a statistically significant (p < 0.5) increase in the viscoelastic parameter Jmax, which indicated a greater dough adaptability to stress. The textural determination of the dough pointed statistically significantly (p < 0.05) to decreased dough hardness and improved dough extensibility and confirmed all rheological measurements with high correlation coefficients, indicating good physical dough properties during processing. Spirulina certainly affected the change in the color of the dough from a yellow-white to intense green, which also had a significant impact on the sensory quality of the baked crackers. Many sensory properties of the crackers were improved by the addition of and increasing amounts of spirulina (appearance, brittleness, hardness, graininess, and stickiness). The results for the dough and for the final crackers pointed to very good technological aspects for the development of a gluten-free bakery product with high nutritional value, such as increased polyphenolic content (with the majority of catechins), protein, total dietary fibers, and mineral content compared to the control sample. Full article
(This article belongs to the Special Issue Rheological Properties of Food Products)
Show Figures

Graphical abstract

20 pages, 8305 KiB  
Article
Effect of Addition Amount on Rheological, Structural, and Sensory Properties of Whole-Grain Sweet Potato Noodles Using Extrusion
by Yan Zeng, Jie Wang, Mengxiao Bao, Yue Wu and Zhigang Chen
Foods 2025, 14(6), 1040; https://doi.org/10.3390/foods14061040 - 19 Mar 2025
Viewed by 767
Abstract
Whole grain foods have been recommended to preserve biologically active components and benefit human health. The effect of the addition amount of whole sweet potato flour (WSPF, 25%, 51%, and 75%) on the physicochemical and structural properties of extruded whole-grain noodles was evaluated. [...] Read more.
Whole grain foods have been recommended to preserve biologically active components and benefit human health. The effect of the addition amount of whole sweet potato flour (WSPF, 25%, 51%, and 75%) on the physicochemical and structural properties of extruded whole-grain noodles was evaluated. Compared with traditional wheat flour (WF), the increased content of WSPF led to an enhancement in the dough’s water retention capacity, resulting in the reduction of dough development time and stability time. The modulus of elasticity and the modulus of loss of the dough exhibited a positive correlation with the proportion of WSPF added, while the tangent value and maximum creep flexibility were negatively correlated. Confocal laser scanning microscopy (CLSM) observed that WSPF induced protein aggregation in the dough. Compared to conventional WF, the increased incorporation of WSPF resulted in improved textural characteristics of the extruded noodles. Sensory evaluation indicated that the addition of WSPF could enhance the quality of the noodles by imparting a sweet potato aroma, a distinctive color, and a satisfactory taste. These characteristics were correlated with their enhanced relative crystallinity, enthalpy, and short-range ordered structure. Additionally, 75% whole-grain sweet potato noodles exhibited the highest relative crystallinity (11.05%), enthalpy of pasting (ΔH, 22.6 J/g), and short-range ordered structure (0.78). SEM results indicated that the presence of holes in the cross-section of the sweet potato extruded noodles facilitated their rapid rehydration. Overall, the whole-grain sweet potato noodles have great potential in promoting the textural, sensory, and nutritional properties compared to traditional wheat noodles. Full article
Show Figures

Figure 1

26 pages, 3565 KiB  
Article
Sensory Properties and Acceptability of Fermented Pearl Millet, a Climate-Resistant and Nutritious Grain, Among Consumers in the United States—A Pilot Study
by May M. Cheung, Lauren Miller, Jonathan Deutsch, Rachel Sherman, Solomon H. Katz and Paul M. Wise
Foods 2025, 14(5), 871; https://doi.org/10.3390/foods14050871 - 3 Mar 2025
Viewed by 1472
Abstract
Millets are climate-resistant, potential alternatives to wheat that could provide environmental, food security, and health benefits (e.g., lower glycemic index). However, millets are high in phytic acid, which reduces the bioavailability of essential minerals. Millets are often fermented in Africa and parts of [...] Read more.
Millets are climate-resistant, potential alternatives to wheat that could provide environmental, food security, and health benefits (e.g., lower glycemic index). However, millets are high in phytic acid, which reduces the bioavailability of essential minerals. Millets are often fermented in Africa and parts of Asia to improve bioavailability and, thus, nutritional value, but both unfermented and fermented millets may have flavors unfamiliar to Western cultures. We conducted two pilot studies on sensory perception and liking of whole grain, United States pearl millet (Pennisetum glaucum), in a group of U.S. consumers. In a preliminary study, we compared pearl millet treated under five different conditions (0, 48, and 96 h of fermentation fully submerged in either distilled water or in a 5% NaCl solution at 28 °C). We found that 96 h of spontaneous fermentation in water, an inexpensive and accessible technique consistent with consumer demand for minimally processed foods, reduced phytic acid by ~72%. However, consumers (n = 12) rated flatbreads made with fermented pearl millet as more bitter and sour than flatbreads made with unfermented pearl millet. In a second study, participants (n = 30) rated liking and purchase intent for whole wheat bread with 0 to 50% (w/w) substitution of pearl millet flour. Replacing up to 20% of wheat with fermented or unfermented pearl millet had no measurable effect on liking or purchase intent. More extensive substitution compromised liking, particularly with fermented pearl millet. More work is needed, but so far, there appear to be no sensory barriers to at least partial substitution of whole-grain pearl millet for wheat in whole wheat bread for United States consumers. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

17 pages, 2798 KiB  
Article
Exploring the Sensory Odor Profile of Sourdough Starter from Ancient Whole-Wheat Flours in the Development of Cookies with Enhanced Quality
by Dubravka Škrobot, Nikola Maravić, Miroslav Hadnađev, Tamara Dapčević-Hadnađev, Mladenka Pestorić and Jelena Tomić
Foods 2025, 14(4), 613; https://doi.org/10.3390/foods14040613 - 12 Feb 2025
Viewed by 820
Abstract
This study investigates the benefits of sourdough fermentation using ancient whole-wheat flours in the development of cookies, leveraging innovative rapid sensory evaluation methods to highlight their unique sensory attributes and potential health advantages. The spontaneous fermentation of wholegrain wheat, spelt, Khorasan, and emmer [...] Read more.
This study investigates the benefits of sourdough fermentation using ancient whole-wheat flours in the development of cookies, leveraging innovative rapid sensory evaluation methods to highlight their unique sensory attributes and potential health advantages. The spontaneous fermentation of wholegrain wheat, spelt, Khorasan, and emmer flour–water mixtures was monitored, focusing on odor development. Temporal Dominance of Sensations (TDS) was employed to track how sourdough odor unfolds over time while Check-All-That-Apply (CATA) and Hedonic tests were applied to capture the sensory characteristics of sourdough starter samples and consumer overall liking in order to identify sourdough with the most appealing odor for cookie preparation. Based on the result, spelt and Khorasan lyophilized sourdough were used for cookie preparation. Further, Rate-All-That-Apply (RATA) was applied to investigate the sensory profiles of the developed cookies and panelists’ hedonic perceptions and attitudes toward them. The resulting sourdough cookies exhibited higher fiber and comparable protein and fat content, lower energy value with sensory properties comparable to those of commercial samples. This research not only presents a comprehensive selection of sensory methodologies ideal for product development but also offers valuable insights into the sensory profile of sourdough-containing cookies, paving the way for enhanced formulation and strategic commercialization. Full article
Show Figures

Figure 1

15 pages, 16830 KiB  
Article
Biotechnological Tools for the Production of Low-FODMAP Wholegrain Wheat and Rye Cookies and Crackers
by Aleksandra M. Torbica, Bojana Filipčev, Vesna Vujasinović, Uroš Miljić, Goran Radivojević, Milorad Miljić and Miloš Radosavljević
Foods 2025, 14(4), 582; https://doi.org/10.3390/foods14040582 - 10 Feb 2025
Cited by 1 | Viewed by 947
Abstract
Fermentable oligosaccharides, di- and monosaccharides, and polyols defined as FODMAPs readily trigger the symptoms of irritable bowel syndrome (IBS), which affects up to 23% of the population, through several mechanisms. A low-FODMAP diet is a short-term solution due to significant nutrient deficiencies, especially [...] Read more.
Fermentable oligosaccharides, di- and monosaccharides, and polyols defined as FODMAPs readily trigger the symptoms of irritable bowel syndrome (IBS), which affects up to 23% of the population, through several mechanisms. A low-FODMAP diet is a short-term solution due to significant nutrient deficiencies, especially in dietary fibre (DF). IBS patients must avoid cereals, especially wholegrain cereals such as wheat and rye, which are an important natural source of DF and therefore FODMAPs (part of soluble DF). This study is the first of its kind to employ biotechnological tools for the creation of wholegrain low-FODMAP cookies and crackers based on wholegrain wheat and rye flours with high FODMAP contents. Endogenous enzymes activated via prolonged dough resting and exogenously activated enzymes originating from chicory extract, wheat malt, and baker’s yeast were employed. The prolonged dough resting time and the addition of wheat malt reduced the FODMAP content in the wholegrain wheat and rye cookies by 46% and 99.5%, respectively. The best result was achieved in the wholegrain wheat crackers, with a FODMAP content reduction of 59.3% based on the combination of a prolonged dough resting time and the addition of wheat malt and baker’s yeast. In the wholegrain rye crackers, a prolonged resting time alone was sufficient to achieve an 83.6% reduction in the total oligosaccharide content. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

18 pages, 8020 KiB  
Article
Successful Strategy in Creating Low-FODMAP Wholegrain Bread—Simple and Global
by Aleksandra M. Torbica, Vesna Vujasinović, Uroš Miljić, Goran Radivojević, Bojana Filipčev, Milorad Miljić and Miloš Radosavljević
Foods 2025, 14(2), 304; https://doi.org/10.3390/foods14020304 - 17 Jan 2025
Cited by 1 | Viewed by 1802
Abstract
Fermentable oligo-, di-, and monosaccharides as well as polyols (FODMAPs) came into focus following recent clinical studies confirming that they worsen the symptoms of several gastrointestinal disorders suffered by 40% of the general population. Currently; only the low-FODMAP diet is a valuable strategy [...] Read more.
Fermentable oligo-, di-, and monosaccharides as well as polyols (FODMAPs) came into focus following recent clinical studies confirming that they worsen the symptoms of several gastrointestinal disorders suffered by 40% of the general population. Currently; only the low-FODMAP diet is a valuable strategy to help relieve IBS symptoms; however; it is only a temporary solution due to the nutritional deficiency caused by avoiding high-FODMAP foods. At the same time; bakery products are an important part of the human diet worldwide and the key contributors to the high intake of FODMAPs; especially in their wholegrain form. Previous research has shown that reducing FODMAPs content has negative effects on the structures of dough and bread; as well as on sensory quality. Our innovative low-FODMAP wholegrain bakery products provide a unique solution for achieving a high-dietary-fiber intake without compromising the sensory appeal. The novelty of our work is that these experiments were the first to be performed based on known but unexploited facts about the superiority of the baker’s yeast enzymatic complex. A crucial reduction in FODMAP content (by more than 75%) was achieved via a simple alteration to the bread formulation (6% baker’s yeast and the addition of baking powder) and key process parameter values (40 °C and 60 min dough fermentation time) in conventional breadmaking technology. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

18 pages, 953 KiB  
Article
Mitigation of Mycotoxin Content by a Single-Screw Extruder in Triticale (x Triticosecale Wittmack)
by Breda Jakovac-Strajn, Janja Babič, Lato Pezo, Vojislav Banjac, Radmilo Čolović, Jovana Kos, Jelena Miljanić and Elizabet Janić Hajnal
Foods 2025, 14(2), 263; https://doi.org/10.3390/foods14020263 - 15 Jan 2025
Viewed by 984
Abstract
The aim of this study was to investigate the effects of extrusion processing parameters—moisture content (M = 20 and 24%), feeding rate (FR = 20 and 25 kg/h), and screw speed (SS = 300, 390 and 480 RPM), on the [...] Read more.
The aim of this study was to investigate the effects of extrusion processing parameters—moisture content (M = 20 and 24%), feeding rate (FR = 20 and 25 kg/h), and screw speed (SS = 300, 390 and 480 RPM), on the content of deoxynivalenol (DON), 15-Acetyl Deoxynivalenol (15-AcDON), 3-Acetyl Deoxynivalenol (3-AcDON), HT-2 Toxin (HT-2), tentoxin (TEN) and alternariol monomethyl ether (AME), using a pilot single-screw extruder in whole-grain triticale flour. The temperature at the end plate of the extruder ranged between 97.6 and 141 °C, the absolute pressure was from 0.10 to 0.42 MPa, the mean retention time of material in the barrel was between 16 and 35 s, and the specific energy consumption was from 91.5 to 186.6 Wh/kg. According to the standard score, the optimum parameters for the reduction of the content of analysed mycotoxins were M = 24 g/100 g, FR = 25 kg/h, SS = 480 RPM, with a reduction of 3.80, 60.7, 61.5, 86.5, 47.7, and 55.9% for DON, 3-AcDON, 15-AcDON, HT-2, TEN, and AME, respectively. Under these conditions, the bulk density, pellet hardness, water absorption index, and water solubility index of the pellet were 0.352 g/mL, 13.7 kg, 8.96 g/g, and 14.9 g/100 g, respectively. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

21 pages, 940 KiB  
Article
The Influence of Various Types of Functional Bread on Postprandial Glycemia in Healthy Adults
by Ewa Lange, Ewelina Pałkowska-Goździk and Paulina Kęszycka
Appl. Sci. 2024, 14(24), 11900; https://doi.org/10.3390/app142411900 - 19 Dec 2024
Cited by 2 | Viewed by 2203
Abstract
Bread is a crucial component of a balanced diet. Increasing the choice of functional bakery products based on whole grain flours, with the addition of seeds and grains, can improve health, including reducing postprandial glycemia and the risk of metabolic syndrome. The current [...] Read more.
Bread is a crucial component of a balanced diet. Increasing the choice of functional bakery products based on whole grain flours, with the addition of seeds and grains, can improve health, including reducing postprandial glycemia and the risk of metabolic syndrome. The current study attempted to characterize the relationship between the composition and nutritional value of 23 different types of functional bread and postprandial glycemic response values. This study involved 209 non-obese healthy volunteers aged between 18 and 50. The study protocol followed the standard glycemic index (GI) method outlined by the International Standard, ISO 26642:2010. Most of the examined bread had a low GI and was composed mainly of rye, oats, buckwheat flour with a sourdough starter, and oilseeds. Postprandial glycemia was negatively associated with the fat, protein, and fiber content of bread. However, the GI depended directly on the carbohydrate content and, inversely, on the fat content in wheat bread and bread containing oilseeds. Similarly, using whole-grain flour and sourdough in a functional bakery reduces the GI. Adding oilseeds and sourdough to bread also reduced blood glucose levels approximately one hour after a meal. A greater number of ingredients in a recipe may be associated with a higher GI. In designing a functional bread with a potentially beneficial effect on postprandial glycemia, the nutritional value, type of fermentation, and additives (type and number) are worth considering. The high variability in postprandial glycemia after bread consumption is related to several factors and requires GI determination according to standard methods to ensure that the information provided to the consumer is reliable. Full article
(This article belongs to the Special Issue Food and Nutrition and New Dietary Trends for Human Health)
Show Figures

Figure 1

28 pages, 11475 KiB  
Article
A Study of the Influence of Ion-Ozonized Water on the Properties of Pasta Dough Made from Wheat Flour and Pumpkin Powder
by Bauyrzhan Iztayev, Auyelbek Iztayev, Talgat Kulazhanov, Galiya Iskakova, Madina Yakiyayeva, Bayan Muldabekova, Meruyet Baiysbayeva and Sholpan Tursunbayeva
Foods 2024, 13(20), 3253; https://doi.org/10.3390/foods13203253 - 13 Oct 2024
Viewed by 1141
Abstract
Water treated with ion ozone improves the technological qualities of food products. Therefore, ion-ozonated water was used in the work, and whole-grain flour from soft wheat of the Almaly variety and pumpkin powder were used as raw materials to improve the quality and [...] Read more.
Water treated with ion ozone improves the technological qualities of food products. Therefore, ion-ozonated water was used in the work, and whole-grain flour from soft wheat of the Almaly variety and pumpkin powder were used as raw materials to improve the quality and nutritional value of the pasta. This study investigated the effects of ion-ozone concentration in ion-ozonated water Cio, water temperature tw, pumpkin powder content Cpp and drying temperature td on various characteristics affecting the quality of pasta, including its organoleptic physical, chemical, and rheological properties. These characteristics were assessed by conducting multiple experiments, a total of 25 indicators were determined, such as humidity, acidity, cooking properties, deformation, and other basic quality indicators. To reduce the number of experiments and obtain a reliable assessment of the influence of individual factors on the quality indicators of pasta, methods involving the multifactorial design of experiments were applied. Data processing and all necessary calculations were carried out using the PLAN sequential regression analysis program. Consequently, our findings indicate that minimizing dry water (DM) loss in cooking water requires a dual approach: increasing ion-ozone concentration and optimizing pasta composition and drying conditions, specifically by reducing pumpkin powder content and drying temperature. As a result, it was established that to obtain high-quality pasta from whole-grain flour with high quality and rheological properties, it is necessary to use the following optimal production modes: ion-ozone concentration in ion-ozonated water Cio = 2.5 × 10−6 mg/cm3, water temperature tw = 50 °C, pumpkin powder content Cpp = 3.0%, and pasta drying temperature td = 50 °C. The resulting pasta is an environmentally friendly product with a high content of biologically active substances. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

13 pages, 932 KiB  
Article
Effect of Bio-Herbicide Application on Durum Wheat Quality: From Grain to Bread Passing through Wholemeal Flour
by Umberto Anastasi, Alfio Spina, Paolo Guarnaccia, Michele Canale, Rosalia Sanfilippo, Silvia Zingale, Giorgio Spina, Andrea Comparato and Alessandra Carrubba
Plants 2024, 13(20), 2859; https://doi.org/10.3390/plants13202859 - 12 Oct 2024
Viewed by 1429
Abstract
Using plant extracts to replace traditional chemical herbicides plays an essential role in sustainable agriculture. The present work evaluated the quality of durum wheat cv Valbelice in two years (2014 and 2016) using plant aqueous extracts of sumac (Rhus coriaria L.) and [...] Read more.
Using plant extracts to replace traditional chemical herbicides plays an essential role in sustainable agriculture. The present work evaluated the quality of durum wheat cv Valbelice in two years (2014 and 2016) using plant aqueous extracts of sumac (Rhus coriaria L.) and mugwort (Artemisia arborescens L.) as bio-herbicides on the main quality characteristics of durum wheat. The untreated, water-treated, and chemically treated durum wheat products were also analyzed as controls. Following the official methodologies, grain commercial analyses and defects of the kernels were determined. The main chemical and technological features were determined on the wholemeal flour: proteins, dry matter, dry gluten, gluten index, colorimetric parameters, mixograph, falling number, and sedimentation test in SDS. An experimental bread-making test was performed, and the main parameters were detected on the breads: bread volume, weight, moisture, porosity, hardness, and colorimetric parameters on crumb and crust. Within the two years, grain commercial analyses of the total five treatments showed no statistically significant differences concerning test weight (range 75.47–84.33 kg/hL) and thousand kernel weight (range 26.58–35.36 kg/hL). Differently, significant differences were observed in terms of kernel defects, particularly starchy kernels, black pointed kernels, and shrunken kernels, mainly due to the year factor. Analyses on the whole-grain flours showed significant differences. This affected dry gluten content (7.35% to 16.40%) and gluten quality (gluten index from 6.44 to 45.81). Mixograph results for mixing time ranged from 1.90 min to 3.15 min, whilst a peak dough ranged from 6.83 mm to 9.85 mm, showing, in both cases, statistically significant differences between treatments. The falling number showed lower values during the first year (on average 305 s) and then increased in the second year (on average 407 s). The sedimentation test showed no statistically significant differences, ranging from 27.75 mm to 34.00 mm. Regarding the bread produced, statistically significant year-related differences were observed for the parameters loaf volume during the first year (on average 298.75 cm3) and then increased in the second year (on average 417.33 cm3). Weight range 136.85 g to 145.18 g and moisture range 32.50 g/100 g to 39.51 g/100 g. Hardness range 8.65 N to 12.75 N and porosity (range 5.00 to 8.00) were closely related to the type of treatment. Finally, the color of flour and bread appeared to be not statistically significantly affected by treatment type. From a perspective of environmental and economic sustainability, the use of plant extracts with a bio-herbicidal function could replace traditional chemical herbicides. Full article
(This article belongs to the Special Issue Advanced in Cereal Science and Cereal Quality, Volume 2)
Show Figures

Figure 1

18 pages, 1013 KiB  
Review
Wheat Germ Agglutinin (WGA): Its Nature, Biological Role, Significance in Human Nutrition, and Possibility to Be Used as Marker of Whole-Grain Status in Wheat-Based Foods
by Marina Carcea, Sahara Melloni, Valentina Narducci and Valeria Turfani
Foods 2024, 13(18), 2990; https://doi.org/10.3390/foods13182990 - 21 Sep 2024
Cited by 1 | Viewed by 3518
Abstract
The growing scientific evidence on the health benefits of whole-grain food consumption has promoted the manufacturing of a great number of products differing in quality and content of whole-grain components. This is particularly true for commercial wheat-based products where it is not always [...] Read more.
The growing scientific evidence on the health benefits of whole-grain food consumption has promoted the manufacturing of a great number of products differing in quality and content of whole-grain components. This is particularly true for commercial wheat-based products where it is not always clear how much whole wheat is present considering that in many cases, they are manufactured from reconstituted mill streams and that there is not a standardised globally accepted definition and metrics to objectively evaluate whole-grain status. Attempts have been made to assess the level of “wholegraininess” in wheat products by measuring specific constituents that correlate with different wheat tissues, especially those that are expected to be found in a true whole-grain wheat product. Wheat germ agglutinin (WGA), a small lectin protein present exclusively in the wheat-germ tissues, has been indicated by several scientists as one of these constituents and after founding that its level changes depending on the amount of germ found in a wheat flour, it has been indicated as a biomarker of whole-grain status for wheat products. In this review, the biochemistry of WGA, its methods of detection, and current knowledge on its possibility to be practically utilized as a reliable marker are critically discussed. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

17 pages, 1242 KiB  
Article
Impacts of Whole-Grain Soft Red, Whole-Grain Soft White, and Refined Soft White Wheat Flour Crackers on Gastrointestinal Inflammation and the Gut Microbiota of Adult Humans
by Gigi A. Kinney, Eliot N. Haddad, Neha Gopalakrishnan, Kameron Y. Sugino, Linda S. Garrow, Perry K. W. Ng and Sarah S. Comstock
Biology 2024, 13(9), 677; https://doi.org/10.3390/biology13090677 - 30 Aug 2024
Viewed by 2196
Abstract
Consumption of whole-grain wheat has been associated with positive health outcomes, but it remains unclear whether different types of wheat elicit varying effects on the gut microbiome and intestinal inflammation. The objectives of this research were to investigate the effect of two whole-grain [...] Read more.
Consumption of whole-grain wheat has been associated with positive health outcomes, but it remains unclear whether different types of wheat elicit varying effects on the gut microbiome and intestinal inflammation. The objectives of this research were to investigate the effect of two whole-grain wheat flours versus refined wheat flour on the diversity of the human gut microbiota, as well as on butyrate production capacity and gastrointestinal inflammation, using one-week dietary interventions. For this study, 28 participants were recruited, with ages ranging from 18 to 55 years and a mean BMI of 26.0 kg/m2. For four weeks, participants were provided 80 g daily servings of different wheat crackers: Week A was a run-in period of crackers made from soft white wheat flour, Week B crackers were whole-grain soft white wheat flour, Week C crackers were a wash-out period identical to Week A, and Week D crackers were whole-grain soft red wheat flour. At the end of each week, participants provided fecal samples that were analyzed for markers of intestinal inflammation, including lipocalin and calprotectin, using enzyme-linked immunosorbent assays and quantitative real-time PCR. The primary outcome, gut bacterial community alpha and beta diversity, was similar across timepoints. Three taxa significantly differed in abundance following both whole-grain wheat flour interventions: Escherichia/Shigella and Acidaminococcus were significantly depleted, and Lachnospiraceae NK4A136 group was enriched. Secondary outcomes determined that protein markers of intestinal inflammation and genes related to putative butyrate production capacity were similar throughout the study period, with no significant changes. Lipocalin concentrations ranged from 14.8 to 22.6 ng/mL while calprotectin ranged from 33.2 to 62.5 ng/mL across all 4 weeks. The addition of wheat crackers to the adult human subjects’ usual diet had a minimal impact on their gastrointestinal inflammation or the gut microbiota. Full article
Show Figures

Figure 1

18 pages, 2176 KiB  
Article
Aromatic Herbs of the Lamiaceae Family as Functional Ingredients in Wheat Tortilla
by Kamila Kulbat-Warycha, Kinga Stoińska and Dorota Żyżelewicz
Appl. Sci. 2024, 14(17), 7584; https://doi.org/10.3390/app14177584 - 27 Aug 2024
Cited by 1 | Viewed by 1381
Abstract
The rationale for this research is the investigation of the potential health benefits as well as the antibacterial and antifungal properties of selected aromatic plants from the Lamiaceae family, which may lead to the development of improved functional foods. The present study investigated [...] Read more.
The rationale for this research is the investigation of the potential health benefits as well as the antibacterial and antifungal properties of selected aromatic plants from the Lamiaceae family, which may lead to the development of improved functional foods. The present study investigated the effects of incorporating dried aromatic plants Thymus vulgaris, Thymus serpyllum, Thymus × citriodorus, Origanum vulgare and Rosmarinus officinalis at a concentration of 1% in refined wheat flour and wholemeal flour on the production of functional tortillas. Sensory analysis was employed to identify the optimal 1% addition, with the objective of achieving a favorable flavor and aroma profile. It was hypothesized that this addition would affect water activity, moisture, texture, color, antioxidant content and phenolic content, thereby enhancing the tortillas as a source of bioactive compounds. The results indicated that the type of flour used had a significant impact on the water activity of the tortillas, with wholemeal flour resulting in higher water activity than refined flour. The water activity ranged between 0.735 and 0.821, while the water content remained relatively stable. The water activity in whole-grain tortillas was significantly higher than that of refined flour tortillas, with a value exceeding 0.8, which makes them susceptible to mold growth and the production of mycotoxins. The sensory evaluations indicated that the enriched refined flour tortillas with common thyme (Thymus vulgaris), lemon thyme (Thymus × citriodorus) and rosemary (Rosmarinus officinalis) were rated highly; a similar result was observed for the whole-grain tortillas enriched with wild thyme (Thymus serpyllum) and lemon thyme. The whole-grain tortillas with rosemary were rated the highest of all the tortillas. The addition of aromatic plants increased the phenolic content and the antioxidant potential, depending on the flour type and the plant used. The addition of wild thyme and rosemary resulted in a significant increase in the phenolic content of wheat tortillas, while all enriched whole-grain tortillas exhibited a higher phenolic content than the control samples. The highest phenolic content in whole-grain tortillas was found in those fortified with rosemary, oregano and wild thyme. The highest antioxidant content was recorded in tortillas prepared with rosemary, irrespective of whether the flour used was refined or wholemeal. Fourteen phenolic compounds were tentatively identified in aromatic plants tested. The main phenolic compounds in Origanum vulgare were flavonoids. Rosmarinic acid was the dominant phenolic compound in rosemary and all thyme species, reaching the highest level in rosemary. Such high levels of rosmarinic acid may be responsible for the high antioxidant and total phenolic contents observed in rosemary extracts and also in tortillas when this plant is included in the recipe. The results of this study indicate that selected aromatic plants, particularly rosemary, have the potential to be utilized as functional ingredients in bakery products. By incorporating dried aromatic plants from the Lamiaceae family into wheat flour tortillas, food manufacturers can create products that not only taste better but also provide added health benefits. The use of selected herbs can improve the nutritional profile of tortillas by increasing antioxidant properties and, due to the properties of herbs, extend the shelf life of the product. Full article
(This article belongs to the Special Issue Antioxidant Compounds in Food Processing)
Show Figures

Figure 1

22 pages, 4112 KiB  
Article
Impact of Processing on the Phenolic Content and Antioxidant Activity of Sorghum bicolor L. Moench
by Aduba Collins, Abishek Santhakumar, Sajid Latif, Kenneth Chinkwo, Nidhish Francis and Christopher Blanchard
Molecules 2024, 29(15), 3626; https://doi.org/10.3390/molecules29153626 - 31 Jul 2024
Cited by 4 | Viewed by 1822
Abstract
Sorghum, a cereal grain rich in nutrients, is a major source of phenolic compounds that can be altered by different processes, thereby modulating their phenolic content and antioxidant properties. Previous studies have characterised phenolic compounds from pigmented and non-pigmented varieties. However, the impact [...] Read more.
Sorghum, a cereal grain rich in nutrients, is a major source of phenolic compounds that can be altered by different processes, thereby modulating their phenolic content and antioxidant properties. Previous studies have characterised phenolic compounds from pigmented and non-pigmented varieties. However, the impact of processing via the cooking and fermentation of these varieties remains unknown. Wholegrain flour samples of Liberty (WhiteLi1 and WhiteLi2), Bazley (RedBa1 and RedBa2), Buster (RedBu1 and RedBu2), Shawaya black (BlackSb), and Shawaya short black 1 (BlackSs) were cooked, fermented, or both then extracted using acidified acetone. The polyphenol profiles were analysed using a UHPLC-Online ABTS and QTOF LC-MS system. The results demonstrated that combining the fermentation and cooking of the BlackSs and BlackSb varieties led to a significant increase (p < 0.05) in total phenolic content (TPC) and antioxidant activities, as determined through DPPH, FRAP, and ABTS assays. The 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity of WhiteLi1, BlackSb, RedBu2, and BlackSs increased by 46%, 32%, 25%, and 10%, respectively, post fermentation and cooking. Conversely, fermentation only or cooking generally resulted in lower phenolic content and antioxidant levels than when samples were fully processed compared to raw. Notably, most of the detected antioxidant peaks (53 phenolic compounds) were only detected in fermented and cooked black and red pericarp varieties. The phenolic compounds with the highest antioxidant activities in pigmented sorghum included 3-aminobenzoic acid, 4-acetylburtyic acid, malic acid, caffeic acid, and luteolin derivative. Furthermore, the growing location of Bellata, NSW, showed more detectable phenolic compounds following processing compared to Croppa Creek, NSW. This study demonstrates that sorghum processing releases previously inaccessible polyphenols, making them available for human consumption and potentially providing added health-promoting properties. Full article
(This article belongs to the Special Issue Natural Antioxidants in Functional Food)
Show Figures

Figure 1

Back to TopTop