Impacts of Whole-Grain Soft Red, Whole-Grain Soft White, and Refined Soft White Wheat Flour Crackers on Gastrointestinal Inflammation and the Gut Microbiota of Adult Humans
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Sample
2.3. Measurement
2.3.1. Participant Characteristics
2.3.2. Microbiota Measurement
2.3.3. Intestinal Inflammation Measurement
2.4. Data Collection
2.5. Data Analysis
3. Results
3.1. Participant Characteristics
3.2. Gut Microbiota Diversity
3.3. Gut Microbiota Taxa
3.4. Gastrointestinal Inflammation
3.4.1. Inflammatory Protein Markers
3.4.2. Butyrate Production Capacity
4. Discussion
4.1. Gut Microbiota Diversity
4.2. Gut Microbiota Taxa
4.3. Gastrointestinal Inflammation
4.3.1. Inflammatory Protein Markers
4.3.2. Butyrate Production Capacity
4.4. Strengths, Limitations, and Other Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Allin, K.H.; Tremaroli, V.; Caesar, R.; Jensen, B.A.H.; Damgaard, M.T.F.; Bahl, M.I.; Licht, T.R.; Hansen, T.H.; Nielsen, T.; Dantoft, T.M.; et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 2018, 61, 810–820. [Google Scholar] [CrossRef]
- Menni, C.; Jackson, M.A.; Pallister, T.; Steves, C.J.; Spector, T.D.; Valdes, A.M. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int. J. Obes. 2017, 41, 1099–1105. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Sonnenburg, E.D.; Sonnenburg, J.L. Starving our microbial self: The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014, 20, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Zmora, N.; Suez, J.; Elinav, E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 35–56. [Google Scholar] [CrossRef]
- Backhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015, 17, 852. [Google Scholar] [CrossRef]
- Tap, J.; Furet, J.P.; Bensaada, M.; Philippe, C.; Roth, H.; Rabot, S.; Lakhdari, O.; Lombard, V.; Henrissat, B.; Corthier, G.; et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ. Microbiol. 2015, 17, 4954–4964. [Google Scholar] [CrossRef] [PubMed]
- Zinocker, M.K.; Lindseth, I.A. The western diet-microbiome-host interaction and its role in metabolic disease. Nutrients 2018, 10, 365. [Google Scholar] [CrossRef]
- Bello, M.G.D.; Knight, R.; Gilbert, J.A.; Blaser, M.J. Preserving microbial diversity. Science 2018, 362, 33–34. [Google Scholar] [CrossRef]
- Rose, D.J. Impact of whole grains on the gut microbiota: The next frontier for oats? Br. J. Nutr. 2014, 112 (Suppl. S2), S44–S49. [Google Scholar] [CrossRef]
- Li, S.; Zong, A.; An, R.; Wang, H.; Liu, L.; Liu, J.; Guo, X.; Xu, Z.; Wang, J.; Li, D.; et al. Effects of whole grain intake on glycemic traits: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2023, 63, 4351–4370. [Google Scholar] [CrossRef] [PubMed]
- Joye, I.J. Dietary fibre from whole grains and their benefits on metabolic health. Nutrients 2020, 12, 3045. [Google Scholar] [CrossRef]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Ounnas, F.; Prive, F.; Salen, P.; Gaci, N.; Tottey, W.; Calani, L.; Bresciani, L.; Lopez-Gutierrez, N.; Hazane-Puch, F.; Laporte, F.; et al. Whole rye consumption improves blood and liver n-3 fatty acid profile and gut microbiota composition in rats. PLoS ONE 2016, 11, e0148118. [Google Scholar] [CrossRef]
- Martinez, I.; Lattimer, J.M.; Hubach, K.L.; Case, J.A.; Yang, J.; Weber, C.G.; Louk, J.A.; Rose, D.J.; Kyureghian, G.; Peterson, D.A.; et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013, 7, 269–280. [Google Scholar] [CrossRef]
- Ampatzoglou, A.; Atwal, K.K.; Maidens, C.M.; Williams, C.L.; Ross, A.B.; Thielecke, F.; Jonnalagadda, S.S.; Kennedy, O.B.; Yaqoob, P. Increased whole grain consumption does not affect blood biochemistry, body composition, or gut microbiology in healthy, low-habitual whole grain consumers. J. Nutr. 2015, 145, 215–221. [Google Scholar] [CrossRef]
- Sang, S.; Idehen, E.; Zhao, Y.; Chu, Y. Emerging science on whole grain intake and inflammation. Nutr. Rev. 2020, 78, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Grafenauer, S.; Miglioretto, C.; Solah, V.; Curtain, F. Review of the sensory and physico-chemical properties of red and white wheat: Which makes the best whole grain? Foods 2020, 9, 136. [Google Scholar] [CrossRef]
- Mithul Aravind, S.; Wichienchot, S.; Tsao, R.; Ramakrishnan, S.; Chakkaravarthi, S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res. Int. 2021, 142, 110189. [Google Scholar] [CrossRef]
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in dietary carbohydrate, protein, and fat intake and diet quality among us adults, 1999–2016. JAMA 2019, 322, 1178–1187. [Google Scholar] [CrossRef]
- United States Department of Agriculture and United States Department of Health and Human Services. Dietary Guidelines for Americans: 2020–2025, 9th ed.; United States Government: Washington, DC, USA, 2020. [Google Scholar]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Staudacher, H.M.; Yao, C.K.; Chey, W.D.; Whelan, K. Optimal design of clinical trials of dietary interventions in disorders of gut-brain interaction. Am. J. Gastroenterol. 2022, 117, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Kinney, G.A.; Haddad, E.N.; Garrow, L.S.; Ng, P.K.W.; Comstock, S.S. An intervention with michigan-grown wheat in healthy adult humans to determine effect on gut microbiota: Protocol for a crossover trial. JMIR Res. Protoc. 2021, 10, e29046. [Google Scholar] [CrossRef]
- Kennedy, G.; Ballard, T.; Dop, M. Guidelines for Measuring Household and Individual Dietary Diversity; The Food and Agriculture Organization of the United Nations; Office of Knowledge Exchange, Research and Extension, FAO: Rome, Italy, 2011. [Google Scholar]
- Sugino, K.Y.; Paneth, N.; Comstock, S.S. Michigan cohorts to determine associations of maternal pre-pregnancy body mass index with pregnancy and infant gastrointestinal microbial communities: Late pregnancy and early infancy. PLoS ONE 2019, 14, e0213733. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Zollner, A.; Schmiderer, A.; Reider, S.J.; Oberhuber, G.; Pfister, A.; Texler, B.; Watschinger, C.; Koch, R.; Effenberger, M.; Raine, T.; et al. Faecal biomarkers in inflammatory bowel diseases: Calprotectin versus lipocalin-2-a comparative study. J. Crohn’s Colitis 2021, 15, 43–54. [Google Scholar] [CrossRef]
- Vital, M.; Penton, C.R.; Wang, Q.; Young, V.B.; Antonopoulos, D.A.; Sogin, M.L.; Morrison, H.G.; Raffals, L.; Chang, E.B.; Huffnagle, G.B.; et al. A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community. Microbiome 2013, 1, 8. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011. [Google Scholar]
- Oksanen, J.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Simpson, G.; Solymos, P.; Stevens, M.; Wagner, H. Vegan: Community Ecology; R Package Version 2.2-1; Jari Oksanen: Helsinki, Finland, 2015. [Google Scholar]
- Zhang, X.; Yi, N. Nbzimm: Negative binomial and zero-inflated mixed models, with application to microbiome/metagenomics data analysis. BMC Bioinform. 2020, 21, 488. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.J.; Zheng, J.J.; Kang, J.W.; Saboe, A.; Knights, D.; Zivkovic, A.M. A guide to diet-microbiome study design. Front. Nutr. 2020, 7, 79. [Google Scholar] [CrossRef]
- Roager, H.M.; Vogt, J.K.; Kristensen, M.; Hansen, L.B.S.; Ibrugger, S.; Maerkedahl, R.B.; Bahl, M.I.; Lind, M.V.; Nielsen, R.L.; Frokiaer, H.; et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: A randomised cross-over trial. Gut 2019, 68, 83–93. [Google Scholar] [CrossRef]
- Vanegas, S.M.; Meydani, M.; Barnett, J.B.; Goldin, B.; Kane, A.; Rasmussen, H.; Brown, C.; Vangay, P.; Knights, D.; Jonnalagadda, S.; et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am. J. Clin. Nutr. 2017, 105, 635–650. [Google Scholar] [CrossRef] [PubMed]
- Koponen, K.K.; Salosensaari, A.; Ruuskanen, M.O.; Havulinna, A.S.; Mannisto, S.; Jousilahti, P.; Palmu, J.; Salido, R.; Sanders, K.; Brennan, C.; et al. Associations of healthy food choices with gut microbiota profiles. Am. J. Clin. Nutr. 2021, 114, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Makki, K.; Deehan, E.C.; Walter, J.; Backhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef]
- Johnson, A.J.; Vangay, P.; Al-Ghalith, G.A.; Hillmann, B.M.; Ward, T.L.; Shields-Cutler, R.R.; Kim, A.D.; Shmagel, A.K.; Syed, A.N.; Personalized Microbiome Class, S.; et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 2019, 25, 789–802.e5. [Google Scholar] [CrossRef]
- So, D.; Whelan, K.; Rossi, M.; Morrison, M.; Holtmann, G.; Kelly, J.T.; Shanahan, E.R.; Staudacher, H.M.; Campbell, K.L. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 107, 965–983. [Google Scholar] [CrossRef]
- Wastyk, H.C.; Fragiadakis, G.K.; Perelman, D.; Dahan, D.; Merrill, B.D.; Yu, F.B.; Topf, M.; Gonzalez, C.G.; Van Treuren, W.; Han, S.; et al. Gut-microbiota-targeted diets modulate human immune status. Cell 2021, 184, 4137–4153.e14. [Google Scholar] [CrossRef]
- Laddomada, B.; Caretto, S.; Mita, G. Wheat bran phenolic acids: Bioavailability and stability in whole wheat-based foods. Molecules 2015, 20, 15666–15685. [Google Scholar] [CrossRef] [PubMed]
- Oliver, A.; Chase, A.B.; Weihe, C.; Orchanian, S.B.; Riedel, S.F.; Hendrickson, C.L.; Lay, M.; Sewall, J.M.; Martiny, J.B.H.; Whiteson, K. High-fiber, whole-food dietary intervention alters the human gut microbiome but not fecal short-chain fatty acids. mSystems 2021, 6, e00115-21. [Google Scholar] [CrossRef]
- Schaafsma, G.; Slavin, J.L. Significance of inulin fructans in the human diet. Compr. Rev. Food Sci. Food Saf. 2015, 14, 37–47. [Google Scholar] [CrossRef]
- Daniel, H. Diet and gut microbiome and the “chicken or egg” problem. Front. Nutr. 2021, 8, 828630. [Google Scholar] [CrossRef]
- Johnson, A.; Houtti, M.; Saboe, A.; Koecher, K.; Menon, R.; Knights, D. Whole wheat and bran cereal affects microbiome stability. Curr. Dev. Nutr. 2021, 5, 1162. [Google Scholar] [CrossRef]
- van Trijp, M.P.H.; Schutte, S.; Esser, D.; Wopereis, S.; Hoevenaars, F.P.M.; Hooiveld, G.; Afman, L.A. Minor changes in the composition and function of the gut microbiota during a 12-week whole grain wheat or refined wheat intervention correlate with liver fat in overweight and obese adults. J. Nutr. 2021, 151, 491–502. [Google Scholar] [CrossRef]
- Christensen, E.G.; Licht, T.R.; Kristensen, M.; Bahl, M.I. Bifidogenic effect of whole-grain wheat during a 12-week energy-restricted dietary intervention in postmenopausal women. Eur. J. Clin. Nutr. 2013, 67, 1316–1321. [Google Scholar] [CrossRef] [PubMed]
- Costabile, A.; Klinder, A.; Fava, F.; Napolitano, A.; Fogliano, V.; Leonard, C.; Gibson, G.R.; Tuohy, K.M. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: A double-blind, placebo-controlled, crossover study. Br. J. Nutr. 2008, 99, 110–120. [Google Scholar] [CrossRef]
- Cani, P.D.; de Vos, W.M. Next-generation beneficial microbes: The case of akkermansia muciniphila. Front. Microbiol. 2017, 8, 1765. [Google Scholar] [CrossRef] [PubMed]
- Salonen, A.; Lahti, L.; Salojarvi, J.; Holtrop, G.; Korpela, K.; Duncan, S.H.; Date, P.; Farquharson, F.; Johnstone, A.M.; Lobley, G.E.; et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014, 8, 2218–2230. [Google Scholar] [CrossRef]
- van den Beld, M.J.C.; Warmelink, E.; Friedrich, A.W.; Reubsaet, F.A.G.; Schipper, M.; de Boer, R.F.; Notermans, D.W.; Petrignani, M.W.F.; van Zanten, E.; Rossen, J.W.A.; et al. Incidence, clinical implications and impact on public health of infections with shigella spp. And entero-invasive escherichia coli (eiec): Results of a multicenter cross-sectional study in the netherlands during 2016–2017. BMC Infect. Dis. 2019, 19, 1037. [Google Scholar] [CrossRef] [PubMed]
- Jukic, A.; Bakiri, L.; Wagner, E.F.; Tilg, H.; Adolph, T.E. Calprotectin: From biomarker to biological function. Gut 2021, 70, 1978–1988. [Google Scholar] [CrossRef]
- Andersson, A.; Tengblad, S.; Karlstrom, B.; Kamal-Eldin, A.; Landberg, R.; Basu, S.; Aman, P.; Vessby, B. Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects. J. Nutr. 2007, 137, 1401–1407. [Google Scholar] [CrossRef]
- Brownlee, I.A.; Moore, C.; Chatfield, M.; Richardson, D.P.; Ashby, P.; Kuznesof, S.A.; Jebb, S.A.; Seal, C.J. Markers of cardiovascular risk are not changed by increased whole-grain intake: The wholeheart study, a randomised, controlled dietary intervention. Br. J. Nutr. 2010, 104, 125–134. [Google Scholar] [CrossRef]
- de Punder, K.; Pruimboom, L. The dietary intake of wheat and other cereal grains and their role in inflammation. Nutrients 2013, 5, 771–787. [Google Scholar] [CrossRef]
- Lefevre, M.; Jonnalagadda, S. Effect of whole grains on markers of subclinical inflammation. Nutr. Rev. 2012, 70, 387–396. [Google Scholar] [CrossRef]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol. 2014, 121, 91–119. [Google Scholar] [PubMed]
- Canani, R.B.; Costanzo, M.D.; Leone, L.; Pedata, M.; Meli, R.; Calignano, A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. 2011, 17, 1519–1528. [Google Scholar] [CrossRef]
- Jefferson, A.; Adolphus, K. The effects of intact cereal grain fibers, including wheat bran on the gut microbiota composition of healthy adults: A systematic review. Front. Nutr. 2019, 6, 33. [Google Scholar] [CrossRef]
- Daskova, N.; Heczkova, M.; Modos, I.; Videnska, P.; Splichalova, P.; Pelantova, H.; Kuzma, M.; Gojda, J.; Cahova, M. Determination of butyrate synthesis capacity in gut microbiota: Quantification of but gene abundance by qpcr in fecal samples. Biomolecules 2021, 11, 1303. [Google Scholar] [CrossRef] [PubMed]
- Vijay, A.; Valdes, A.M. Role of the gut microbiome in chronic diseases: A narrative review. Eur. J. Clin. Nutr. 2022, 76, 489–501. [Google Scholar] [CrossRef]
- Choo, J.M.; Leong, L.E.; Rogers, G.B. Sample storage conditions significantly influence faecal microbiome profiles. Sci. Rep. 2015, 5, 16350. [Google Scholar] [CrossRef] [PubMed]
- Song, S.J.; Amir, A.; Metcalf, J.L.; Amato, K.R.; Xu, Z.Z.; Humphrey, G.; Knight, R. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems 2016, 1, e00021-16. [Google Scholar] [CrossRef]
- Tedjo, D.I.; Jonkers, D.M.; Savelkoul, P.H.; Masclee, A.A.; van Best, N.; Pierik, M.J.; Penders, J. The effect of sampling and storage on the fecal microbiota composition in healthy and diseased subjects. PLoS ONE 2015, 10, e0126685. [Google Scholar] [CrossRef]
Calories (kcal) | Fat (g) | Saturated Fat | MUFAs a | PUFAs b | Trans Fat | Protein (g) | Total Sugars (g) | Other Carbohydrates (g) | Total Dietary Fiber (g) | Insoluble Fiber (g) | Soluble Fiber (g) | Sodium (mg) | Ash (g) | Moisture (g) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Refined soft white wheat | 313 | 6.44 | 1.68 | 1.26 | 3.16 | 0.058 | 7.15 | 2.44 | 54.12 | 3.99 | 1.54 | 2.45 | 439 | 1.512 | 4.35 |
Whole-grain soft white wheat | 298 | 7.16 | 1.82 | 1.41 | 3.54 | 0.071 | 9.1 | 2.816 | 46.65 | 10.72 | 7.54 | 3.18 | 452 | 2.112 | 1.44 |
Whole-grain soft red wheat | 306 | 8.00 | 2.08 | 1.59 | 3.92 | 0.082 | 9.35 | 2.392 | 46.61 | 10.72 | 7.35 | 3.37 | 454 | 2.152 | 0.78 |
Characteristic | Mean | SD |
---|---|---|
BMI | 26.0 | 5.7 |
Age 1 (years) | 35.2 | 9.9 |
Compliance 2 (% consumed) | ||
Week A 3 | 89.4 | 17.6 |
Week B 1 | 84.3 | 19.8 |
Week C 1 | 82.4 | 16.7 |
Week D 3 | 80.8 | 26.7 |
n (N = 28) | % | |
Female | 17 | 60.7 |
Ever smoked | 7 | 25.0 |
Antibiotics in the past year | 11 | 39.3 |
Homeowner | 10 | 35.7 |
Car owner 3 | 20 | 76.9 |
Stocks/bonds owner 3 | 10 | 38.5 |
BMI Category | ||
Underweight | 1 | 3.6 |
Normal | 12 | 42.9 |
Overweight | 9 | 32.1 |
Obese | 6 | 21.4 |
Race | ||
White—non-Hispanic | 17 | 60.7 |
White—Hispanic | 2 | 7.14 |
Black/African American | 2 | 7.14 |
Other | 7 | 25.0 |
Education | ||
College graduate or more | 24 | 85.7 |
Some college | 4 | 14.3 |
Income 1 | ||
Under USD 25,000 | 14 | 51.9 |
USD 25,000–USD 49,000 | 1 | 3.7 |
USD 50,000–USD 75,000 | 8 | 29.6 |
Over USD 75,000 | 4 | 14.8 |
Timepoint | Lipocalin | Calprotectin |
---|---|---|
Week | Median (Range) | Median (Range) |
A 1 | 21.1 (0.7–192.4) | 46.8 (5.0–1915.1) |
B 2 | 14.8 (0.5–64.8) | 46.6 (3.1–1754.3) |
C 3 | 21.7 (2.7–146.0) | 33.2 (5.1–1888.3) |
D 4 | 22.6 (1.4–71.8) | 62.5 (8.0–1895.0) |
Week A | Week B | Week C | Week D | Friedman X2 | p-Value | |
---|---|---|---|---|---|---|
Buk 1 | 25.0 (0–114.0) | 25.5 (0–210.0) | 27.0 (1.0–341.0) | 26.0 (0–113.0) | 1.91 | 0.59 |
ButFPrausn 2 | 24,074 (2105–141,161) | 32,115 (22–135,793) | 28,970 (154–78,285) | 40,029 (6150–219,352) | 1.98 | 0.58 |
ButRosEub 2 | 510,396 (59,266–3,239,517) | 696,317 (1905–4,018,413) | 470,724 (373–4,185,708) | 432,130 (4405–4,174,740) | 4.56 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinney, G.A.; Haddad, E.N.; Gopalakrishnan, N.; Sugino, K.Y.; Garrow, L.S.; Ng, P.K.W.; Comstock, S.S. Impacts of Whole-Grain Soft Red, Whole-Grain Soft White, and Refined Soft White Wheat Flour Crackers on Gastrointestinal Inflammation and the Gut Microbiota of Adult Humans. Biology 2024, 13, 677. https://doi.org/10.3390/biology13090677
Kinney GA, Haddad EN, Gopalakrishnan N, Sugino KY, Garrow LS, Ng PKW, Comstock SS. Impacts of Whole-Grain Soft Red, Whole-Grain Soft White, and Refined Soft White Wheat Flour Crackers on Gastrointestinal Inflammation and the Gut Microbiota of Adult Humans. Biology. 2024; 13(9):677. https://doi.org/10.3390/biology13090677
Chicago/Turabian StyleKinney, Gigi A., Eliot N. Haddad, Neha Gopalakrishnan, Kameron Y. Sugino, Linda S. Garrow, Perry K. W. Ng, and Sarah S. Comstock. 2024. "Impacts of Whole-Grain Soft Red, Whole-Grain Soft White, and Refined Soft White Wheat Flour Crackers on Gastrointestinal Inflammation and the Gut Microbiota of Adult Humans" Biology 13, no. 9: 677. https://doi.org/10.3390/biology13090677
APA StyleKinney, G. A., Haddad, E. N., Gopalakrishnan, N., Sugino, K. Y., Garrow, L. S., Ng, P. K. W., & Comstock, S. S. (2024). Impacts of Whole-Grain Soft Red, Whole-Grain Soft White, and Refined Soft White Wheat Flour Crackers on Gastrointestinal Inflammation and the Gut Microbiota of Adult Humans. Biology, 13(9), 677. https://doi.org/10.3390/biology13090677