Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (82)

Search Parameters:
Keywords = whole soy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2405 KiB  
Article
Development of Soy-Based Meat Analogues via Wet Twin-Screw Extrusion: Enhancing Textural and Structural Properties Through Whole Yeast Powder Supplementation
by Shikang Tang, Yidian Li, Xuejiao Wang, Linyan Zhou, Zhijia Liu, Lianzhou Jiang, Chaofan Guo and Junjie Yi
Foods 2025, 14(14), 2479; https://doi.org/10.3390/foods14142479 - 15 Jul 2025
Viewed by 411
Abstract
Amid growing global concerns about environmental sustainability and food security, plant-based meat substitutes have emerged as a promising alternative to conventional meat. However, current formulations, especially those based on soy protein isolate (SPI) often fail to replicate the desired texture and structural integrity. [...] Read more.
Amid growing global concerns about environmental sustainability and food security, plant-based meat substitutes have emerged as a promising alternative to conventional meat. However, current formulations, especially those based on soy protein isolate (SPI) often fail to replicate the desired texture and structural integrity. To address this limitation, this study aimed to evaluate the use of whole yeast powder (WYP) combined with SPI for producing plant-based meat analogues via high-moisture extrusion. Seven groups were designed: a control group with 0% WYP, five treatment groups with 5%, 10%, 20%, 30%, and 40% WYP, and one reference group containing 20% yeast protein powder (YPP). Although lower in protein content than yeast protein powder (YPP), whole yeast powder exhibits superior water-binding capacity and network-forming ability owing to its complex matrix and fiber content. At a 20% inclusion level, whole yeast powder demonstrated a higher fibrous degree (1.84 ± 0.02 vs. 1.81 ± 0.04), greater hardness (574.93 ± 5.84 N vs. 531.18 ± 17.34 N), and increased disulfide bonding (95.33 ± 0.92 mg/mL vs. 78.41 ± 0.78 mg/mL) compared to 20% YPP. Scanning electron microscopy (SEM) and low-field nuclear magnetic resonance (LF-NMR) revealed that whole yeast powder facilitated the formation of aligned fibrous networks and enhanced water binding. Fourier transform infrared spectroscopy (FTIR) confirmed an increase in β-sheet content (0.267 ± 0.003 vs. 0.260 ± 0.003), which contributed to improved protein aggregation. Increasing the WYP content to 30–40% led to a decline in these parameters, including a reduced fibrous degree (1.69 ± 0.06 at 40% WYP) and weakened molecular interactions (p < 0.05). The findings highlight 20% WYP as the optimal substitution level, offering superior textural enhancement and fibrous structure formation compared to YPP. These results suggest that WYP is not only a cost-effective and processing-friendly alternative to YPP but also holds great promise for scalable industrial application in the plant-based meat sector. Its compatibility with extrusion processes and ability to improve sensory and structural attributes supports its relevance for sustainable meat analogue production. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

17 pages, 1507 KiB  
Article
Long Shelf-Life Ready-to-Eat Plant-Based Whole Hard-Boiled Eggs: Low Allergenic and Regular Formulas
by Kanda Wongwailikhit, Suvimol Soithongsuk and Yupakanit Puangwerakul
Foods 2025, 14(13), 2220; https://doi.org/10.3390/foods14132220 - 24 Jun 2025
Viewed by 466
Abstract
This study aimed to develop a shelf-stable, plant-based whole hard-boiled egg analogue, available in both regular and low-allergenic versions. Six plant proteins—soy, mung bean, pea, rice, potato, and wheat—were formulated into egg white and yolk components, with mung bean and wheat proteins showing [...] Read more.
This study aimed to develop a shelf-stable, plant-based whole hard-boiled egg analogue, available in both regular and low-allergenic versions. Six plant proteins—soy, mung bean, pea, rice, potato, and wheat—were formulated into egg white and yolk components, with mung bean and wheat proteins showing the most promising sensory and visual qualities. Two preservation methods, thermal pasteurization (75–85 °C, 15–20 min) and gamma irradiation (2–5 kGy), were applied to extend shelf life while maintaining product quality. Thermal treatment at 75 °C for 15 min and gamma irradiation at 3.5 kGy were identified as optimal conditions, balancing sensory acceptability and microbial safety. Sensory evaluation by 100 untrained panelists revealed favorable scores for appearance, texture, and overall liking, without significant differences among selected formulations (p > 0.05). Accelerated shelf life testing and Q10 modeling predicted a shelf life of 188 days for thermally pasteurized eggs and 253 days (8.42 months) for gamma-irradiated eggs at 30 °C. These results demonstrate the feasibility of developing a consumer-acceptable, plant-based hard-boiled egg analogue with extended ambient shelf life. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

18 pages, 1792 KiB  
Article
Towards a More Holistic Comparative Assessment of Plant-Based Alternative Beverages and Dairy Milk: A True Cost Accounting Approach
by Mauricio R. Bellon, Nicholas Benard, Jane E. Coghlan and Kathleen Merrigan
Foods 2025, 14(13), 2196; https://doi.org/10.3390/foods14132196 - 23 Jun 2025
Viewed by 433
Abstract
There is a growing market for plant-based alternative beverages (PBAs) promoted as alternatives to dairy milk. Part of their popularity is that consumers consider them better for both the environment and human health. These perceptions, however, may not be entirely supported by scientific [...] Read more.
There is a growing market for plant-based alternative beverages (PBAs) promoted as alternatives to dairy milk. Part of their popularity is that consumers consider them better for both the environment and human health. These perceptions, however, may not be entirely supported by scientific evidence. A holistic comparison of dairy milk and PBAs is difficult because their prices typically do not reflect their environmental and nutritional health impacts, although PBAs tend to be significantly more expensive than dairy milk. Here, we integrate key results from the scientific literature using a True Cost Accounting (TCA) approach to compare dairy milk and five PBAs based on their market retail price and a quantification—and when possible, monetization—of key environmental, nutritional, and social impacts: Global Warming Potential (GWP), dietary risks, and forced labor, respectively. We compare whole dairy milk with five PBAs: soy, almond, oat, coconut, and pea, which account for 97% of retail market sales in the USA. The results show that while environmental, nutritional, and social benefits attributed to PBAs compared to dairy milk exist and can be significant, they are heterogenous, and for some PBAs, they may not be as significant as commonly perceived, particularly when the price premium they command are considered. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

21 pages, 4203 KiB  
Article
Multiscale Characterization of Rice Starch Gelation and Retrogradation Modified by Soybean Residue (Okara) and Extracted Dietary Fiber Using Rheology, Synchrotron Wide-Angle X-Ray Scattering (WAXS), and Fourier Transform Infrared (FTIR) Spectroscopy
by Aunchalee Aussanasuwannakul and Suparat Singkammo
Foods 2025, 14(11), 1862; https://doi.org/10.3390/foods14111862 - 23 May 2025
Viewed by 711
Abstract
Okara, the soybean residue from soy milk and tofu production, offers significant potential as a sustainable, fiber-rich ingredient for starch-based and gluten-free food systems. This study investigates the comparative effects of whole okara and its extracted dietary fiber (DF) on the retrogradation, rheological [...] Read more.
Okara, the soybean residue from soy milk and tofu production, offers significant potential as a sustainable, fiber-rich ingredient for starch-based and gluten-free food systems. This study investigates the comparative effects of whole okara and its extracted dietary fiber (DF) on the retrogradation, rheological properties, and nanostructural organization of rice starch (RS) gels. Rice starch suspensions were blended with 5–20% (dry basis) of either whole okara or DF, thermally gelatinized, and analyzed using dynamic rheology, synchrotron-based Wide-Angle X-ray Scattering (WAXS), and Fourier Transform Infrared (FTIR) spectroscopy. DF markedly reduced the gelation temperature and enhanced storage modulus (G′), indicating earlier and stronger gel network formation. WAXS analysis showed that DF more effectively disrupted long-range molecular ordering, as evidenced by suppressed crystallinity development and disrupted molecular ordering within the A-type lattice. FTIR spectra revealed intensified O–H stretching and new ester carbonyl bands, with progressively higher short-range molecular order (R1047/1022) in DF-modified gels. While whole okara provided moderate retrogradation resistance and contributed to network cohesiveness via its matrix of fiber, protein, and lipid, DF exhibited superior retrogradation inhibition and gel stiffness due to its purity and stronger fiber–starch interactions. These results highlight the functional divergence of okara-derived ingredients and support their targeted use in formulating stable, fiber-enriched, starch-based foods. Full article
Show Figures

Graphical abstract

17 pages, 1108 KiB  
Article
Sustainable Alternative Media for the Production of Lipolytic Cells and Fatty Acid Concentrates: Integration of the Enzyme and Food Industries
by Willian S. M. Reis, Arthur O. Preto, Giovanna M. Sant’Ana, Ikaro Tessaro, Ana L. G. Ferreira, Ernandes B. Pereira and Ana K. F. Carvalho
Foods 2025, 14(6), 990; https://doi.org/10.3390/foods14060990 - 14 Mar 2025
Viewed by 730
Abstract
The use of agro-industrial by-products and processing residues, which are rich in carbohydrates, proteins, and lipids, in the production of lipases allows the sustainable use of these residues, reducing environmental impacts. In this study, the immersion water of lentils, soybeans, and textured soy [...] Read more.
The use of agro-industrial by-products and processing residues, which are rich in carbohydrates, proteins, and lipids, in the production of lipases allows the sustainable use of these residues, reducing environmental impacts. In this study, the immersion water of lentils, soybeans, and textured soy protein was evaluated as carbon and nitrogen sources in the production of whole-cell lipases, and the resulting biomass was used in the hydrolysis of residual soybean oil with conventional heating and ultrasound. The results showed that the best culture medium was the one with 50% textured soybean protein, reaching values of 149.04 U/g of hydrolytic activity, 12.92 g/L of biomass concentration, 144.17 U of total biomass activity, and specific and volumetric productivities of 2.07 U/g·h and 20.02 U/L·h, respectively. The positive effect of adding soybean frying oil to the crop was observed, which increased cell production and hydrolytic activity. The biomass obtained showed potential for the ultrasound-assisted hydrolysis of vegetable oils, reaching approximately 43.36% hydrolysis in 7 h of reaction, with an initial rate of 31.03 mmol/h. It is concluded that soybean protein processing water is a viable candidate to replace traditional nitrogen sources, being an economically attractive alternative due to its wide generation in restaurants. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Graphical abstract

22 pages, 1779 KiB  
Article
Characterization of Extruded Sorghum-Soy Blends to Develop Pre-Cooked and Nutritionally Dense Fortified Blended Foods
by Michael Joseph, Qingbin Guo, Brian Lindshield, Akinbode A. Adedeji and Sajid Alavi
Foods 2025, 14(5), 779; https://doi.org/10.3390/foods14050779 - 25 Feb 2025
Cited by 1 | Viewed by 979
Abstract
Food aid commodities are essential food items in global food aid programming. Some are primarily made from an extrusion of corn and soybeans. However, there are concerns about the genetically modified organisms (GMOs) of some of these grains. Hence, there is a need [...] Read more.
Food aid commodities are essential food items in global food aid programming. Some are primarily made from an extrusion of corn and soybeans. However, there are concerns about the genetically modified organisms (GMOs) of some of these grains. Hence, there is a need for alternatives to grains, like sorghum, which is not GMO. It is critical to ensure that products from this new ingredient meet the quality requirements, hence the need to profile them. An expanded formulation sorghum-soy blend (SSB), obtained from extrusion cooking, was ground using a hammer mill and analyzed for changes in properties that were affected by the transformation of starch and protein during processing. Macro- and micro-nutrients were added to these milled blends to prepare fortified blended foods (FBFs) that could meet the recommendations of Food Aid Quality Review (FAQR) report on energy, protein, and micronutrient content. The water absorption index (WAI) ranged from 2.82 to 5.90 g/g, the water solubility index (WSI) ranged from 6.22 to 18.50%, and the blends were affected by the formulation—whole/decorticated sorghum and different levels of fat. Extrusion processing caused starch gelatinization in the range of 90.69–96.26%. The pasting properties indicated that whole grain blends of SSB had lower peak time and higher final viscosity when compared to decorticated sorghum blends. The Bostwick flow rate of cooked porridges with 20% solids was within the recommended range of 9–21 cm/min. Starch digestibility significantly increased after extrusion, with a 149.65% increase in rapidly digestible starch (RDS). The protein digestibility did not vary significantly when subjected to extrusion and wet cooking. There was a significant reduction in anti-nutritional factors in the extruded binary blends of SSB when compared to respective raw blends: phytic acid was reduced by 25.33%, tannins were not found, and trypsin inhibitors were reduced by 19.50%. Thus, the extrusion processing of SSB with the subsequent addition of macro- and micro-ingredients was effective in producing FBFs with high nutritive value, comparable to FBF made from traditional ingredients. Full article
(This article belongs to the Special Issue Impacts of Innovative Processing Technologies on Food Quality)
Show Figures

Figure 1

10 pages, 228 KiB  
Article
Quantification of Naturally Occurring Prebiotics in Selected Foods
by Arianna Natale, Federica Fiori, Federica Turati, Carlo La Vecchia, Maria Parpinel and Marta Rossi
Nutrients 2025, 17(4), 683; https://doi.org/10.3390/nu17040683 - 14 Feb 2025
Viewed by 1397
Abstract
Background: Prebiotics are non-digestible dietary compounds, defined as substrates that are utilised by host microorganisms conferring a health benefit. Although fructo-oligosaccharides (FOSs) and galacto-oligosaccharides (GOSs) are among the most studied prebiotics and support intestinal normobiosis, comprehensive data on their content in foods remain [...] Read more.
Background: Prebiotics are non-digestible dietary compounds, defined as substrates that are utilised by host microorganisms conferring a health benefit. Although fructo-oligosaccharides (FOSs) and galacto-oligosaccharides (GOSs) are among the most studied prebiotics and support intestinal normobiosis, comprehensive data on their content in foods remain limited. Objectives: The objective was to quantify the content of FOSs (kestose, nystose, and 1 F-β-fructofuranosylnystose) and GOSs (raffinose and stachyose) in 35 foods, including fruit and nuts, legumes, and cereals. We also estimated the intakes of prebiotics in an Italian population. Methods: We analysed the prebiotic content in foods using high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). We estimated the prebiotic intake of 100 healthy controls from a case-control study on colorectal cancer conducted in Italy between 2017 and 2019. We used dietary information collected through a food frequency questionnaire and the prebiotic data quantified in this and a previous study. Results: FOSs were mostly detected in cereal products, with wheat bran and whole-meal rye flour containing the highest amount (around 0.7 g/100 g each). GOSs were most abundant in legumes, especially in dried soy products (around 4.0 g/100 g each). Mean daily intake was 0.236 g for total FOSs and 0.371 g for total GOSs. Wheat bran, raspberries, chestnuts, walnuts, raisins, soy milk, and soy yoghurt overall accounted for 3.9% of kestose, 1.2% of nystose, 0% of 1F-β-fructofuranosylnystose, 15.5% of raffinose, and 8.3% of stachyose total intakes. Conclusions: The present study enables the development of a comprehensive database on prebiotic content in foods through a consistent analytical method. This makes prebiotic intake assessments more accurate than previously available data and facilitates future epidemiological studies investigating their potential effects on health. Full article
(This article belongs to the Section Prebiotics and Probiotics)
17 pages, 5701 KiB  
Article
Improving the Nutritional Profile of Intermediate Wheatgrass by Solid-State Fermentation with Aspergillus oryzae Strains
by Takehiro Murai and George A. Annor
Foods 2025, 14(3), 395; https://doi.org/10.3390/foods14030395 - 25 Jan 2025
Cited by 1 | Viewed by 2008
Abstract
Aspergillus oryzae has been used to ferment various cereal grains throughout history, as seen in the examples of sake, soy sauce, and miso. It is known that this fermentation enhances the nutritional quality of the raw materials by breaking down complex molecules into [...] Read more.
Aspergillus oryzae has been used to ferment various cereal grains throughout history, as seen in the examples of sake, soy sauce, and miso. It is known that this fermentation enhances the nutritional quality of the raw materials by breaking down complex molecules into simpler, more digestible forms and increasing the bioactive compounds. In this study, intermediate wheatgrass (IWG) was fermented with three different strains of A. oryzae suitable for making sake, soy sauce, and miso. Whole IWG flour was mixed with water (1:2 w/w), autoclaved at 121 °C for 20 min, cooled, mixed with A. oryzae spores, and fermented for seven days at 30 °C. Sugars, protein, amino acids, kojic acid, total phenolic content, total flavonoid content, and DPPH radical scavenging activity were measured. The protein content increased significantly (p < 0.05) from 18.0 g/100 g to over 30 g/100 g after seven days. Lysine showed a positive correlation with protein content across all three strains, with its ratio increasing as the protein content increased, while all other essential amino acids displayed a negative correlation and a decreasing ratio with the protein content. Autoclaving increased the verbascose content of IWG, and further increases were observed during the first two days of fermentation across all three strains, followed by a subsequent decline. Peak glucose content was observed on days 3~4 but also decreased in the subsequent days. Total phenolic content, total flavonoid content, kojic acid, and DPPH scavenging activity peaked around day 4~5 for all three strains, followed by a slight decrease in the subsequent days. The findings of this study highlight the potential of solid-state fermentation to improve the nutritional profile of IWG, emphasizing that the selection of A. oryzae strains and the fermentation duration can affect the fermentation outcome and nutritional enhancements. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

14 pages, 532 KiB  
Review
Association Between the EAT-Lancet Reference Diet and Gestational Diabetes Mellitus: A Mini-Review
by Niuniu Sun, Shubo Wen, Zhenyu Huo, Zitong He, Tongyao Sun, Jingxi Hu, Emily Sonestedt, Yan Borné and Shunming Zhang
Nutrients 2024, 16(23), 4073; https://doi.org/10.3390/nu16234073 - 27 Nov 2024
Viewed by 2213
Abstract
Gestational diabetes mellitus (GDM) is a prevalent pregnancy complication that seriously endangers maternal and infant health, posing a medical and economic burden worldwide. Several dietary patterns have been recommended for women of childbearing age, demonstrating a positive role in preventing and managing GDM. [...] Read more.
Gestational diabetes mellitus (GDM) is a prevalent pregnancy complication that seriously endangers maternal and infant health, posing a medical and economic burden worldwide. Several dietary patterns have been recommended for women of childbearing age, demonstrating a positive role in preventing and managing GDM. However, these dietary patterns may not fully take environmental factors into account when addressing global food sustainability and planetary health. In this context, the EAT-Lancet Commission proposed a diet in 2019 aimed at both health improvement and environmental sustainability, which can potentially reduce the prevalence of diet-related diseases. Nevertheless, the role of the EAT-Lancet reference diet in preventing and managing GDM has not been fully evaluated. Therefore, we conducted a literature search to assess the existing evidence for the association between the EAT-Lancet reference diet components and GDM. Based on the current evidence available in the PubMed database from inception to 31 October 2024, women of childbearing age are recommended to consume whole grains, fish, soy products, olive oil, full-fat dairy products, nuts, and moderate amounts of fruits while reducing red meat and sugar-sweetened beverage intake to lower the risk of GDM. There remains inconsistency regarding the association between tubers or starchy vegetables, vegetables, eggs, and poultry and the risk of GDM. In conclusion, current research on the association between diet and GDM is limited and offers suggestions for methodologies to obtain robust evidence regarding the association between the EAT-Lancet reference diet and GDM. Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Figure 1

19 pages, 885 KiB  
Article
Energy, Macronutrients and Micronutrients Intake Among Pregnant Women in Lebanon: Findings from the Updated Lebanese National Food Consumption Survey (LEBANON-FCS)
by Rana Mahfouz, Marie-Therese Akiki, Vanessa Ndayra, Rebecca El Khoury, Marise Chawi, Majida Hatem, Lara Hanna-Wakim, Yonna Sacre and Maha Hoteit
Nutrients 2024, 16(23), 4059; https://doi.org/10.3390/nu16234059 - 26 Nov 2024
Cited by 1 | Viewed by 2195
Abstract
Background: Pregnancy is a crucial period for maternal and fetal health, and in Lebanon, where cultural and economic factors influence dietary practices, there is an urgent need to evaluate the food consumption patterns and diet quality of pregnant women. Aim: To evaluate the [...] Read more.
Background: Pregnancy is a crucial period for maternal and fetal health, and in Lebanon, where cultural and economic factors influence dietary practices, there is an urgent need to evaluate the food consumption patterns and diet quality of pregnant women. Aim: To evaluate the food consumption patterns, energy intake, as well as macro- and micro-nutrient intake among a nationally representative sample of Lebanese pregnant women aged 18–49 years old. Methods: A cross-sectional study was carried out from March to October 2023, involving 500 pregnant women from all eight Lebanese governorates. Sociodemographic and medical information was gathered, food consumption was evaluated using a validated Food Frequency Questionnaire (FFQ) and three 24-h recall, and anthropometric measurements were recorded. Results: The current population did not meet the USDA healthy pattern recommendations for whole grain, seafood, dairy, nuts, seeds and soy products consumption but exceeded the guidelines for vegetables, meats, poultry, eggs, oils, and refined grains. According to Mediterranean diet guidelines, the sample fell short in recommended intakes for fruits, olives/nuts/seeds, eggs, and olive oil, while surpassing the recommended levels for potatoes, legumes, pulses, sweets, red meat, processed meat, and fish and seafood. None of the participants met the energy requirements for their trimester and age group. In terms of macronutrient intake, the requirements for protein, unsaturated fats, and fiber were not met, while intakes of fats and sugars were exceeded. Regarding micronutrients, the recommended levels were not fully achieved, with particularly low intakes of vitamin D and iodine, as well as inadequate adherence to recommendations for iron, calcium, vitamin A, vitamin E, zinc, and choline. Additionally, a third of the participants did not meet the recommended intakes for folate and vitamin B12. Conclusions: The findings reveal significant dietary inadequacies among the current population, with participants failing to meet essential recommendations for whole grains and key food groups, alongside insufficient energy intake for their trimesters and age groups. Critical micronutrient deficiencies, particularly in vitamin D, iodine, and B vitamins, highlight the urgent need for targeted nutritional interventions and public health initiatives to improve dietary practices among pregnant women in Lebanon. Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Figure 1

19 pages, 4076 KiB  
Article
Extraction and Nutritional Value of Soybean Meal Protein Isolate
by Kudirat Alarape, Adewale Adeniyi, Tawakalt Ayodele, Ibrahim Adebayo Bello, Niloy Chandra Sarker, Clairmont Clementson and Ademola Hammed
Nutraceuticals 2024, 4(4), 503-521; https://doi.org/10.3390/nutraceuticals4040029 - 11 Oct 2024
Cited by 4 | Viewed by 4373
Abstract
The increasing protein demand driven by global population growth necessitates the search for an alternative protein source. Soybean meal (SM), with approximately 47–49% proteins, is a viable option. Soymeal protein isolate (SMPI) is a cost-efficient protein source with a well-balanced amino acid profile, [...] Read more.
The increasing protein demand driven by global population growth necessitates the search for an alternative protein source. Soybean meal (SM), with approximately 47–49% proteins, is a viable option. Soymeal protein isolate (SMPI) is a cost-efficient protein source with a well-balanced amino acid profile, making it suitable for addressing this demand. This study attempts to address the lack of information regarding the extractability and nutritional potential of SMPI obtained utilizing a weak base and recoverable solvent. In this work, the structural and compositional studies of SMPI, as well as the aqueous extractability of ammonium hydroxide (NH4OH), are investigated. Furthermore, we examined the effects of heat treatment during oil extraction, where a comparison between protein isolates from soymeal and whole soybeans was carried out. The maximum extraction yield of 24.1% was achieved by increasing the concentration of NH4OH from 0.25–1%. In comparison to the soy protein isolate from whole soybeans (SPI), the compositional analysis report revealed that SMPI had higher levels of crude protein, moisture, and ash content, but lower levels of fat and carbohydrates. Furthermore, the examination of the amino acid composition confirms the existence of vital amino acids in SMPI. The amino acid score indicates that methionine, lysine, and threonine are the limiting amino acids. SMPI and SPI share structural and functional group similarities, as demonstrated by Fourier-transform infrared spectroscopy. Gel electrophoresis using sodium dodecyl sulfate–polyacrylamide shows that the protein molecular weight distributions of SPI and SMPI are similar. This in-depth evaluation emphasizes the advantages of SM by advocating its application in other sectors beyond conventional animal feed, such as nutritional supplements and bio-based products, and by improving the environmental sustainability and global food chains. Full article
Show Figures

Figure 1

18 pages, 13890 KiB  
Article
Use of Natural Polymers for the Encapsulation of Eugenol by Spray Drying
by Aitor Caballero-Román, Anna Nardi-Ricart, Roser Vila, Salvador Cañigueral, Josep R. Ticó and Montserrat Miñarro
Pharmaceutics 2024, 16(10), 1251; https://doi.org/10.3390/pharmaceutics16101251 - 26 Sep 2024
Cited by 2 | Viewed by 1358
Abstract
Background: Eugenol is a colourless or yellowish compound whose presence in clove essential oil surpasses the 75% of its composition. This phenylpropanoid, widely used as an antiseptic, anaesthetic and antioxidant, can be extracted by steam distillation from the dried flower buds of Syzygium [...] Read more.
Background: Eugenol is a colourless or yellowish compound whose presence in clove essential oil surpasses the 75% of its composition. This phenylpropanoid, widely used as an antiseptic, anaesthetic and antioxidant, can be extracted by steam distillation from the dried flower buds of Syzygium aromaticum (L.). Due to its chemical instability in presence of light and air, it should be protected when developing a formulation to avoid or minimise its degradation. Methods: A promising approach would be encapsulation by spray drying, using natural coating products such as maltodextrin, gum arabic, and soy lecithin. To do so, a factorial design was carried out to evaluate the effect of five variables at two levels (inlet temperature, aspirator and flow rate, method of homogenisation of the emulsion and its eugenol:polymers ratio). Studied outcomes were yield and outlet temperature of the spray drying process, eugenol encapsulation efficiency, and particle size expressed as d(0.9). Results: The best three formulations were prepared by using a lower amount of eugenol than polymers (1:2 ratio), homogenised by Ultra-Turrax®, and pumped to the spray dryer at 35 m3/h. Inlet temperature and flow rate varied in the top three formulations, but their values in the best formulation (DF22) were 130 °C and 4.5 mL/min. These microcapsules encapsulated between 47.37% and 65.69% of eugenol and were spray-dried achieving more than a 57.20% of product recovery. Their size, ranged from 22.40 μm to 55.60 μm. Conclusions: Overall, the whole spray drying process was optimised, and biodegradable stable polymeric microcapsules containing eugenol were successfully prepared. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

25 pages, 14572 KiB  
Article
Temporal and Spatial Variations in Rainfall Erosivity on Hainan Island and the Influence of the El Niño/Southern Oscillation
by Xudong Lu, Jiadong Chen, Jianchao Guo, Shi Qi, Ruien Liao, Jinlin Lai, Maoyuan Wang and Peng Zhang
Land 2024, 13(8), 1210; https://doi.org/10.3390/land13081210 - 5 Aug 2024
Viewed by 1223
Abstract
Rainfall erosivity (RE), a pivotal external force driving soil erosion, is impacted by El Niño/Southern Oscillation (ENSO). Studying the spatiotemporal variations in RE and their response to ENSO is essential for regional ecological security. In this study, a daily RE model was identified [...] Read more.
Rainfall erosivity (RE), a pivotal external force driving soil erosion, is impacted by El Niño/Southern Oscillation (ENSO). Studying the spatiotemporal variations in RE and their response to ENSO is essential for regional ecological security. In this study, a daily RE model was identified as a calculation model through an evaluation of model suitability. Daily precipitation data from 1971 to 2020 from 38 meteorological stations on Hainan Island, China, were utilized to calculate the RE. The multivariate ENSO index (MEI), Southern Oscillation Index (SOI), and Oceanic Niño Index (ONI) were used as the ENSO characterization indices, and the effects of ENSO on RE were investigated via cross-wavelet analysis and binary and multivariate wavelet coherence analysis. During the whole study period, the average RE of Hainan Island was 15,671.28 MJ·mm·ha−1·h−1, with a fluctuating overall upward trend. There were spatial and temporal distribution differences in RE, with temporal concentrations in summer (June–August) and a spatial pattern of decreasing from east to west. During ENSO events, the RE was greater during the El Niño period than during the La Niña period. For the ENSO characterization indices, the MEI, SOI, and ONI showed significant correlations and resonance effects with RE, but there were differences in the time of occurrence, direction of action, and intensity. In addition, the MEI and MEI–ONI affected RE individually or jointly at different time scales. This study contributes to a deeper understanding of the influence of ENSO on RE and can provide important insights for the prediction of soil erosion and the development of related coping strategies. Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

12 pages, 4849 KiB  
Article
Design of Ultra-Compact and Multifunctional Optical Logic Gate Based on Sb2Se3-SOI Hybrid Platform
by Liuni Yang, Qiang Liu, Haoyuan Liang, Minming Geng, Kejin Wei and Zhenrong Zhang
Nanomaterials 2024, 14(15), 1317; https://doi.org/10.3390/nano14151317 - 5 Aug 2024
Viewed by 2245
Abstract
Optical logic devices are essential functional devices for achieving optical signal processing. In this study, we design an ultra-compact (4.92 × 2.52 μm2) reconfigurable optical logic gate by using inverse design method with DBS algorithm based on Sb2Se3 [...] Read more.
Optical logic devices are essential functional devices for achieving optical signal processing. In this study, we design an ultra-compact (4.92 × 2.52 μm2) reconfigurable optical logic gate by using inverse design method with DBS algorithm based on Sb2Se3-SOI integrated platform. By selecting different amorphous/crystalline distributions of Sb2Se3 via programmable electrical triggers, the designed structure can switch between OR, XOR, NOT or AND logic gate. This structure works well for all four logic functions in the wavelength range of 1540–1560 nm. Especially at the wavelength of 1550 nm, the Contrast Ratios for XOR, NOT and AND logic gate are 13.77 dB, 11.69 dB and 3.01 dB, respectively, indicating good logical judgment ability of the device. Our design is robust to a certain range of fabrication imperfections. Even if performance weakens due to deviations, improvements can be obtained by rearranging the configurations of Sb2Se3 without reproducing the whole device. Full article
Show Figures

Figure 1

15 pages, 1298 KiB  
Article
Insect Protein as a Component of Meat Analogue Burger
by Anna Krawczyk, Juana Fernández-López and Anna Zimoch-Korzycka
Foods 2024, 13(12), 1806; https://doi.org/10.3390/foods13121806 - 8 Jun 2024
Cited by 9 | Viewed by 3240
Abstract
Researchers are exploring solutions to meet the growing demand for protein due to the expected increase in global population by 2050. Interest in alternative protein sources like insects has risen, driven by concerns about environmental impact and the need for sustainable food production. [...] Read more.
Researchers are exploring solutions to meet the growing demand for protein due to the expected increase in global population by 2050. Interest in alternative protein sources like insects has risen, driven by concerns about environmental impact and the need for sustainable food production. This study aimed to develop and evaluate the physicochemical properties of soy-protein-based burgers enriched with insect protein from Alphitobius diaperinus. Three formulations were developed: a control (B0) and burgers with 5% (B5) and 10% (B10) insect protein—Whole Buffalo Powder (WBP). The results showed that adding insect protein decreased the burger analogue’s pH. A clear trend was observed of increasing total lipids and saturated fatty acids (SFA) and decreasing monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) as the WBP concentration increased from 0% to 10%. No significant differences with increasing WBP concentration in the protein content of the burger analogue, as well as the cooking yield, were noted. The WBP addition had a notable effect on the color change, especially a decrease in brightness (L*). It was shown that as the WBP concentration increased, there were no significant differences in the texture profile of the burger analogues. The formulation with 5% WBP concentration was the most acceptable in sensory analysis. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

Back to TopTop