In Vitro and Field Effectiveness of the Combination of Four Trichoderma spp. Against Sclerotinia sclerotiorum and Its Impact on Potato (Solanum tuberosum L.) Crop Production
Abstract
1. Introduction
2. Results
2.1. Molecular Identification of Sclerotinia sclerotiorum
2.2. In Vitro Inhibition of Sclerotinia sclerotiorum by Four Trichoderma Species
2.3. Hyphal Interactions Between Four Trichoderma spp. and Sclerotinia sclerotiorum
2.4. Efficacy of Trichoderma spp., Synthetic Fungicides and Their Alternate Application for Controlling Potato White Mold Under Field Conditions
2.5. Effectiveness of Four Trichoderma Species, Synthetic Fungicides and Their Alternate Use on Sclerotia Production by Sclerotinia sclerotiorum in Potato Plants Under Field Conditions
2.6. Effectiveness of Four Trichoderma spp., Synthetic Fungicides and Their Alternate Use in Controlling White Mold on Potato Tubers Under Field Conditions
2.7. Production of Tubers in Plots Sprayed with a Combination of Four Trichoderma spp., Synthetic Fungicides or the Alternate Use of These Treatments
3. Discussion
4. Materials and Methods
4.1. Obtaining Trichoderma Isolates and Molecular Identification of Sclerotinia sclerotiorum
4.2. In Vitro Antagonism of Trichoderma spp. Against Sclerotinia sclerotiorum and Sclerotia Formation
4.3. Effect of Volatile Metabolites from Trichoderma spp. on Mycelial Growth and Sclerotia Formation
4.4. Field Experiments
4.5. Disease Incidence, Severity and Sclerotia Production in Plants
4.6. Tuber Disease Evaluation and Yield
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT. Crops. 2023. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 1 October 2025).
- SIAP. Anuario Estadístico de la Producción Agrícola. 2024. Available online: https://nube.agricultura.gob.mx/cierre_agricola/ (accessed on 1 October 2025).
- Roca, L.F.; Raya, M.C.; Luque, F.; Agustí-Brisach, C.; Romero, J.; Trapero, A. First Report of Sclerotium rolfsii causing soft rot of potato tubers in Spain. Plant Dis. 2016, 100, 2535. [Google Scholar] [CrossRef]
- Felix-Gastelum, R.; Herrera-Rodriguez, G.; Avila-Alistac, N.; Leon, E. Sclerotinia sclerotiorum in beans and potatoes in Sinaloa: Etiology, epidemiology and management options. Mex. J. Plant Pathol. 2024, 42, 29. [Google Scholar] [CrossRef]
- Abdolbast, A.; Del Río-Mendoza, L.E. Effective control of Sclerotinia stem rot in canola plants through application of exogenous hairpin RNA of multiple Sclerotinia sclerotiorum Genes. Phytopathology 2024, 114, 1000–1010. [Google Scholar] [CrossRef]
- Islam, M.R.; Akanda, A.M.; Hossain, M.M.; Hossain, M.M. First characterization of a newly emerging phytopathogen, Sclerotinia sclerotiorum causing white mold in pea. J. Basic Microbiol. 2021, 61, 923–939. [Google Scholar] [CrossRef]
- Jahan, R.; Siddique, S.S.; Jannat, R.; Hossain, M.M. Cosmos white rot: First characterization, physiology, host range, disease resistance and chemical control. J. Basic Microbiol. 2022, 62, 911–929. [Google Scholar] [CrossRef]
- Tian, B.; Xie, J.; Fu, Y.; Cheng, J.; Li, B.; Chen, T.; Zhao, Y.; Gao, Z.; Yang, P.; Barbetti, M.J.; et al. A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases. ISME J. 2020, 14, 3120–3135. [Google Scholar] [CrossRef]
- Bolton, M.D.; Thomma, B.P.H.J.; Nelson, B.D. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 2006, 7, 1–16. [Google Scholar] [CrossRef]
- Cebreros-Sanchez, F.; Sanchez-Castro, M.A. Enfermedades de la berenjena. In Enfermedades de Las Hortalizas; Ortega, J.C., García-Estrada, R., Carrillo-Facio, A., Eds.; Universidad Autónoma de Sinaloa: Sinaloa, Mexico, 1998; pp. 161–175. [Google Scholar]
- Rodriguez-Cota, F.G.; Cortez-Mondaca, E.; Sauceda-Acosta, R.H.; Acosta-Gallegos, J.A.; Padilla-Valenzuela, I.; Miranda-Arnold, P. Technology for producing bean seeds in Sinaloa. Tech. Broch. 2022, 46, 49. [Google Scholar]
- Hooker, W.J. Compendium of Potato Diseases; American Phytopathological Society: St. Paul, MN, USA, 1981. [Google Scholar]
- Clarkson, J.P.; Staveley, J.; Phelps, K.; Young, C.S.; Whipps, J.M. Ascospore release and survival in Sclerotinia sclerotiorum. Mycol. Res. 2003, 107, 213–222. [Google Scholar] [CrossRef]
- Fernando, W.G.D.; Nakkeeran, S.; Zhang, Y. Ecofriendly methods in combating Sclerotinia sclerotiorum (Lib.) de Bary. Recent Res. Dev. Environ. Biol. 2004, 1, 237–251. [Google Scholar]
- Hegedus, D.D.; Rimmer, S.R. Sclerotinia sclerotiorum: When ‘to be or not to be’ a pathogen? FEMS Microbiol. Lett. 2005, 251, 177–184. [Google Scholar] [CrossRef]
- Guilger-Casagrande, M.; Germano-Costa, T.; Pasquoto-Stigliani, T.; Fernandes-Fraceto, L.; De Lima, R. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Sci. Rep. 2019, 9, 14351. [Google Scholar] [CrossRef]
- Lane, D.; Denton-Giles, M.; Derbyshire, M. Abiotic conditions governing the myceliogenic germination of Sclerotinia sclerotiorum allowing the basal infection of Brassica napus. Australas. Plant Pathol. 2019, 48, 85–91. [Google Scholar] [CrossRef]
- Matheron, M.E.; Porchas, M. Activity of boscalid, fenhexamid, fluazinam, fludioxonil and vinclozolin on growth of Sclerotinia minor and S. sclerotiorum and development of lettuce drop. Plant Dis. 2004, 88, 665–668. [Google Scholar] [CrossRef]
- Bradley, C.A.; Lamey, H.A.; Endres, G.J.; Henson, R.A.; Hanson, B.K.; McKay, K.R.; Halvorson, M.; LeGare, D.G.; Porter, P.M. Efficacy of fungicides for control of Sclerotinia stem rot of canola. Plant Dis. 2006, 90, 1129–1134. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, Y.B.; Zhou, M.G. Molecular and biochemical characterization of boscalid resistance in laboratory mutants of Sclerotinia sclerotiorum. Plant Pathol. 2015, 64, 101–108. [Google Scholar] [CrossRef]
- Nieto-Lopez, E.H.; Justo-Miorini, T.J.; Wulkop-Gil, C.A.; Chilvers, M.I.; Giesler, L.J.; Jackson-Ziems, T.A.; Tyler, B.M.; Jiang, D. Fungicide sensitivity of Sclerotinia sclerotiorum from US soybean and drybean, compared to different regions and climates. Plant Dis. 2023, 107, 2395–2406. [Google Scholar] [CrossRef]
- Sumida, C.H.; Daniel, J.F.; Araujo, A.P.C.; Peitl, D.C.; Abreu, L.M.; Dekker, R.F.; Canteri, M.G. Trichoderma asperelloides antagonism to nine Sclerotinia sclerotiorum strains and biological control of white mold disease in soybean plants. Biocontrol Sci. Technol. 2018, 28, 142–156. [Google Scholar] [CrossRef]
- Shaaban, N.M.; El-Shazly, A.M.; Alnaggar, A.M. Biological control of white mould disease on dry bean caused by Sclerotinia sclerotiorum in Egypt. Menoufia J. Plant Prot. 2022, 7, 137–154. [Google Scholar] [CrossRef]
- Kumar, S.; Shukla, V.; Dubey, M.K.; Upadhyay, R.S. Activation of defense response in common bean against stem rot disease triggered by Trichoderma erinaceum and Trichoderma viride. J. Basic Microbiol. 2021, 61, 910–922. [Google Scholar] [CrossRef]
- Baruah, P.; Tewari, A.K.; Tripathi, R.; Purohit, R. Unraveling the antagonistic potential of Trichoderma for combating Sclerotinia rot of mustard. J. Basic Microbiol. 2025, 65, 70040. [Google Scholar] [CrossRef]
- Çolak Ateş, A. Effect of Coniothyrium minitans and Trichoderma harzianum in the biological control of white mold disease (Sclerotinia sclerotiorum) in lettuce (Lactuca sativa L.). Appl. Ecol. Environ. Res. 2019, 17, 15687–15701. [Google Scholar] [CrossRef]
- Da Silva, L.R.; Muniz, P.H.P.C.; Peixoto, G.H.S.; Luccas, B.E.G.D.; da Silva, J.B.T.; de Mello, S.C.M. Mycelial inhibition of Sclerotinia sclerotiorum by Trichoderma spp. volatile organic compounds in distinct stages of development. Pak. J. Biol. Sci. 2021, 24, 527–536. [Google Scholar] [CrossRef]
- Silva, L.G.; Camargo, R.C.; Mascarin, G.M.; Nunes, P.S.O.; Dunlap, C.; Bettiol, W. Dual functionality of Trichoderma: Biocontrol of Sclerotinia sclerotiorum and biostimulant of cotton plants. Front. Plant Sci. 2022, 13, 983127. [Google Scholar] [CrossRef]
- Smolińska, U.; Kowalska, B.; Kowalczyk, W.; Szczech, M.; Murgrabia, A. Eradication of Sclerotinia sclerotiorum sclerotia from soil using organic waste materials as Trichoderma fungi carriers. J. Hortic. Res. 2016, 24, 101–110. [Google Scholar] [CrossRef]
- Townsend, G.R.; Heuberger, J.W. Methods for estimating losses caused by disease in fungicide experiments. Plant Dis. Rep. 1943, 27, 340–343. [Google Scholar]
- Kurt, S.; Uysal, A.; Kara, M.; Soylu, S. Natural infection of potato by Sclerotinia sclerotiorum causing stem rot disease in Turkey. Australas. Plant Dis. 2017, 12, 3. [Google Scholar] [CrossRef]
- Baturo-Cieśniewska, A.; Frąc, M.; Jędryczka, M. Molecular identification of Sclerotinia trifoliorum and Sclerotinia sclerotiorum (Ascomycota) as causal agents of white mould of red clover and alfalfa. Plant Dis. 2017, 101, 336–343. [Google Scholar] [CrossRef]
- Sharma, P.; Samkumar, A.; Rao, M.; Singh, V.V.; Prasad, L.; Mishra, D.C.; Bhattacharya, R.; Gupta, N.C. Genetic diversity studies based on morphological and ITS sequence analysis of Sclerotinia sclerotiorum isolates from oilseed Indian Mustard (Brassica juncea). Front. Microbiol. 2018, 9, 1169. [Google Scholar] [CrossRef]
- Nain, M.Z.; Khan, R.U.; Singh, V.P.; Sayyeda, S. In vitro evaluation of antifungal activity of different Trichoderma spp. and plant extracts against Sclerotinia sclerotiorum (Lib.) de Bary causing stem rot of mustard. Int. J. Plant Soil Sci. 2023, 35, 40–47. [Google Scholar] [CrossRef]
- Li, E.; Zhu, N.; Zhang, S.; Xu, B.; Liu, L.; Zhang, A. Efficacy of Trichoderma longibrachiatum SC5 fermentation filtrate in inhibiting the Sclerotinia sclerotiorum growth and development in sunflower. Int. J. Mol. Sci. 2024, 26, 201. [Google Scholar] [CrossRef]
- Ibarra-Medina, V.A.; Ferrera-Cerrato, R.; Alarcón, A.; Lara-Hernández, M.E.; Valdez-Carrasco, J.M. Isolation and screening of Trichoderma strains antagonistic to Sclerotinia sclerotiorum and Sclerotinia minor. Rev. Mex. Micol. 2010, 31, 53–63. Available online: https://www.scielo.org.mx/scielo.php?pid=S0187-31802010000100008&script=sci_abstract&tlng=en (accessed on 15 September 2025).
- Hernandez-Castillo, F.D.; Berlanga-Padilla, A.M.; Gallegos-Morales, G.; Cepeda-Siller, M.; Rodriguez-Herrera, R.; Aguilar-Gonzales, C.N.; Castillo Reyes, R. In vitro antagonist action of Trichoderma strains against Sclerotinia sclerotiorum and Sclerotium cepivorum. Am. J. Agric. Biol. Sci. 2011, 6, 410–417. [Google Scholar] [CrossRef]
- Atlagić, K.; Cvetić-Antić, T.; Lukičić, J.; Kruščić, K.; Živić, M.; Unković, N.; Pajić, T.; Stevanović, K.; Todorović, N.V. Biocontrol potential of native Trichoderma strains toward soil-borne phytopathogenic and saprotrophic fungi. J. Fungi 2025, 11, 535. [Google Scholar] [CrossRef]
- Sridharan, A.; Thankappan, S.; Karthikeyan, G.; Sivakumar, U. Comprehensive profiling of the VOCs of Trichoderma longibrachiatum EF5 while interacting with Sclerotium rolfsii and Macrophomina phaseolina. Microbiol. Res. 2020, 236, 126436. [Google Scholar] [CrossRef]
- Da Silva, L.R.; De Barros-Rodrigues, L.L.; Botelho, A.S.; De Castro, B.S.; Muniz, P.H.P.C.; Moraes, M.C.B.; De Mello, S.C.M. Colony age of Trichoderma azevedoi alters the profile of volatile organic compounds and ability to suppress Sclerotinia sclerotiorum in bean plants. Plant Pathol J. 2023, 39, 39–51. [Google Scholar] [CrossRef]
- Ojaghian, S.; Wang, L.; Zhang, L. Expression of lytic enzyme genes involved in antagonistic activity of Trichoderma viridescens during interaction with Sclerotinia sclerotiorum. Eur. J. Plant Pathol. 2020, 157, 223–226. [Google Scholar] [CrossRef]
- Tomah, A.A.; Khattak, A.A.; Aldarraji, M.H.; Al-Maidi, A.A.H.; Mohany, M.; Al-Rejaie, S.S.; Ogunyemi, S.O. Sclerotia degradation by Trichoderma-mycoparasitic; an effective and sustainable trend in the drop lettuce disease control caused by S. sclerotiorum. Arch. Microbiol. 2024, 206, 286. [Google Scholar] [CrossRef]
- Iqbal-Faruk, M. Integrated Management of Sclerotinia Sclerotiorum, An Emerging Fungal Pathogen Causing White Mold Disease. J. Plant Cell Dev. 2022, 1, 1–14. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, D.; Kirk, W.; Hao, J. Use of Coniothyrium minitans and other microorganisms for reducing Sclerotinia sclerotiorum. Biol. Control 2012, 60, 225–232. [Google Scholar] [CrossRef]
- Geraldine, A.M.; Lopes, F.A.C.; Carvalho, D.D.C.; Barbosa, E.T.; Rodrigues, A.R.; Brandão, R.S.; Ulhôa, C.J.; Lobo Junior, M. Cell wall-degrading enzymes and parasitism of sclerotia are key factors on field biocontrol of white mold by Trichoderma spp. Biol. Control 2013, 67, 308–316. [Google Scholar] [CrossRef]
- Zeng, W.; Kirk, W.; Hao, J. Field management of Sclerotinia stem rot of soybean using biological control agents. Biol. Control 2012, 60, 141–147. [Google Scholar] [CrossRef]
- Troian, R.F.; Steindorff, A.S.; Ramada, M.H.S.; Arruda, W.; Ulhoa, C.J. Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: Evaluation of antagonism and expression of cell wall-degrading enzymes genes. Biotechnol. Lett. 2014, 36, 2095–2101. [Google Scholar] [CrossRef]
- Altomare, C.; Norvell, W.A.; Bjorkman, T.; Harman, G.E. Solubilization of Phosphates and Micronutrients by the Plant-Growth-Promoting and Biocontrol Fungus Trichoderma harzianum Rifai 1295-22. Appl. Environ. Microbiol. 1999, 65, 2926–2933. [Google Scholar] [CrossRef]
- Zhang, F.; Ge, H.; Zhang, F.; Guo, N.; Wang, Y.; Chen, L.; Ji, X.; Li, C. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiol. Biochem. 2016, 100, 64–74. [Google Scholar] [CrossRef]
- Rubayet, M.T.; Bhuiyan, M.K.A.; Hossain, M.M. Effect of soil solarization and biofumigation on stem rot disease of potato caused by Sclerotium rolfsii. Ann. Bangladesh Agric. 2017, 21, 49–59. Available online: https://gau.edu.bd/aba/wp-content/uploads/sites/320/2019/07/Manuscript-5.pdf (accessed on 16 September 2025).
- García-Crespo, R.G.; Arcia-Montesuma, M.A.; Pérez-Tortolero, M.R.; Riera-Tona, R.F. Effect of Trichoderma on potato development and Rhizoctonia biocontrol under three application start times. Trop. Agron. 2012, 62, 77–95. Available online: https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0002-192X2012000100007&lng=es&nrm=iso&tlng=es (accessed on 16 September 2025).
- Huzar-Novakowiski, J.; Paul, P.A.; Dorrance, A.E. Host resistance and chemical control for management of Sclerotinia stem rot of soybean in Ohio. Phytopathology 2017, 107, 937–949. [Google Scholar] [CrossRef]
- Irazoqui-Acosta, M.B.; Felix-Gastelum, R.; Leyva-Madrigal, K.Y.; Longoria-Espinoza, R.M.; Herrera-Rodriguez, G.; Armenta-López, S.E. Caracterización de Sclerotium rolfsii y especies de Trichoderma en cultivos comerciales de papa en Sonora y Sinaloa, Mexico. Rev. Mex. Fitopatol. 2025, 43, 85. [Google Scholar] [CrossRef]
- Michel-Aceves, A.C.; Otero-Sánchez, M.A.; Martínez-Rojero, R.D.; Rodriguez-Morán, N.L.; Ariza-Flores, R.; Barrios-Ayala, A. Producción masiva de Trichoderma harzianum Rifai en diferentes sustratos orgánicos. Rev. Chapingo. Ser. Hortic. 2008, 14, 185–191. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. Available online: https://www.researchgate.net/publication/262687766 (accessed on 16 September 2025).
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. 1999, 4, 95–98. Available online: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1383440 (accessed on 14 October 2025).
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree, version 1.4; Tree Figure Drawing Tool; University of Edinburgh: Edinburgh, Scotland, 2014. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 14 October 2025).
- Vincent, J.M. Distortion of fungal hyphae in the presence of certain inhibitors. Nature 1947, 159, 850. [Google Scholar] [CrossRef]
- Bell, D.K.; Wells, H.D.; Markham, C.R. In vitro antagonism of Trichoderma spp. against six fungal plant pathogens. Phytopathology 1982, 72, 379–382. [Google Scholar] [CrossRef]
- Dennis, C.; Webster, J. Antagonistic properties of species-groups of Trichoderma, III Hyphal interactions. Trans. Br. Mycol. Soc. 1971, 57, 363–369. [Google Scholar] [CrossRef]
- Santos-Cervantes, M.E.; Felix-Gastelum, R.; Herrera-Rodríguez, G.; Espinoza-Mancillas, M.G.; Mora-Romero, A.G.; Leyva-López, N.E. Characterization, pathogenicity and chemical control of Streptomyces acidiscabies associated to potato common scab. Am. J. Potato Res. 2016, 94, 14–25. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Conover, W.J. Practical Nonparametric Statics; John Wiley and Sons, Inc.: New York, NY, USA, 1999; Available online: https://es.scribd.com/document/440028505/W-J-Conover-Practical-Nonparametric-Statistics-3rd-Wiley-1999-compressed-pdf (accessed on 22 September 2025).
- Little, T.M.; Hills, F.J. Agricultural Experimentation: Design and Analysis; CABI: Wallingford, UK, 1978; p. 350. [Google Scholar]


| Dual Confrontation | Volatile Metabolites | ||||
|---|---|---|---|---|---|
| Trichoderma Isolate | % Inhibition | Scale | Number of Sclerotia | % Inhibition | Number of Sclerotia |
| T. asperellum | 63.1 ± 0.98 a y | 3 | 6.8 ± 0.89 b y | 93.5 ± 1.62 a * | 0.0 ± 0.00 b * |
| T. afroharzianum | 62.8 ± 0.59 ab | 3 | 4.3 ± 0.89 c | 94.1 ± 2.89 a | 0.0 ± 0.00 b |
| T. asperelloides | 61.8 ± 0.83 b | 3 | 4.0 ± 0.76 c | 91.0 ± 3.05 a | 0.0 ± 0.00 b |
| T. azevedoi | 60.1 ± 0.93 c | 3 | 4.0 ± 0.93 c | 90.3 ± 1.94 a | 0.0 ± 0.00 b |
| Control | X NA | NA | 20.8 ± 0.89 a | NA | 27.0 ± 0.05 a |
| CV (%) | 2.28 | 83.24 | 2.65 | 3.98 | |
| Types of Hyphal Interactions x | ||||||
|---|---|---|---|---|---|---|
| Trichoderma Species | Adhesion | Coiling | Granulation | Vacuolization | Penetration | Lysis |
| T. asperellum | X y | X | X | X | X | X |
| T. afroharzianum | X | X | X | X | X | |
| T. azevedoi | X | X | X | X | X | |
| T. asperelloides | X | X | X | X | ||
| Treatment | Experiment 2021 | Experiment 2022 | ||
|---|---|---|---|---|
| Incidence (%) | Severity (%) x | Incidence (%) | Severity (%) | |
| Trichoderma spp. y | 66.0 ± 5.38 b * | 27.1 ± 7.26 b | 55.6 ± 7.26 b | 18.8 ± 5.42 b |
| Trichoderma spp. alternating with synthetic fungicides z | 81.1 ± 12.31 ab | 35.6 ± 9.94 ab | 62.2 ± 9.94 b | 27.0 ± 7.96 b |
| Synthetic fungicides | 93.3 ± 12.20 a | 61.7 ± 8.68 a | 75.6 ± 8.68 a | 33.8± 6.31 a |
| CV (%) | 17.47 | 13.45 | 12.42 | 18.56 |
| Treatment | Sclerotia on 10 Plants | |
|---|---|---|
| Experiment 2021 | Experiment 2022 | |
| Trichoderma spp. y | 32.7 ± 2.01 b * | 14.6 ± 2.31 b |
| Trichoderma spp. alternating with synthetic fungicides z | 40.8 ± 3.21 b | 31.2 ± 2.33 b |
| Synthetic fungicides | 167.7 ± 3.14 a | 93.8 ± 2.88 a |
| CV (%) | 35.74 | 40.13 |
| Treatment | Experiment 2021 | Experiment 2022 | ||
|---|---|---|---|---|
| Incidence (%) | Severity (%) w | Incidence (%) | Severity (%) w | |
| Trichoderma spp. x | 1.6 ± 4.75 b * | 0.4 ± 2.55 b * | 1.3 ± 0.87 b z | 0.3 ± 1.12 b * |
| Trichoderma spp. alternating with synthetic fungicides y | 4.5 ± 6.22 ab | 1.0 ± 2.84 ab | 3.3 ± 2.77 ab | 0.7 ± 2.46 ab |
| Synthetic fungicides | 7.4 ± 7.78 a | 1.5 ± 3.14 a | 6.2 ± 4.42 a | 1.3 ± 2.27 a |
| CV (%) | 60.64 | 56.99 | 57.0 | 50.94 |
| Treatment | Experiment 2021 | Experiment 2022 |
|---|---|---|
| t ha−1 | t ha−1 | |
| Trichoderma spp. y | 46.0 ± 3.13 a * | 52.9 ± 5.04 a |
| Trichoderma + Synthetic Fungicides | 44.1 ± 2.56 ab | 48.3 ± 5.45 ab |
| Synthetic fungicides z | 42.4 ± 2.15 b | 44.5 ± 7.87 b |
| CV (%) | 5.98 | 12.87 |
| Species/Isolate | Locality/Georeference | Year of Collection | Code in Gen Bank |
|---|---|---|---|
| S. sclerotiorum/SS1 | Ahome, Sinaloa/25.819501 -108.955445 | 2021 | PX471991.1 |
| T. asperelloides/TES24 | Caborca, Sonora/31.06666 -112.338333 | 2020 | OR521164 |
| T. azevedoi/TAI73 | Ahome, Sinaloa/25.818885 -108.956014 | 2021 | OR521181 |
| T. afroharzianum/TAF75 | Ahome, Sinaloa/25.491445 -108.571659 | 2021 | OR521183 |
| T. asperellum/TAM74 | Ahome, Sinaloa/25.491445 -108.571659 | 2021 | OR521182 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Herrera-Rodriguez, G.; Felix-Gastelum, R.; Irazoqui-Acosta, M.B.; Armenta-Lopez, S.E.; Longoria-Espinoza, R.M.; Orduño-Espinoza, F.J.; Parra-Parra, J.M. In Vitro and Field Effectiveness of the Combination of Four Trichoderma spp. Against Sclerotinia sclerotiorum and Its Impact on Potato (Solanum tuberosum L.) Crop Production. Plants 2026, 15, 156. https://doi.org/10.3390/plants15010156
Herrera-Rodriguez G, Felix-Gastelum R, Irazoqui-Acosta MB, Armenta-Lopez SE, Longoria-Espinoza RM, Orduño-Espinoza FJ, Parra-Parra JM. In Vitro and Field Effectiveness of the Combination of Four Trichoderma spp. Against Sclerotinia sclerotiorum and Its Impact on Potato (Solanum tuberosum L.) Crop Production. Plants. 2026; 15(1):156. https://doi.org/10.3390/plants15010156
Chicago/Turabian StyleHerrera-Rodriguez, Gabriel, Ruben Felix-Gastelum, Maria Belen Irazoqui-Acosta, Sara Elodia Armenta-Lopez, Rosa Maria Longoria-Espinoza, Francisco Javier Orduño-Espinoza, and Jessica Maria Parra-Parra. 2026. "In Vitro and Field Effectiveness of the Combination of Four Trichoderma spp. Against Sclerotinia sclerotiorum and Its Impact on Potato (Solanum tuberosum L.) Crop Production" Plants 15, no. 1: 156. https://doi.org/10.3390/plants15010156
APA StyleHerrera-Rodriguez, G., Felix-Gastelum, R., Irazoqui-Acosta, M. B., Armenta-Lopez, S. E., Longoria-Espinoza, R. M., Orduño-Espinoza, F. J., & Parra-Parra, J. M. (2026). In Vitro and Field Effectiveness of the Combination of Four Trichoderma spp. Against Sclerotinia sclerotiorum and Its Impact on Potato (Solanum tuberosum L.) Crop Production. Plants, 15(1), 156. https://doi.org/10.3390/plants15010156

