Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = wheeled mobile robot network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1056 KB  
Article
Trajectory Tracking of WMR with Neural Adaptive Correction
by Sahbi Boubaker, Jeremias Gaia, Eduardo Zavalla, Souad Kamel, Faisal S. Alsubaei, Farid Bourennani and Francisco Rossomando
Mathematics 2025, 13(19), 3178; https://doi.org/10.3390/math13193178 - 3 Oct 2025
Abstract
Wheeled mobile robots (WMRs) are being increasingly integrated into various sectors such as logistics and transportation. However, their accurate trajectory tracking remains a challenge. To address this control issue, this study proposes a trajectory correction technique for a wheeled mobile robot (WMR). This [...] Read more.
Wheeled mobile robots (WMRs) are being increasingly integrated into various sectors such as logistics and transportation. However, their accurate trajectory tracking remains a challenge. To address this control issue, this study proposes a trajectory correction technique for a wheeled mobile robot (WMR). This proposal uses a functional-link neural network (FLNN) that adjusts the trajectory error with the aim of minimizing it. This error is propagated backward by adjusting the different parameters of the controller. The controller was designed using a combination of linearization feedback, sliding mode control, and FLNN, where the latter provides adaptability to the controller. Using the Lyapunov stability theory, the stability of the proposal was demonstrated. Experiments and simulation analyses were also carried out to demonstrate the practical feasibility of the proposal. Full article
(This article belongs to the Section C2: Dynamical Systems)
Show Figures

Figure 1

22 pages, 5743 KB  
Article
Lightweight Road Adaptive Path Tracking Based on Soft Actor–Critic RL Method
by Yubo Weng and Jinhong Sun
Sensors 2025, 25(19), 6079; https://doi.org/10.3390/s25196079 - 2 Oct 2025
Abstract
We propose a speed-adaptive robot accurate path-tracking framework based on the soft actor–critic (SAC) and Stanley methods (STANLY_ASAC). First, the Lidar–Inertial Odometry Simultaneous Localization and Mapping (LIO-SLAM) method is used to map the environment and the LIO-localization framework is adopted to achieve real-time [...] Read more.
We propose a speed-adaptive robot accurate path-tracking framework based on the soft actor–critic (SAC) and Stanley methods (STANLY_ASAC). First, the Lidar–Inertial Odometry Simultaneous Localization and Mapping (LIO-SLAM) method is used to map the environment and the LIO-localization framework is adopted to achieve real-time positioning and output the robot pose at 100 Hz. Next, the Rapidly exploring Random Tree (RRT) algorithm is employed for global path planning. On this basis, we integrate an improved A* algorithm for local obstacle avoidance and apply a gradient descent smoothing algorithm to generate a reference path that satisfies the robot’s kinematic constraints. Secondly, a network classification model based on U-Net is used to classify common road surfaces and generate classification results that significantly compensate for tracking accuracy errors caused by incorrect road surface coefficients. Next, we leverage the powerful learning capability of adaptive SAC (ASAC) to adaptively adjust the vehicle’s acceleration and lateral deviation gain according to the road and vehicle states. Vehicle acceleration is used to generate the real-time tracking speed, and the lateral deviation gain is used to calculate the front wheel angle via the Stanley tracking algorithm. Finally, we deploy the algorithm on a mobile robot and test its path-tracking performance in different scenarios. The results show that the proposed path-tracking algorithm can accurately follow the generated path. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

25 pages, 10639 KB  
Article
Sliding Mode Control of the MY-3 Omnidirectional Mobile Robot Based on RBF Neural Networks
by Huaiyong Li, Changlong Ye, Song Tian and Suyang Yu
Machines 2025, 13(8), 695; https://doi.org/10.3390/machines13080695 - 6 Aug 2025
Viewed by 481
Abstract
Omnidirectional mobile robots have gained extensive application across diverse fields due to their exceptional maneuverability and adaptability in confined spaces. However, structural and systemic uncertainties significantly compromise motion accuracy. To enhance motion control precision, this paper proposes a sliding mode control (SMC) method [...] Read more.
Omnidirectional mobile robots have gained extensive application across diverse fields due to their exceptional maneuverability and adaptability in confined spaces. However, structural and systemic uncertainties significantly compromise motion accuracy. To enhance motion control precision, this paper proposes a sliding mode control (SMC) method integrated with a radial basis function (RBF) neural network. The approach aggregates model uncertainties, nonlinear dynamics, and unknown disturbances into a composite disturbance term. An RBF neural network is employed to approximate this disturbance, with compensation embedded within the SMC framework. An online adaptive law for neural network optimization is derived using the Lyapunov stability theorem, thereby improving the disturbance rejection capability. Comparative simulations and experiments validate the proposed method against modern control strategies. Results demonstrate superior tracking performance and robustness, significantly enhancing trajectory tracking accuracy for the MY3 wheeled omnidirectional mobile robot. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

22 pages, 6525 KB  
Article
A Low-Cost Approach to Maze Solving with Image-Based Mapping
by Mihai-Sebastian Mănase and Eva-H. Dulf
Technologies 2025, 13(7), 298; https://doi.org/10.3390/technologies13070298 - 11 Jul 2025
Viewed by 629
Abstract
This paper proposes a method for solving mazes, with a special focus on navigation using image processing. The objective of this study is to demonstrate that a robot can successfully navigate a maze using only two-wheel encoders, enabled by appropriate control strategies. This [...] Read more.
This paper proposes a method for solving mazes, with a special focus on navigation using image processing. The objective of this study is to demonstrate that a robot can successfully navigate a maze using only two-wheel encoders, enabled by appropriate control strategies. This method significantly simplifies the structure of mobile robots, which typically suffer from increased energy consumption due to the need to carry onboard sensors and power supplies. Through experimental analysis, it was observed that although the encoder-only solution requires more advanced control knowledge, it can be more efficient than the alternative approach that combines encoders with a gyroscope. In order to develop an efficient maze-solving system, control theory techniques were integrated with image processing and neural networks in order to analyze images in which various obstacles were transformed into maze walls. This approach led to the training of a neural network designed to detect key points within the maze. Full article
Show Figures

Graphical abstract

37 pages, 13864 KB  
Article
LSTM-Enhanced Deep Reinforcement Learning for Robust Trajectory Tracking Control of Skid-Steer Mobile Robots Under Terra-Mechanical Constraints
by Jose Manuel Alcayaga, Oswaldo Anibal Menéndez, Miguel Attilio Torres-Torriti, Juan Pablo Vásconez, Tito Arévalo-Ramirez and Alvaro Javier Prado Romo
Robotics 2025, 14(6), 74; https://doi.org/10.3390/robotics14060074 - 29 May 2025
Cited by 4 | Viewed by 3129
Abstract
Autonomous navigation in mining environments is challenged by complex wheel–terrain interaction, traction losses caused by slip dynamics, and sensor limitations. This paper investigates the effectiveness of Deep Reinforcement Learning (DRL) techniques for the trajectory tracking control of skid-steer mobile robots operating under terra-mechanical [...] Read more.
Autonomous navigation in mining environments is challenged by complex wheel–terrain interaction, traction losses caused by slip dynamics, and sensor limitations. This paper investigates the effectiveness of Deep Reinforcement Learning (DRL) techniques for the trajectory tracking control of skid-steer mobile robots operating under terra-mechanical constraints. Four state-of-the-art DRL algorithms, i.e., Proximal Policy Optimization (PPO), Deep Deterministic Policy Gradient (DDPG), Twin Delayed DDPG (TD3), and Soft Actor–Critic (SAC), are selected to evaluate their ability to generate stable and adaptive control policies under varying environmental conditions. To address the inherent partial observability in real-world navigation, this study presents an original approach that integrates Long Short-Term Memory (LSTM) networks into DRL-based controllers. This allows control agents to retain and leverage temporal dependencies to infer unobservable system states. The developed agents were trained and tested in simulations and then assessed in field experiments under uneven terrain and dynamic model parameter changes that lead to traction losses in mining environments, targeting various trajectory tracking tasks, including lemniscate and squared-type reference trajectories. This contribution strengthens the robustness and adaptability of DRL agents by enabling better generalization of learned policies compared with their baseline counterparts, while also significantly improving trajectory tracking performance. In particular, LSTM-based controllers achieved reductions in tracking errors of 10%, 74%, 21%, and 37% for DDPG-LSTM, PPO-LSTM, TD3-LSTM, and SAC-LSTM, respectively, compared with their non-recurrent counterparts. Furthermore, DDPG-LSTM and TD3-LSTM reduced their control effort through the total variation in control input by 15% and 20% compared with their respective baseline controllers, respectively. Findings from this work provide valuable insights into the role of memory-augmented reinforcement learning for robust motion control in unstructured and high-uncertainty environments. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

37 pages, 10225 KB  
Article
Cloud/VPN-Based Remote Control of a Modular Production System Assisted by a Mobile Cyber–Physical Robotic System—Digital Twin Approach
by Georgian Simion, Adrian Filipescu, Dan Ionescu and Adriana Filipescu
Sensors 2025, 25(2), 591; https://doi.org/10.3390/s25020591 - 20 Jan 2025
Cited by 4 | Viewed by 1648
Abstract
This paper deals with a “digital twin” (DT) approach for processing, reprocessing, and scrapping (P/R/S) technology running on a modular production system (MPS) assisted by a mobile cyber–physical robotic system (MCPRS). The main hardware architecture consists of four line-shaped workstations (WSs), a wheeled [...] Read more.
This paper deals with a “digital twin” (DT) approach for processing, reprocessing, and scrapping (P/R/S) technology running on a modular production system (MPS) assisted by a mobile cyber–physical robotic system (MCPRS). The main hardware architecture consists of four line-shaped workstations (WSs), a wheeled mobile robot (WMR) equipped with a robotic manipulator (RM) and a mobile visual servoing system (MVSS) mounted on the end effector. The system architecture integrates a hierarchical control system where each of the four WSs, in the MPS, is controlled by a Programable Logic Controller (PLC), all connected via Profibus DP to a central PLC. In addition to the connection via Profibus of the four PLCs, related to the WSs, to the main PLC, there are also the connections of other devices to the local networks, LAN Profinet and LAN Ethernet. There are the connections to the Internet, Cloud and Virtual Private Network (VPN) via WAN Ethernet by open platform communication unified architecture (OPC-UA). The overall system follows a DT approach that enables task planning through augmented reality (AR) and uses virtual reality (VR) for visualization through Synchronized Hybrid Petri Net (SHPN) simulation. Timed Petri Nets (TPNs) are used to control the processes within the MPS’s workstations. Continuous Petri Nets (CPNs) handle the movement of the MCPRS. Task planning in AR enables users to interact with the system in real time using AR technology to visualize and plan tasks. SHPN in VR is a combination of TPNs and CPNs used in the virtual representation of the system to synchronize tasks between the MPS and MCPRS. The workpiece (WP) visits stations successively as it is moved along the line for processing. If the processed WP does not pass the quality test, it is taken from the last WS and is transported, by MCPRS, to the first WS where it will be considered for reprocessing or scrapping. Full article
Show Figures

Figure 1

22 pages, 45649 KB  
Article
A Whole-Body Coordinated Motion Control Method for Highly Redundant Degrees of Freedom Mobile Humanoid Robots
by Hao Niu, Xin Zhao, Hongzhe Jin and Xiuli Zhang
Biomimetics 2024, 9(12), 766; https://doi.org/10.3390/biomimetics9120766 - 16 Dec 2024
Cited by 1 | Viewed by 2046
Abstract
Humanoid robots are becoming a global research focus. Due to the limitations of bipedal walking technology, mobile humanoid robots equipped with a wheeled chassis and dual arms have emerged as the most suitable configuration for performing complex tasks in factory or home environments. [...] Read more.
Humanoid robots are becoming a global research focus. Due to the limitations of bipedal walking technology, mobile humanoid robots equipped with a wheeled chassis and dual arms have emerged as the most suitable configuration for performing complex tasks in factory or home environments. To address the high redundancy issue arising from the wheeled chassis and dual-arm design of mobile humanoid robots, this study proposes a whole-body coordinated motion control algorithm based on arm potential energy optimization. By constructing a gravity potential energy model for the arms and a virtual torsional spring elastic potential energy model with the shoulder-wrist line as the rotation axis, we establish an optimization index function for the arms. A neural network with variable stiffness is introduced to fit the virtual torsional spring, representing the stiffness variation trend of the human arm. Additionally, a posture mapping method is employed to map the human arm potential energy model to the robot, enabling realistic humanoid movements. Combining task-space and joint-space planning algorithms, we designed experiments for single-arm manipulation, independent object retrieval, and dual-arm carrying in a simulation of a 23-degree-of-freedom mobile humanoid robot. The results validate the effectiveness of this approach, demonstrating smooth motion, the ability to maintain a low potential energy state, and conformity to the operational characteristics of the human arm. Full article
Show Figures

Graphical abstract

23 pages, 10631 KB  
Article
Multi-Agent Reinforcement Learning Tracking Control of a Bionic Wheel-Legged Quadruped
by Rezwan Al Islam Khan, Chenyun Zhang, Zhongxiao Deng, Anzheng Zhang, Yuzhen Pan, Xuan Zhao, Huiliang Shang and Ruijiao Li
Machines 2024, 12(12), 902; https://doi.org/10.3390/machines12120902 - 9 Dec 2024
Cited by 1 | Viewed by 3461
Abstract
This paper presents a novel approach to developing control strategies for mobile robots, specifically the Pegasus, a bionic wheel-legged quadruped robot with unique chassis mechanics that enable four-wheel independent steering and diverse gaits. A multi-agent (MA) reinforcement learning (RL) controller is proposed, treating [...] Read more.
This paper presents a novel approach to developing control strategies for mobile robots, specifically the Pegasus, a bionic wheel-legged quadruped robot with unique chassis mechanics that enable four-wheel independent steering and diverse gaits. A multi-agent (MA) reinforcement learning (RL) controller is proposed, treating each leg as an independent agent with the goal of autonomous learning. The framework involves a multi-agent setup to model torso and leg dynamics, incorporating motion guidance optimization signal in the policy training and reward function. By doing so, we address leg schedule patterns for the complex configuration of the Pegasus, the requirement for various gaits, and the design of reward functions for MA-RL agents. Agents were trained using two variations of policy networks based on the framework, and real-world tests show promising results with easy policy transfer from simulation to the actual hardware. The proposed framework models acquired higher rewards and converged faster in training than other variants. Various experiments on the robot deployed framework showed fast response (0.8 s) under disturbance and low linear, angular velocity, and heading error, which was 2.5 cm/s, 0.06 rad/s, and 4°, respectively. Overall, the study demonstrates the feasibility of the proposed MA-RL control framework. Full article
(This article belongs to the Special Issue Design and Application of Bionic Robots)
Show Figures

Figure 1

19 pages, 6649 KB  
Article
Pipeline Landmark Classification of Miniature Pipeline Robot π-II Based on Residual Network ResNet18
by Jian Wang, Chuangeng Chen, Bingsheng Liu, Juezhe Wang and Songtao Wang
Machines 2024, 12(8), 563; https://doi.org/10.3390/machines12080563 - 16 Aug 2024
Cited by 3 | Viewed by 4391
Abstract
A pipeline robot suitable for miniature pipeline detection, namely π-II, was proposed in this paper. It features six wheel-leg mobile mechanisms arranged in a staggered manner, with a monocular fisheye camera located at the center of the front end. The proposed robot can [...] Read more.
A pipeline robot suitable for miniature pipeline detection, namely π-II, was proposed in this paper. It features six wheel-leg mobile mechanisms arranged in a staggered manner, with a monocular fisheye camera located at the center of the front end. The proposed robot can be used to capture images during detection in miniature pipes with an inner diameter of 120 mm. To efficiently identify the robot’s status within the pipeline, such as navigating in straight pipes, curved pipes, or T-shaped pipes, it is necessary to recognize and classify these specific pipeline landmarks accurately. For this purpose, the residual network model ResNet18 was employed to learn from the images of various pipeline landmarks captured by the fisheye camera. A detailed analysis of image characteristics of some common pipeline landmarks was provided, and a dataset of approximately 908 images was created in this paper. After modifying the outputs of the network model, the ResNet18 was trained according to the proposed datasets, and the final test results indicate that this modified network has a high accuracy rate in classifying various pipeline landmarks, demonstrating a promising application prospect of image detection technology based on deep learning in miniature pipelines. Full article
Show Figures

Figure 1

21 pages, 753 KB  
Article
Fault Detection of Multi-Wheeled Robot Consensus Based on EKF
by Afrah Jouili, Boumedyen Boussaid, Ahmed Zouinkhi and M. N. Abdelkrim
Actuators 2024, 13(7), 253; https://doi.org/10.3390/act13070253 - 1 Jul 2024
Cited by 1 | Viewed by 1458
Abstract
Synchronizing a network of robots in consensus is an important task for cooperative work. Detecting faults in a network of robots in consensus is a much more important task. In considering a formation of Wheeled Mobile Robots (WMRs) in a master–slave architecture modeled [...] Read more.
Synchronizing a network of robots in consensus is an important task for cooperative work. Detecting faults in a network of robots in consensus is a much more important task. In considering a formation of Wheeled Mobile Robots (WMRs) in a master–slave architecture modeled by graph theory, the main objective of this study was to detect and isolate a fault that appears on a robot of this formation in order to remove it from the formation and continue the execution of the assigned task. In this context, we exploit the extended Kalman filter (EKF) to estimate the state of each robot, generate a residual, and deduce whether a fault exists. The implementation of this technique was proven using a Matlab simulator. Full article
(This article belongs to the Special Issue Actuators in Robotic Control—2nd Edition)
Show Figures

Figure 1

15 pages, 645 KB  
Article
Neural Robust Control for a Mobile Agent Leader–Follower System
by David Rodriguez-Castellanos, Marco Blas-Valdez, Gualberto Solis-Perales and Marco Antonio Perez-Cisneros
Appl. Sci. 2024, 14(13), 5374; https://doi.org/10.3390/app14135374 - 21 Jun 2024
Cited by 3 | Viewed by 1098
Abstract
A controller employing a combined new strategy of output feedback linearization and a recurrent high-order neural network (RHONN) adaptive approach for a mobile agent leader–follower system is presented. The controller structure is based on feedback linearization; then, a scheme of lumping uncertainties which [...] Read more.
A controller employing a combined new strategy of output feedback linearization and a recurrent high-order neural network (RHONN) adaptive approach for a mobile agent leader–follower system is presented. The controller structure is based on feedback linearization; then, a scheme of lumping uncertainties which are estimated via the RHONN is incorporated; with this estimate, the controller is able to produce a robust control action for mobile agents so they track a prescribed reference trajectory. Moreover, the nonlinear system part is transformed into a linearizable one; then, a specific function lumps all the nonlinearities, uncertain parameters, and unmodeled dynamics of the system; this overall function is estimated via the RHONN. Thus, both parametric uncertainties and unmodeled dynamics between agents can be compensated via the controller, and, subsequently, follower agents track the reference provided by the leader. The obtained controller is such that the estimation scheme is not based on high-gain controllers. Here, it is underlined that the main contribution consists of designing a nonlinear controller and combining it with an RHONN to estimate the nonlinear uncertainties in the leader–follower system. This control action includes robust features provided by the online recurrence and the nonlinear base of the neural network in which not general but specific parametric disturbances and unmodeled discrepancies are identified or compensated. For this control scheme, only nominal values of the system parameters are required, as well as the velocities of the agents. Numeric simulation of the model and designed tracking control are carried out in which the control law is applied to a two-wheeled differential mobile robot model, obtaining satisfactory results for tracking angular velocities of the wheels. Full article
(This article belongs to the Special Issue Intelligent Control of Dynamical Processes and Systems)
Show Figures

Figure 1

20 pages, 5795 KB  
Article
Fault Detection and Diagnosis of Three-Wheeled Omnidirectional Mobile Robot Based on Power Consumption Modeling
by Bingtao Wang, Liang Zhang and Jongwon Kim
Mathematics 2024, 12(11), 1731; https://doi.org/10.3390/math12111731 - 2 Jun 2024
Cited by 1 | Viewed by 1849
Abstract
Three-wheeled omnidirectional mobile robots (TOMRs) are widely used to accomplish precise transportation tasks in narrow environments owing to their stability, flexible operation, and heavy loads. However, these robots are susceptible to slippage. For wheeled robots, almost all faults and slippage will directly affect [...] Read more.
Three-wheeled omnidirectional mobile robots (TOMRs) are widely used to accomplish precise transportation tasks in narrow environments owing to their stability, flexible operation, and heavy loads. However, these robots are susceptible to slippage. For wheeled robots, almost all faults and slippage will directly affect the power consumption. Thus, using the energy consumption model data and encoder data in the healthy condition as a reference to diagnose robot slippage and other system faults is the main issue considered in this paper. We constructed an energy model for the TOMR and analyzed the factors that affect the power consumption in detail, such as the position of the gravity center. The study primarily focuses on the characteristic relationship between power consumption and speed when the robot experiences slippage or common faults, including control system faults. Finally, we present the use of a table-based artificial neural network (ANN) to indicate the type of fault by comparing the modeled data with the measured data. The experiments proved that the method is accurate and effective for diagnosing faults in TOMRs. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

39 pages, 7128 KB  
Article
A Two Stage Nonlinear I/O Decoupling and Partially Wireless Controller for Differential Drive Mobile Robots
by Nikolaos D. Kouvakas, Fotis N. Koumboulis and John Sigalas
Robotics 2024, 13(2), 26; https://doi.org/10.3390/robotics13020026 - 31 Jan 2024
Cited by 2 | Viewed by 2551
Abstract
Differential drive mobile robots, being widely used in several industrial and domestic applications, are increasingly demanding when concerning precision and satisfactory maneuverability. In the present paper, the problem of independently controlling the velocity and orientation angle of a differential drive mobile robot is [...] Read more.
Differential drive mobile robots, being widely used in several industrial and domestic applications, are increasingly demanding when concerning precision and satisfactory maneuverability. In the present paper, the problem of independently controlling the velocity and orientation angle of a differential drive mobile robot is investigated by developing an appropriate two stage nonlinear controller embedded on board and also by using the measurements of the speed and accelerator of the two wheels, as well as taking remote measurements of the orientation angle and its rate. The model of the system is presented in a nonlinear state space form that includes unknown additive terms arising from external disturbances and actuator faults. Based on the nonlinear model of the system, the respective I/O relation is derived, and a two-stage nonlinear measurable output feedback controller, analyzed into an internal and an external controller, is designed. The internal controller aims to produce a decoupled inner closed-loop system of linear form, regulating the linear velocity and angular velocity of the mobile robot independently. The internal controller is of the nonlinear PD type and uses real time measurements of the angular velocities of the active wheels of the vehicle, as well as the respective accelerations. The external controller aims toward the regulation of the orientation angle of the vehicle. It is of a linear, delayed PD feedback form, offering feedback from the remote measurements of the orientation angle and angular velocity of the vehicle, which are transmitted to the controller through a wireless network. Analytic formulae are derived for the parameters of the external controller to ensure the stability of the closed-loop system, even in the presence of the wireless transmission delays, as well as asymptotic command following for the orientation angle. To compensate for measurement noise, external disturbances, and actuator faults, a metaheuristic algorithm is proposed to evaluate the remaining free controller parameters. The performance of the proposed control scheme is evaluated through a series of computational experiments, demonstrating satisfactory behavior. Full article
Show Figures

Figure 1

16 pages, 12785 KB  
Article
How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Imagery
by Tomasz Kocejko, Nikodem Matuszkiewicz, Piotr Durawa, Aleksander Madajczak and Jakub Kwiatkowski
Sensors 2024, 24(3), 918; https://doi.org/10.3390/s24030918 - 31 Jan 2024
Cited by 7 | Viewed by 2613
Abstract
This study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this [...] Read more.
This study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation states. Additionally, this work presents a system for obstacle detection based on image processing. The implemented system constitutes a complementary part of the interface. The main contributions of this work include the proposal of a modified 10–20-electrode setup suitable for motor imagery classification, the design of two convolutional neural network (CNNs) models employed to classify signals acquired from sixteen EEG channels, and the implementation of an obstacle detection system based on computer vision integrated with a brain-machine interface. The models developed in this study achieved an accuracy of 83% in classifying EEG signals. The resulting classification outcomes were subsequently utilized to control the movement of a mobile robot. Experimental trials conducted on a designated test track demonstrated real-time control of the robot. The findings indicate the feasibility of integration of the obstacle detection system for collision avoidance with the classification of motor imagery for the purpose of brain-machine interface control of vehicles. The elaborated solution could help paralyzed patients to safely control a wheelchair through EEG and effectively prevent unintended vehicle movements. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

25 pages, 7916 KB  
Article
Indirect Adaptive Control Using Neural Network and Discrete Extended Kalman Filter for Wheeled Mobile Robot
by Mohammed Yousri Silaa, Aissa Bencherif and Oscar Barambones
Actuators 2024, 13(2), 51; https://doi.org/10.3390/act13020051 - 30 Jan 2024
Cited by 12 | Viewed by 3348
Abstract
This paper presents a novel approach to address the challenges associated with the trajectory tracking control of wheeled mobile robots (WMRs). The proposed control approach is based on an indirect adaptive control PID using a neural network and discrete extended Kalman filter (IAPIDNN-DEKF). [...] Read more.
This paper presents a novel approach to address the challenges associated with the trajectory tracking control of wheeled mobile robots (WMRs). The proposed control approach is based on an indirect adaptive control PID using a neural network and discrete extended Kalman filter (IAPIDNN-DEKF). The proposed IAPIDNN-DEKF scheme uses the NN to identify the system Jacobian, which is used for tuning the PID gains using the stochastic gradient descent algorithm (SGD). The DEKF is proposed for state estimation (localization), and the NN adaptation improves the tracking error performance. By augmenting the state vector, the NN captures higher-order dynamics, enabling more accurate estimations, which improves trajectory tracking. Simulation studies in which a WMR is used in different scenarios are conducted to evaluate the effectiveness of the IAPIDNN-DEKF control. In order to demonstrate the effectiveness of the IAPIDNN-DEKF control, its performance is compared with direct adaptive NN (DA-NN) control, backstepping control (BSC) and an adaptive PID. On lemniscate, IAPIDNN-DEKF achieves RMSE values of 0.078769, 0.12086 and 0.1672. On sinusoidal trajectories, the method yields RMSE values of 0.01233, 0.015138 and 0.088707, and on sinusoidal with perturbation, RMSE values are 0.021495, 0.016504 and 0.090142 in x, y and θ, respectively. These results demonstrate the superior performance of IAPIDNN-DEKF for achieving accurate control and state estimation. The proposed IAPIDNN-DEKF offers advantages in terms of accurate estimation, adaptability to dynamic environments and computational efficiency. This research contributes to the advancement of robust control techniques for WMRs and showcases the potential of IAPIDNN-DEKF to enhance trajectory tracking and state estimation capabilities in real-world applications. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

Back to TopTop