Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = wheel–rail interface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4771 KB  
Article
Brazed–Resin Composite Grinding Wheel with CBN Segments: Fabrication, Brazing Mechanism, and Rail Grinding Performance
by Haozhong Xiao, Shuyi Wang, Bing Xiao, Zhenwei Huang and Jingyan Zhu
Coatings 2025, 15(9), 1083; https://doi.org/10.3390/coatings15091083 - 15 Sep 2025
Viewed by 593
Abstract
To enhance the grinding performance and service life of rail grinding wheels, a novel brazed–resin composite wheel was developed by embedding brazed CBN (cubic boron nitride) segments into a resin working layer. The brazed CBN segments were fabricated using a Cu–Sn–Ti + WC [...] Read more.
To enhance the grinding performance and service life of rail grinding wheels, a novel brazed–resin composite wheel was developed by embedding brazed CBN (cubic boron nitride) segments into a resin working layer. The brazed CBN segments were fabricated using a Cu–Sn–Ti + WC (tungsten carbide) composite filler via a cold-press forming–vacuum brazing process. Microstructural and phase analyses revealed the formation of Ti–B and Ti–N compounds at the CBN–filler interface, indicating metallurgical bonding, while the incorporation of WC reduced excessive wetting, enabling precise shape retention of the segments. Comparative laboratory and field grinding tests were conducted against conventional resin-bonded wheels. Under all tested pressures, the composite wheel exhibited lower grinding temperatures, generated predominantly strip-shaped chips with lower oxygen content, and produced fewer spherical oxide-rich chips than the resin-bonded wheel, confirming reduced thermal load. Field tests demonstrated that the composite wheel matched the resin-bonded wheel in grinding efficiency, extended service life by approximately 28.8%, and achieved smoother rail surfaces free from burn-induced blue marks. These results indicate that the brazed–resin composite grinding wheel effectively leverages the superior hardness and thermal conductivity of CBN abrasives, offering improved thermal control, wear resistance, and surface quality in rail grinding applications. Full article
Show Figures

Graphical abstract

26 pages, 3081 KB  
Article
Wheel–Rail Vertical Vibration Due to Random Roughness in the Presence of the Rail Dampers with Mixed Damping System
by Traian Mazilu, Dorina Fologea and Marius-Alin Gheți
Appl. Sci. 2025, 15(18), 10027; https://doi.org/10.3390/app151810027 - 13 Sep 2025
Viewed by 447
Abstract
In this paper, the vibration of a wheel running on a light rail equipped with rail dampers that use a mixed damping system (rubber–oil) is investigated under the excitation of random roughness on the rolling surfaces, to demonstrate the influence of such rail [...] Read more.
In this paper, the vibration of a wheel running on a light rail equipped with rail dampers that use a mixed damping system (rubber–oil) is investigated under the excitation of random roughness on the rolling surfaces, to demonstrate the influence of such rail dampers on the dynamic behaviour at the wheel–rail interface. For this purpose, a model is adopted in which a rigid wheel moves at constant speed over a rail modelled as an infinite Timoshenko beam, supported by elastic foundations with an internal degree of freedom that represents the behaviour of the rail pads, sleepers, and ballast. The rail dampers are represented as two-mass oscillators, while the internal friction in the elastic components of the wheel–rail system is modelled using hysteretic damping. To obtain the time series of the rail and wheel displacements, as well as the wheel–rail contact force, the convolution theorem is applied in a heuristic manner, making use of the relationship between Green’s functions in the time and frequency domains through direct and inverse Fourier transforms. The results show that (a) rail dampers primarily affect rail dynamics and the wheel–rail contact force over a relatively wide frequency range, while having little influence on wheel motion; (b) rail dampers are highly effective in reducing rail vibration and the wheel–rail contact force when the rail pads are stiff, but considerably less effective when soft rail pads are used; and (c) they may slightly amplify the contact force at the lower edge of their effective frequency range. Full article
Show Figures

Figure 1

15 pages, 2519 KB  
Article
Twin-Disc Wear Assessment of Solid Stick Flange Lubricants
by Martin David Evans, Zing Siang Lee and Roger Lewis
Lubricants 2025, 13(8), 330; https://doi.org/10.3390/lubricants13080330 - 29 Jul 2025
Viewed by 537
Abstract
Lubrication between the rail gauge face and wheel flange is necessary to improve vehicle performance and reduce component wear. One way to achieve this is to use a solid stick loaded against the wheel flange. This paper details twin-disc testing of eight stick [...] Read more.
Lubrication between the rail gauge face and wheel flange is necessary to improve vehicle performance and reduce component wear. One way to achieve this is to use a solid stick loaded against the wheel flange. This paper details twin-disc testing of eight stick products according to Annex H of EN 15427-2-1:2022 (previously Annex L of EN 16028:2012) and then describes a new assessment methodology using conditions more relevant to field application. EN 15427-2-1:2022 specifies a test involving the application of the product during wheel–rail specimen contact. Once a specified time has elapsed, product application ceases, and performance is assessed as the time taken for the friction coefficient to return to a nominal dry value. This is described as “retentivity”. In the new test, the product is applied whilst wheel and rail are out of contact, to allow the product to build up on the wheel, then the specimens are put into contact, under conditions representing 150 m of continuous, heavy flange contact; this process is repeated a set number of times. The new test showed that products that failed the current friction criteria successfully protect the wheel and rail from wear, which is ultimately the aim of the product application. Full article
Show Figures

Figure 1

15 pages, 3624 KB  
Article
A Spectroscopic DRIFT-FTIR Study on the Friction-Reducing Properties and Bonding of Railway Leaf Layers
by Ben White, Joseph Lanigan and Roger Lewis
Lubricants 2025, 13(8), 329; https://doi.org/10.3390/lubricants13080329 - 29 Jul 2025
Viewed by 548
Abstract
Leaves react with rail steel and form a tribofilm, causing very low friction in the wheel/rail interface. This work uses twin-disc tribological testing with the addition of leaf particulates to simulate the reaction and resulting reduction in the friction coefficient in a laboratory [...] Read more.
Leaves react with rail steel and form a tribofilm, causing very low friction in the wheel/rail interface. This work uses twin-disc tribological testing with the addition of leaf particulates to simulate the reaction and resulting reduction in the friction coefficient in a laboratory setting. Diffuse Reflectance Fourier-Transform Infrared Spectroscopy was carried out on the organic material and the layers that formed on the twin-disc surface. Dark material, visibly similar to leaf layers formed on tracks during autumn, was used along with a transparent thin film. This “non-visible contamination” has been reported to cause low-adhesion problems on railways, but has not previously been characterised. This article discusses the nature of these layers and builds upon earlier studies to propose a degradation and bonding mechanism for the leaf material. This understanding could be used to improve friction management methods employed to deal with low adhesion due to leaves. Full article
Show Figures

Figure 1

23 pages, 8211 KB  
Article
An Experimental Study of Wheel–Rail Creep Curves Under Dry Contact Conditions Using V-Track
by Gokul J. Krishnan, Jan Moraal, Zili Li and Zhen Yang
Lubricants 2025, 13(7), 287; https://doi.org/10.3390/lubricants13070287 - 26 Jun 2025
Viewed by 813
Abstract
Friction behaviour at the wheel–rail interface is of critical importance for railway operations and maintenance and is generally characterised by creep curves. The V-Track test rig was used in this study to measure both the lateral and longitudinal creep curves with uncontaminated dry [...] Read more.
Friction behaviour at the wheel–rail interface is of critical importance for railway operations and maintenance and is generally characterised by creep curves. The V-Track test rig was used in this study to measure both the lateral and longitudinal creep curves with uncontaminated dry interface conditions, utilising contact pressures representative of operational railway wheel–rail systems. The novelties of this study are threefold. 1. With proper representations of train/track components, the V-Track tests revealed the effects of structural dynamics on measuring wheel–rail creep curves in real life. 2. Pure lateral and longitudinal creepage conditions were produced with two distinct experimental principles—displacement- and force-controlled—on the V-Track, i.e., by carefully controlling the angle of attack and the traction/braking torque, respectively, and thus the coefficient of friction from lateral and longitudinal creep curves measured on the same platform could be cross-checked. 3. The uncertainties in the measured creep curves were analysed, which was rarely addressed in previous studies on creep curve measurements. In addition, the measured creep curves were compared against the theoretical creep curves obtained from Kalker’s CONTACT. The influence of wheel rolling speed and torque direction on the creep curve characteristics was then investigated. The measurement results and findings demonstrate the reliability of the V-Track to measure wheel–rail creep curves and study the wheel–rail frictional rolling contact. Full article
(This article belongs to the Special Issue Tribology in Railway Engineering)
Show Figures

Figure 1

20 pages, 7512 KB  
Article
Fatigue Crack Growth Simulation of R260 Grade Pearlitic Rail Steel Using the Discrete Element Method
by Hamed Davoodi Jooneghani, Klaus Six, Saham Sadat Sharifi, Maria Cecilia Poletti and Gerald Trummer
Machines 2025, 13(4), 305; https://doi.org/10.3390/machines13040305 - 9 Apr 2025
Viewed by 799
Abstract
Fatigue-induced crack initiation and propagation are a major concern in pearlitic railway rails and wheels. Rails and wheels undergo significant plastic deformation on their near-surface layers during service, leading to the initiation and propagation of cracks within the deformed region. Existing models typically [...] Read more.
Fatigue-induced crack initiation and propagation are a major concern in pearlitic railway rails and wheels. Rails and wheels undergo significant plastic deformation on their near-surface layers during service, leading to the initiation and propagation of cracks within the deformed region. Existing models typically use finite element models (FEMs) to describe these kinds of fatigue phenomena. However, they fail to establish a strong connection between the microstructure of the undeformed and the deformed materials and their corresponding fatigue properties. Therefore, a model based on the soft-contact discrete element method (DEM) was developed that considers microstructural details such as prior austenite grains (PAGs), pearlite blocks, pearlite colonies, and lamellar orientation of the ferrite–cementite structure of the pearlite. The Voronoi Tessellation method was used to generate a hierarchical mesh to represent these microstructural details, considering the distribution of microstructural details. Crack propagation is simulated by applying damage laws on the microstructural interface level that degrade the stiffness of the fibers connecting the mesh elements. The model’s crack growth predictions are compared with experimental results from the literature to validate its accuracy for different deformation degrees. The developed model can be used in the designing and material selection phase in the railway industry to help select the material with optimum microstructural features. Also, it can be used for the selection of the optimum heat treatment process considering materials resistance to the fatigue crack growth. Full article
(This article belongs to the Special Issue Wheel–Rail Contact: Mechanics, Wear and Analysis)
Show Figures

Figure 1

14 pages, 7055 KB  
Article
The Influence of Selected Solid Lubricants on the Wear of the Rolling–Sliding Interface in the Wheel–Rail System According to the Standard PN-EN 15427-2-1:2022
by Wioletta Cebulska, Henryk Bąkowski and Damian Hadryś
Materials 2025, 18(7), 1672; https://doi.org/10.3390/ma18071672 - 5 Apr 2025
Cited by 2 | Viewed by 738
Abstract
This article presents the influence of lubricant on selected tribological properties of the rolling–sliding association, i.e., the wheel–rail system. Three solid lubricants were tested: soybean grease, molybdenum disulfide and graphite grease. Under specific operating conditions, a beneficial influence of lubrication of the above-mentioned [...] Read more.
This article presents the influence of lubricant on selected tribological properties of the rolling–sliding association, i.e., the wheel–rail system. Three solid lubricants were tested: soybean grease, molybdenum disulfide and graphite grease. Under specific operating conditions, a beneficial influence of lubrication of the above-mentioned friction node was observed. This is valuable information for rolling stock owners, track operation or maintenance workers when making decisions about lubrication or its absence on a given section of railway track. In this way, tangible financial benefits (savings) are obtained by extending the durability of the wheel rim and rail, and, through extended periods of wheel set reprofiling, we significantly reduce operating costs. Solid lubricants (lubricating sticks) intended for the lubrication of railway wheel flanges must meet the requirements specified in the PN-EN 15427-2-1:2022 standard. Annex H. The wear patterns were observed and analyzed using both optical microscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS). The test results indicate that graphite is characterized by the lowest and most stable coefficient of friction over time, which makes it the most effective lubricant in terms of friction reduction. Soybean grease also shows stability and a low level of friction, but with a slight increase in value over a longer period of time. However, grease containing molybdenum disulfide, despite its initial effectiveness, loses its lubricating properties over time, resulting in a significant increase in friction. Full article
(This article belongs to the Special Issue Advances in Tribological and Other Functional Properties of Materials)
Show Figures

Figure 1

18 pages, 4098 KB  
Article
The Effect of Top-of-Rail Products Incorporating Environmentally Acceptable Solid Particles on Friction, Retentivity, Wear and Airborne Particle Emissions of Wheel–Rail Contact
by Rahma Boukhris, Ellen Bergseth, Ulf Olofsson, Johan Leckner and Roland Ardai
Machines 2025, 13(3), 200; https://doi.org/10.3390/machines13030200 - 28 Feb 2025
Viewed by 1130
Abstract
Excessive friction at the wheel–rail contact can limit the lifespan of the wheels and rails. Meanwhile, insufficient friction can lead to increased braking distance, risking safety. Top-of-Rail (TOR) products are recognised for their potential to achieve intermediate friction levels at the wheel–rail contact [...] Read more.
Excessive friction at the wheel–rail contact can limit the lifespan of the wheels and rails. Meanwhile, insufficient friction can lead to increased braking distance, risking safety. Top-of-Rail (TOR) products are recognised for their potential to achieve intermediate friction levels at the wheel–rail contact and mitigate wear damages. However, the impact of these products on the airborne wear particles emitted from wheel–rail contact is not thoroughly evaluated. High particle concentration levels, particularly on underground train platforms, raise respiratory and cardiovascular health concerns. This research employs a pin-on-disc to study the effect of laboratory (environmentally acceptable) and commercial TOR products on friction, retentivity, wear, and airborne particle emissions at the wheel–rail interface. The results indicated that TOR products with higher retentivity offered a wider interval of desired intermediate friction levels. The TOR products significantly reduced particle emissions compared to the dry condition. TOR products can, therefore, be promising in controlling friction and mitigating wear and particle emissions at the wheel–rail interface. However, to achieve the benefits of these products, it is essential to tailor their chemical composition carefully. Full article
(This article belongs to the Special Issue Wheel–Rail Contact: Mechanics, Wear and Analysis)
Show Figures

Figure 1

19 pages, 15598 KB  
Article
Research on the Dynamic Response Characteristics of a Railway Vehicle Under Curved Braking Conditions
by Chunguang Zhao, Zhiyong Fan, Peixuan Li, Micheale Yihdego Gebreyohanes, Zhiwei Wang and Jiliang Mo
Vehicles 2025, 7(1), 18; https://doi.org/10.3390/vehicles7010018 - 15 Feb 2025
Viewed by 1378
Abstract
When a railway train runs along a curved track with braking, the dynamic behaviors of the vehicle are extremely complex and difficult to accurately reveal due to the coupling effects between the wheel–rail interactions and the disc–pad frictions. Therefore, a rigid–flexible coupled trailer [...] Read more.
When a railway train runs along a curved track with braking, the dynamic behaviors of the vehicle are extremely complex and difficult to accurately reveal due to the coupling effects between the wheel–rail interactions and the disc–pad frictions. Therefore, a rigid–flexible coupled trailer car dynamics model of a railway train is established. In this model, the brake systems and vehicle system are dynamically coupled via the frictions within the braking interface, wheel–rail relationships and suspension systems. Furthermore, the effectiveness of the established model is validated by a comparison with the field test data. Based on this, the dynamic response characteristics of vehicle under curve and straight braking conditions are analyzed and compared, and the influence of the curve geometric parameters on vehicle vibration and operation safety is explored. The results show that braking on a curve track directly affects the vibration characteristics of the vehicle and reduces its operation safety. When the vehicle is braking on a curve track, the lateral vibration of the bogie frame significantly increases compared to the vehicle braking on a straight track, and the vibration intensifies as the curve radius decreases. When the curved track maintains equilibrium superelevation, the differences in primary suspension force, wheel–rail vertical force, and wheel axle lateral force between the inner and outer sides of the first and second wheelsets are relatively minor under both straight and curved braking conditions. Additionally, under these circumstances, the derailment coefficient is minimized. However, when the curve radius is 7000 m, with a superelevation of 40 mm, the maximum dynamic wheel load reduction rate of the inner wheel of the second wheelset is 0.54, which reaches 90% of the allowable limit value of 0.6 for the safety index, and impacts the vehicle running safety. Therefore, it is necessary to focus on the operation safety of railway trains when braking on curved tracks. Full article
Show Figures

Figure 1

23 pages, 2917 KB  
Article
Mode Competition Phenomena and Impact of the Initial Conditions in Nonlinear Vibrations Leading to Railway Curve Squeal
by Jacobo Arango Montoya, Olivier Chiello, Jean-Jacques Sinou and Rita Tufano
Appl. Sci. 2025, 15(2), 509; https://doi.org/10.3390/app15020509 - 7 Jan 2025
Viewed by 1185
Abstract
Curve squeal is a highly disturbing tonal noise produced by railway vehicles on tight curves, primarily attributed to lateral sliding at the wheel–rail interface. An essential step to estimate curve squeal noise levels is to determine the nonlinear self-sustained vibrations, for which time [...] Read more.
Curve squeal is a highly disturbing tonal noise produced by railway vehicles on tight curves, primarily attributed to lateral sliding at the wheel–rail interface. An essential step to estimate curve squeal noise levels is to determine the nonlinear self-sustained vibrations, for which time integration is a commonly used method. However, although it is known that the initial conditions affect the solutions obtained with time integration, their impact on the limit cycles is often overlooked. This study investigates this aspect for a curve squeal model based on falling friction and a modal reduction of the wheel and provides some insights on the mode competition phenomena and the nature of the final limit cycles obtained. The paper first details the curve squeal model, stability analysis, as well as the initial condition derivation, and then discusses the time integration and limit cycle results in both time and frequency domains. The results reveal two primary families of limit cycles that can be obtained for both types of initial conditions. The cases where stationary vibrations result in a quasi-periodic regime converge to a unique limit cycle which displays three fundamental frequencies corresponding to specific wheel modes, plus harmonic interactions among them. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

16 pages, 3555 KB  
Article
Analysis of 3k Experiments Applied to Railway Braking: Influence of Contaminants and Train Speed
by Tania Elizabeth Sandoval-Valencia, Gerardo Hurtado-Hurtado, Eric Leonardo Huerta-Manzanilla, Dante Ruiz-Robles, Luis Morales-Velázquez and Juan Carlos Jáuregui-Correa
Vehicles 2024, 6(4), 1886-1901; https://doi.org/10.3390/vehicles6040092 - 6 Nov 2024
Viewed by 1504
Abstract
The presence of contaminants influences braking efficiency in the railway system because it alters the adhesion at the wheel–rail interface. It is essential to study this phenomenon, as contaminants reduce the friction between wheels and rails, which impacts braking and transport safety. In [...] Read more.
The presence of contaminants influences braking efficiency in the railway system because it alters the adhesion at the wheel–rail interface. It is essential to study this phenomenon, as contaminants reduce the friction between wheels and rails, which impacts braking and transport safety. In addition, these contaminants increase the risk of derailments. The objective of the research was to determine the impact of different contaminants and operating speeds on the critical braking system’s responses. Using the 3k full factorial experimental design methodology, with analysis of variance (ANOVA) and linear and quadratic regressions, visualized using surface graphs, the effects of three operating conditions were studied: clean rails, with sand and sawdust, and driving the train at three operating speeds. These conditions gave rise to variations in braking distances, maximum creep, wheel slip times, and maximum peaks of electric current when braking in each experiment. The tests were carried out on the straight section of a β-shaped track and a railway vehicle, designed at a scale of 1:20. The analysis reveals that the braking distance increases significantly with surface roughness (clean track < sawdust < sand). At 0.75 m/s, the sawdust track reduces braking distance by 21% compared with the clean track; at 1.00 m/s, the reduction is 19%; and at 1.30 m/s, it is 35%. Full article
Show Figures

Figure 1

18 pages, 8447 KB  
Article
Experimental Evaluation of Effect of Leaves on Railroad Tracks in Loss of Braking
by Nikhil Kumar, Ahmad Radmehr and Mehdi Ahmadian
Machines 2024, 12(5), 301; https://doi.org/10.3390/machines12050301 - 29 Apr 2024
Cited by 7 | Viewed by 2239
Abstract
This study aims to comprehensively assess the lubrication effect of leaves on wheel–rail contact dynamics using the Virginia Tech-Federal Railroad Administration (VT-FRA) Roller Rig, which closely simulates field conditions with precision and repeatability. Railway operators grapple with the seasonally recurring challenge of leaf [...] Read more.
This study aims to comprehensively assess the lubrication effect of leaves on wheel–rail contact dynamics using the Virginia Tech-Federal Railroad Administration (VT-FRA) Roller Rig, which closely simulates field conditions with precision and repeatability. Railway operators grapple with the seasonally recurring challenge of leaf contamination, which can cause partial loss of braking and lead to undesired events such as station overruns. Better understanding the adhesion-reducing impact of leaf contamination significantly improves railway engineering practices to counter their effects on train braking and traction. This experimental study evaluates the reduction in traction and braking forces (collectively called “adhesion”) as a function of leaf volume, using two leaf species that commonly grow along U.S. railroad tracks. The test methods rely on the chosen leaves’ transpiration characteristics while ensuring the result’s reproducibility. Leaves were symmetrically positioned on the wheel surface, centered around the mid-rib area within the wear band, and taped on the edges far from the wear band. The critical test parameters (i.e., wheel load, wheel velocity, and percentage creepage) are kept constant among the tests. At the same time, leaf volume is reduced from a maximum amount that covers the entire wheel surface (100% coverage) to no leaves (0%). The latter is used as the baseline. The percentage creepage is kept constant at an exaggerated amount of 2% to accelerate the test time. The results indicate a nonlinear relationship between leaf volume and the loss of braking. Even a small amount of leaf contamination causes a significant reduction in adhesion by as much as 50% compared with no contamination (i.e., baseline). Increasing leaf volume results in contact saturation, beyond which adhesion is not reduced. The minimum adhesion observed in this study is 20% of the maximum adhesion that occurs when no leaf contamination is present. Full article
(This article belongs to the Special Issue Research on Braking Systems of Railway Vehicles)
Show Figures

Figure 1

18 pages, 12486 KB  
Review
Concise Historic Overview of Rail Corrugation Studies: From Formation Mechanisms to Detection Methods
by Qi-Ang Wang, Xin-Yu Huang, Jun-Fang Wang, Yi-Qing Ni, Sheng-Cai Ran, Jian-Peng Li and Jia Zhang
Buildings 2024, 14(4), 968; https://doi.org/10.3390/buildings14040968 - 1 Apr 2024
Cited by 10 | Viewed by 4009
Abstract
Rail corrugation is a serious problem in a railway transportation system, aggravating the operational risk and shortening the lifetime of train–track system. In order to ensure the safety and reliability of the railway system, the detection of rail corrugation is very important. Thus, [...] Read more.
Rail corrugation is a serious problem in a railway transportation system, aggravating the operational risk and shortening the lifetime of train–track system. In order to ensure the safety and reliability of the railway system, the detection of rail corrugation is very important. Thus, this study systematically summarizes the recent research progress of rail corrugation. First, this study introduces the definition of rail corrugation and the classification criteria. Then, the formation mechanism of rail corrugation is analyzed in detail, and its adverse consequences are investigated. Further, this study summarizes several main detection methods, which are corrugation-detection methods based on acceleration measurements, wavelet transform methods for corrugation evaluation, computer-vision-based methods for corrugation automatic detection, digital filtering algorithms for rail corrugation detection, and others. In this study, the formation mechanism and detection methods of rail corrugation are systematically described, and various corrugation-detection methods are also introduced in detail. This study not only provides a scientific basis for railway maintenance, but also lays a solid foundation for future experimental design and data analysis. This study can also guide engineering practice to improve the reliability and safety of railway systems. It also provides useful experience for future railway-engineering design and planning, as well as safer and more reliable operation. In general, this study can provide technical support for the detection of rail corrugation to ensure the safety of the rail–track system. Full article
Show Figures

Figure 1

17 pages, 629 KB  
Article
Power Dissipation and Wear Modeling in Wheel–Rail Contact
by Andrzej Myśliński and Andrzej Chudzikiewicz
Appl. Sci. 2024, 14(1), 165; https://doi.org/10.3390/app14010165 - 24 Dec 2023
Cited by 4 | Viewed by 2266
Abstract
This paper is concerned with the modeling of power dissipation due to friction and its relation with wear estimation in wheel–rail contact. Wear is a complex multi-scale and multi-physical phenomenon appearing in rolling contact. Wear is generated by high contact stress and the [...] Read more.
This paper is concerned with the modeling of power dissipation due to friction and its relation with wear estimation in wheel–rail contact. Wear is a complex multi-scale and multi-physical phenomenon appearing in rolling contact. Wear is generated by high contact stress and the work of friction forces. This phenomenon leads to the appearing of the worn material in the form of wear debris between contacting surfaces. In contact models, wear is usually described in terms of the wear depth function. This function modifies the gap between the contacting bodies as well as the shape of the surfaces of the wheel and rail in contact. In this paper, besides the wear depth function, the dissipated energy, rather than the contact stress, is taken into account to evaluate the wear impact on rail or wheel surfaces. The dissipated energy allows us to more precisely evaluate the wear debris amount as well as the depth of wear and its distribution along the contact interface. A two-dimensional rolling contact problem with frictional heat flow is considered. The elasto-plastic deformation of the rail is considered. This contact problem is governed by a coupled system of mechanical and thermal equations in terms of generalized stresses, displacement and temperature. The finite element method is used to discretize this problem. A discretized system of equations with nonpenetration and friction conditions is transformed and formulated as a nonlinear complementarity problem. The generalized Newton method is applied to numerically solve this mechanical subproblem. The Cholesky method is used to find the solution of the heat-conductive problem. The dissipated power is evaluated based on the resultant force and slip at a reference point. Numerical results including the distribution of slip velocity, power factor and wear rate are provided and discussed. Full article
(This article belongs to the Special Issue Railway Dynamic Simulation: Recent Advances and Perspective)
Show Figures

Figure 1

18 pages, 9500 KB  
Article
Analysis of Train–Track–Bridge Coupling Vibration Characteristics for Heavy-Haul Railway Based on Virtual Work Principle
by Nanhao Wu, Hongyin Yang, Haleem Afsar, Bo Wang and Jianfeng Fan
Sensors 2023, 23(20), 8550; https://doi.org/10.3390/s23208550 - 18 Oct 2023
Cited by 10 | Viewed by 1979
Abstract
This paper introduces an innovative model for heavy-haul train–track–bridge interaction, utilizing a coupling matrix representation based on the virtual work principle. This model establishes the relationship between the wheel–rail contact surface and the bridge–rail interface concerning internal forces and geometric constraints. In this [...] Read more.
This paper introduces an innovative model for heavy-haul train–track–bridge interaction, utilizing a coupling matrix representation based on the virtual work principle. This model establishes the relationship between the wheel–rail contact surface and the bridge–rail interface concerning internal forces and geometric constraints. In this coupled system’s motion equation, the degrees of freedom (DOFs) of the wheelsets in a heavy-haul train lacking primary suspension are interdependent. Additionally, the vertical and nodding DOFs of the bogie frame are linked with the rail element. A practical application, a Yellow River Bridge with a heavy-haul railway line, is used to examine the accuracy of the proposed model with regard to discrepancy between the simulated and measured displacement ranging from 1% to 11%. A comprehensive parametric analysis is conducted, exploring the impacts of track irregularities of varying wavelengths, axle load lifting, and the degradation of bridge stiffness and damping on the dynamic responses of the coupled system. The results reveal that the bridge’s dynamic responses are particularly sensitive to track irregularities within the wavelength range of 1 to 20 m, especially those within 1 to 10 m. The vertical displacement of the bridge demonstrates a nearly linear increase with heavier axle loads of the heavy-haul trains and the reduction in bridge stiffness. However, there is no significant rise in vertical acceleration under these conditions. Full article
Show Figures

Figure 1

Back to TopTop