Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (465)

Search Parameters:
Keywords = wetland degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2183 KiB  
Article
Interannual Variations in Soil Bacterial Community Diversity and Analysis of Influencing Factors During the Restoration Process of Scirpus Mariqueter Wetlands
by Yaru Li, Shubo Fang, Qinyi Wang, Pengling Wu, Peimin He and Wei Liu
Biology 2025, 14(8), 1013; https://doi.org/10.3390/biology14081013 - 7 Aug 2025
Abstract
Due to human activities and the invasion of Spartina alterniflora, the population of Scirpus mariqueter (S. mariqueter) in the Yangtze River Estuary has gradually declined. To address this issue, numerous restoration efforts have been undertaken. To investigate the changes and [...] Read more.
Due to human activities and the invasion of Spartina alterniflora, the population of Scirpus mariqueter (S. mariqueter) in the Yangtze River Estuary has gradually declined. To address this issue, numerous restoration efforts have been undertaken. To investigate the changes and influencing factors of soil bacterial communities during the restoration of S. mariqueter wetlands, we selected S. mariqueter populations as the research focus and divided the samples into two years, S1 and S2. High-throughput sequencing technology was employed for observation and analysis. The results revealed that from S1 to S2, soil bacterial diversity in the S. mariqueter wetland increased significantly and displayed clear seasonal patterns. The dominant bacterial phyla included Proteobacteria, Bacteroidota, Firmicutes, and Acidobacteriota. Among these, Proteobacteria had the highest relative abundance, while Acidobacteriota showed the most pronounced increase, surpassing Bacteroidota and Firmicutes to become the second most abundant group. Redundancy analysis (RDA) indicated that soil organic matter and electrical conductivity were the key factors influencing the composition and diversity of the soil bacterial community, with Acidobacteriota playing a dominant role during wetland restoration. In conclusion, during the ecological restoration of the S. mariqueter wetlands, attention should be given to environmental factors such as soil organic matter and electrical conductivity, while the regulatory role of Acidobacteriota in wetland soils should not be overlooked. This study provides a microscopic perspective on the interactions between microbial diversity and ecosystem functions in coastal wetlands, offering valuable guidance for the ecological restoration of degraded wetlands. Full article
Show Figures

Figure 1

14 pages, 2320 KiB  
Article
Differentiated Microbial Strategies in Carbon Metabolic Processes Responding to Salt Stress in Cold–Arid Wetlands
by Yongman Wang, Mingqi Wang, Tiezheng Wu, Jialin Zhao, Junyi Li, Hongliang Xie, Lixin Wang and Linhui Wu
Land 2025, 14(8), 1607; https://doi.org/10.3390/land14081607 - 7 Aug 2025
Abstract
With the rising concerns about climate change and continuous increase in the salinity of soil, it is essential to understand the C-cycling functioning of saline soil to better predict the ecological functions and health of soil. Microbes play critical roles in C-cycling. However, [...] Read more.
With the rising concerns about climate change and continuous increase in the salinity of soil, it is essential to understand the C-cycling functioning of saline soil to better predict the ecological functions and health of soil. Microbes play critical roles in C-cycling. However, limited research has been conducted to understand the impact of soil salinity on the microbial functional genes involved in C-cycling. In this study, effects of varying soil salinity levels in wetlands on the C-cycling functions and diversity of soil microbes were investigated by metagenomic sequencing. The results showed a higher relative abundance of genes related to decomposition of easily degradable organic C at low salinity. On the other hand, higher abundance of genes participating in the decomposition of recalcitrant organic C were observed at high salinity. These findings indicate distinct metabolic bias of soil microbes based on the salinity levels. Proteobacteria and Actinobacteria were dominant in soils with low to medium salinity levels, while Bacteroidetes phyla was prominent in highly saline soils. Furthermore, partial least squares path modeling (PLS-PM) identified electrical conductivity, total nitrogen, and total phosphorus as key regulators of C-cycling gene expression. Overall, the present study highlights the intricate connections between salinity, microbial attributes, and carbon metabolism in soil, suggesting that the soil microbes adapt to saline stress through divergent eco-adaptations. The findings of this study highlight the significance of exploring these microbial interactions for effective management and conservation of saline wetlands. Full article
Show Figures

Figure 1

14 pages, 2597 KiB  
Article
Chemical and Isotopic Investigation of Abiotic Oxidation of Lactate Substrate in the Presence of Varied Electron Acceptors and Under Circumneutral Anaerobic Conditions
by Tsigabu A. Gebrehiwet and R. V. Krishnamurthy
Water 2025, 17(15), 2308; https://doi.org/10.3390/w17152308 - 3 Aug 2025
Viewed by 231
Abstract
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide [...] Read more.
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide (HFO), media composition, and pH under anaerobic conditions, using sodium bicarbonate as the buffering agent. Dissolved inorganic carbon (DIC) was used as a proxy for the oxidation of substrates. HFO media generated more DIC compared to ferric citrate containing media. Light and pH had major roles in the oxidation of lactate in the presence of ferric iron. Under dark conditions in the presence or absence of Fe(III), the DIC produced was low in all pH conditions. Inhibition of DIC production was also observed upon photo exposure when Fe (III) was absent. Isotopically, the system showed initial mixing between the bicarbonate and the carbon dioxide produced from oxidation later being dominated by carbon isotope value of lactate used. These redox conditions align with previous studies suggesting cleavage of organic compounds by hydroxyl radicals. The slower redox processes observed here, compared to previous studies, could be due to the scavenging effect of chloride ion on the hydroxyl radical. Full article
Show Figures

Figure 1

21 pages, 3013 KiB  
Article
Determining Early Warning Thresholds to Detect Tree Mortality Risk in a Southeastern U.S. Bottomland Hardwood Wetland
by Maricar Aguilos, Jiayin Zhang, Miko Lorenzo Belgado, Ge Sun, Steve McNulty and John King
Forests 2025, 16(8), 1255; https://doi.org/10.3390/f16081255 - 1 Aug 2025
Viewed by 279
Abstract
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions [...] Read more.
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions between hydrological drivers and ecosystem responses by analyzing daily eddy covariance flux data from a wetland forest in North Carolina, USA, spanning 2009–2019. We analyzed temporal patterns of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE) under both flooded and non-flooded conditions and evaluated their relationships with observed tree mortality. Generalized Additive Modeling (GAM) revealed that groundwater table depth (GWT), leaf area index (LAI), NEE, and net radiation (Rn) were key predictors of mortality transitions (R2 = 0.98). Elevated GWT induces root anoxia; declining LAI reduces productivity; elevated NEE signals physiological breakdown; and higher Rn may amplify evapotranspiration stress. Receiver Operating Characteristic (ROC) analysis revealed critical early warning thresholds for tree mortality: GWT = 2.23 cm, LAI = 2.99, NEE = 1.27 g C m−2 d−1, and Rn = 167.54 W m−2. These values offer a basis for forecasting forest mortality risk and guiding early warning systems. Our findings highlight the dominant role of hydrological variability in ecosystem degradation and offer a threshold-based framework for early detection of mortality risks. This approach provides insights into managing coastal forest resilience amid accelerating sea level rise. Full article
(This article belongs to the Special Issue Water and Carbon Cycles and Their Coupling in Forest)
Show Figures

Figure 1

19 pages, 5284 KiB  
Article
Integrating Dark Sky Conservation into Sustainable Regional Planning: A Site Suitability Evaluation for Dark Sky Parks in the Guangdong–Hong Kong–Macao Greater Bay Area
by Deliang Fan, Zidian Chen, Yang Liu, Ziwen Huo, Huiwen He and Shijie Li
Land 2025, 14(8), 1561; https://doi.org/10.3390/land14081561 - 29 Jul 2025
Viewed by 356
Abstract
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments [...] Read more.
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments but also enhance livability by balancing urban expansion and ecological conservation. This study develops a novel framework for evaluating DSP suitability, integrating ecological and socio-economic dimensions, including the resource base (e.g., nighttime light levels, meteorological conditions, and air quality) and development conditions (e.g., population density, transportation accessibility, and tourism infrastructure). Using the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) as a case study, we employ Delphi expert consultation, GIS spatial analysis, and multi-criteria decision-making to identify optimal DSP locations and prioritize conservation zones. Our key findings reveal the following: (1) spatial heterogeneity in suitability, with high-potential zones being concentrated in the GBA’s northeastern, central–western, and southern regions; (2) ecosystem advantages of forests, wetlands, and high-elevation areas for minimizing light pollution; (3) coastal and island regions as ideal DSP sites due to the low light interference and high ecotourism potential. By bridging environmental assessments and spatial planning, this study provides a replicable model for DSP site selection, offering policymakers actionable insights to integrate dark sky preservation into sustainable urban–regional development strategies. Our results underscore the importance of DSPs in fostering ecological resilience, nighttime tourism, and regional livability, contributing to the broader discourse on sustainable landscape planning in high-urbanization contexts. Full article
Show Figures

Figure 1

37 pages, 1767 KiB  
Review
Antibiotics and Antibiotic Resistance Genes in the Environment: Dissemination, Ecological Risks, and Remediation Approaches
by Zhaomeng Wu, Xiaohou Shao and Qilin Wang
Microorganisms 2025, 13(8), 1763; https://doi.org/10.3390/microorganisms13081763 - 29 Jul 2025
Viewed by 438
Abstract
Global antibiotic use saturates ecosystems with selective pressure, driving mobile genetic element (MGE)-mediated antibiotic resistance gene (ARG) dissemination that destabilizes ecological integrity and breaches public health defenses. This review synthesizes the sources, environmental distribution, and ecological risks of antibiotics and ARGs, emphasizing the [...] Read more.
Global antibiotic use saturates ecosystems with selective pressure, driving mobile genetic element (MGE)-mediated antibiotic resistance gene (ARG) dissemination that destabilizes ecological integrity and breaches public health defenses. This review synthesizes the sources, environmental distribution, and ecological risks of antibiotics and ARGs, emphasizing the mechanisms of horizontal gene transfer (HGT) driven by MGEs such as plasmids, transposons, and integrons. We further conduct a comparative critical analysis of the effectiveness and limitations of antibiotics and ARGs remediation strategies for adsorption (biochar, activated carbon, carbon nanotubes), chemical degradation (advanced oxidation processes, Fenton-based systems), and biological treatment (microbial degradation, constructed wetlands). To effectively curb the spread of antimicrobial resistance and safeguard the sustainability of ecosystems, we propose an integrated “One Health” framework encompassing enhanced global surveillance (antibiotic residues and ARGs dissemination) as well as public education. Full article
(This article belongs to the Special Issue Antibiotic and Resistance Gene Pollution in the Environment)
Show Figures

Graphical abstract

27 pages, 8755 KiB  
Article
Mapping Wetlands with High-Resolution Planet SuperDove Satellite Imagery: An Assessment of Machine Learning Models Across the Diverse Waterscapes of New Zealand
by Md. Saiful Islam Khan, Maria C. Vega-Corredor and Matthew D. Wilson
Remote Sens. 2025, 17(15), 2626; https://doi.org/10.3390/rs17152626 - 29 Jul 2025
Viewed by 455
Abstract
(1) Background: Wetlands are ecologically significant ecosystems that support biodiversity and contribute to essential environmental functions such as water purification, carbon storage and flood regulation. However, these ecosystems face increasing pressures from land-use change and degradation, prompting the need for scalable and accurate [...] Read more.
(1) Background: Wetlands are ecologically significant ecosystems that support biodiversity and contribute to essential environmental functions such as water purification, carbon storage and flood regulation. However, these ecosystems face increasing pressures from land-use change and degradation, prompting the need for scalable and accurate classification methods to support conservation and policy efforts. In this research, our motivation was to test whether high-spatial-resolution PlanetScope imagery can be used with pixel-based machine learning to support the mapping and monitoring of wetlands at a national scale. (2) Methods: This study compared four machine learning classification models—Random Forest (RF), XGBoost (XGB), Histogram-Based Gradient Boosting (HGB) and a Multi-Layer Perceptron Classifier (MLPC)—to detect and map wetland areas across New Zealand. All models were trained using eight-band SuperDove satellite imagery from PlanetScope, with a spatial resolution of ~3 m, and ancillary geospatial datasets representing topography and soil drainage characteristics, each of which is available globally. (3) Results: All four machine learning models performed well in detecting wetlands from SuperDove imagery and environmental covariates, with varying strengths. The highest accuracy was achieved using all eight image bands alongside features created from supporting geospatial data. For binary wetland classification, the highest F1 scores were recorded by XGB (0.73) and RF/HGB (both 0.72) when including all covariates. MLPC also showed competitive performance (wetland F1 score of 0.71), despite its relatively lower spatial consistency. However, each model over-predicts total wetland area at a national level, an issue which was able to be reduced by increasing the classification probability threshold and spatial filtering. (4) Conclusions: The comparative analysis highlights the strengths and trade-offs of RF, XGB, HGB and MLPC models for wetland classification. While all four methods are viable, RF offers some key advantages, including ease of deployment and transferability, positioning it as a promising candidate for scalable, high-resolution wetland monitoring across diverse ecological settings. Further work is required for verification of small-scale wetlands (<~0.5 ha) and the addition of fine-spatial-scale covariates. Full article
Show Figures

Figure 1

25 pages, 7522 KiB  
Article
Quantitative Estimation of Vegetation Carbon Source/Sink and Its Response to Climate Variability and Anthropogenic Activities in Dongting Lake Wetland, China
by Mengshen Guo, Nianqing Zhou, Yi Cai, Xihua Wang, Xun Zhang, Shuaishuai Lu, Kehao Liu and Wengang Zhao
Remote Sens. 2025, 17(14), 2475; https://doi.org/10.3390/rs17142475 - 16 Jul 2025
Viewed by 308
Abstract
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the [...] Read more.
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the spatiotemporal dynamics and driving mechanisms of carbon sinks from 2000 to 2022, utilizing the Theil-Sen median trend, Mann-Kendall test, and attribution based on the differentiating equation (ADE). Results showed that (1) the annual mean spatial NEP was 50.24 g C/m2/a, which first increased and then decreased, with an overall trend of −1.5 g C/m2/a. The carbon sink was strongest in spring, declined in summer, and shifted to a carbon source in autumn and winter. (2) Climate variability and human activities contributed +2.17 and −3.73 g C/m2/a to NEP, respectively. Human activities were the primary driver of carbon sink degradation (74.30%), whereas climate change mainly promoted carbon sequestration (25.70%). However, from 2000–2011 to 2011–2022, climate change shifted from enhancing to limiting carbon sequestration, mainly due to the transition from water storage and lake reclamation to ecological restoration policies and intensified climate anomalies. (3) NEP was negatively correlated with precipitation and water level. Land use adjustments, such as forest expansion and conversion of cropland and reed to sedge, alongside maintaining growing season water levels between 24.06~26.44 m, are recommended to sustain and enhance wetland carbon sinks. Despite inherent uncertainties in model parameterization and the lack of sufficient in situ flux validation, these findings could provide valuable scientific insights for wetland carbon management and policy-making. Full article
Show Figures

Graphical abstract

20 pages, 9728 KiB  
Article
The Response of the Functional Traits of Phragmites australis and Bolboschoenus planiculmis to Water and Saline–Alkaline Stresses
by Lili Yang, Yanjing Lou and Zhanhui Tang
Plants 2025, 14(14), 2112; https://doi.org/10.3390/plants14142112 - 9 Jul 2025
Viewed by 359
Abstract
Soil saline–alkaline stress and water stress, exacerbated by anthropogenic activities and climate change, are major drivers of wetland vegetation degradation, severely affecting the function of wetland ecosystems. In this study, we conducted a simulation experiment with three water levels and four saline–alkaline concentration [...] Read more.
Soil saline–alkaline stress and water stress, exacerbated by anthropogenic activities and climate change, are major drivers of wetland vegetation degradation, severely affecting the function of wetland ecosystems. In this study, we conducted a simulation experiment with three water levels and four saline–alkaline concentration levels as stress factors to assess eight key functional traits of Phragmites australis and Bolboschoenus planiculmis, dominant species in the salt marsh wetlands in the western region of Jilin province, China. The study aimed to evaluate how these factors influence the functional traits of P. australis and B. planiculmis. Our results showed that the leaf area, root biomass, and clonal biomass of P. australis significantly increased, and the leaf area of B. planiculmis significantly decreased under low and medium saline–alkaline concentration treatments, while the plant height, ramet number, and aboveground biomass of P. australis and the root biomass, clonal biomass, and clonal/belowground biomass ratio of B. planiculmis were significantly reduced and the ratio of belowground to aboveground biomass of B. planiculmis significantly increased under high saline–alkaline concentration treatment. The combination of drought conditions with medium and high saline–alkaline treatments significantly reduced leaf area, ramet number, and clonal biomass in both species. The interaction between flooding water level and medium and high saline–alkaline treatments significantly suppressed the plant height, root biomass, and aboveground biomass of both species, with the number of ramets having the greatest contribution. These findings suggest that the effects of water levels and saline–alkaline stress on the functional traits of P. australis and B. planiculmis are species-specific, and the ramet number–plant height–root biomass (RHR) strategy may serve as an adaptive mechanism for wetland clones to environmental changes. This strategy could be useful for predicting plant productivity in saline–alkaline wetlands. Full article
Show Figures

Figure 1

19 pages, 863 KiB  
Review
Microplastic Pollution in China’s Aquatic Systems: Spatial Distribution, Transport Pathways, and Controlling Strategies
by Zhancheng Wu, Juzhuang Wang, Shengwang Yu, Qian Sun and Yulai Han
Microplastics 2025, 4(3), 41; https://doi.org/10.3390/microplastics4030041 - 3 Jul 2025
Viewed by 862
Abstract
Microplastics (MPs) have emerged as a critical environmental challenge in China’s aquatic ecosystems, driven by rapid industrialization and population growth. This review synthesizes recent findings on the abundance, morphology, and polymer types of MPs in China’s freshwater systems (rivers, lakes, reservoirs) and coastal [...] Read more.
Microplastics (MPs) have emerged as a critical environmental challenge in China’s aquatic ecosystems, driven by rapid industrialization and population growth. This review synthesizes recent findings on the abundance, morphology, and polymer types of MPs in China’s freshwater systems (rivers, lakes, reservoirs) and coastal marine environments. Spatial analysis reveals significant variability in MP abundance, ranging from 0.1 items/L in Tibet’s Lalu Wetland to 30.8 items/L in Beijing’s Qinghe River, with polypropylene (PP) and polyethylene (PE) dominating polymer profiles. Coastal regions exhibit distinct contamination patterns, with the Yellow Sea (5.3 ± 2.0 items/L) and the South China Sea (180 ± 80 items/m3) showing the highest MP loads, primarily as fibers and fragments. Fluvial transport, atmospheric deposition, and coastal anthropogenic activities (e.g., fisheries, tourism) are identified as major pathways for marine MP influx. Secondary MPs from degraded plastics and primary MPs from industrial/domestic effluents pose synergistic risks through the adsorption of heavy metals and organic pollutants. Human exposure routes—ingestion, inhalation, and dermal contact—are linked to inflammatory, metabolic, and carcinogenic health outcomes. Policy interventions, including bans on microbeads and non-degradable plastics, demonstrate progress in pollution mitigation. This work underscores the urgency of integrated source control, advanced wastewater treatment, and transboundary monitoring to address MP contamination in aquatic ecosystems. Full article
Show Figures

Figure 1

27 pages, 6480 KiB  
Article
Optimizing Ecological Water Replenishment in Xianghai Wetlands Using CNN-LSTM and PSO Algorithm Under Secondary Salinization Constraints
by Zhuo Song, Jiannan Luo and Xi Ma
Water 2025, 17(13), 1886; https://doi.org/10.3390/w17131886 - 25 Jun 2025
Viewed by 274
Abstract
Wetlands play a crucial role in water purification, climate regulation, and biodiversity conservation. However, the Xianghai wetlands (situated in Tongyu County, Jilin Province, China) have experienced severe ecological degradation due to natural factors and unsustainable human activities, leading to declining groundwater levels and [...] Read more.
Wetlands play a crucial role in water purification, climate regulation, and biodiversity conservation. However, the Xianghai wetlands (situated in Tongyu County, Jilin Province, China) have experienced severe ecological degradation due to natural factors and unsustainable human activities, leading to declining groundwater levels and intensified salinity issues. To address these problems, this study aims to optimize ecological water replenishment strategies for the Xianghai nature reserve by integrating groundwater numerical simulation, surrogate modeling (convolutional neural network–long short-term memory neural network, CNN-LSTM), and intelligent optimization algorithms (Particle Swarm Optimization, PSO). During the design of the water replenishment scheme, the objective function maximizes the replenishment volume while considering the secondary salinization of soil in the reserve and its surrounding areas as a constraint. The results show that the surrogate model established using the convolutional neural network–long short-term memory neural network achieved high accuracy, with R2 values of 0.9996 and 0.9962 and MREs of 0.0023 and 0.0089 for training and validation sets, respectively; Compared to the random replenishment scheme, the optimized water replenishment scheme significantly reduces secondary salinization. After 10 years water replenishment, the optimized scheme exhibited a 2 km2 reduction in the salinized area compared to the randomized scheme, with the degree of salinization being reduced from moderate to mild. This method improves ecological sustainability and can be adapted to meet local water use demands. This simulation-optimization method provides an effective approach for designing water replenishment schemes that address secondary salinization. Full article
Show Figures

Figure 1

22 pages, 13795 KiB  
Article
The Nucleation and Degradation of Pothole Wetlands by Human-Driven Activities and Climate During the Quaternary in a Semi-Arid Region (Southern Iberian Peninsula)
by A. Jiménez-Bonilla, I. Expósito, F. Gázquez, J. L. Yanes and M. Rodríguez-Rodríguez
Geographies 2025, 5(3), 27; https://doi.org/10.3390/geographies5030027 - 24 Jun 2025
Viewed by 315
Abstract
In this study, we selected a series of pothole wetlands to investigate their nucleation, evolution, and recent anthropogenic degradation in the Alcores Depression (AD), southern Iberian Peninsula, where over 100 closed watersheds containing shallow, ephemeral water bodies up to 2 hm2 have [...] Read more.
In this study, we selected a series of pothole wetlands to investigate their nucleation, evolution, and recent anthropogenic degradation in the Alcores Depression (AD), southern Iberian Peninsula, where over 100 closed watersheds containing shallow, ephemeral water bodies up to 2 hm2 have been identified. We surveyed the regional geological framework, utilized digital elevation models (DEMs), orthophotos, and aerial images since 1956. Moreover, we analyzed precipitation and temperature data in Seville from 1900 to 2024, collected hydrometeorological data since 1990 and modelled the water level evolution from 2002 to 2025 in a representative pothole in the area. Our observations indicate a flooded surface reduction by more than 90% from the 1950s to 2025. Climatic data reveal an increase in annual mean temperatures since 1960 and a sharp decline in annual precipitation since 2000. The AD’s inception due to tectonic isolation during the Quaternary favoured the formation of pothole wetlands in the floodplain. The reduction in the hydroperiod and wetland degradation was primarily due to agricultural expansion since 1950, which followed an increase in groundwater extraction and altered the original topography. Recently, decreased precipitation has exponentially accelerated the degradation and even the complete disappearance of many potholes. This study underscores the fragility of small wetlands in the Mediterranean basin and the critical role of human management in their preservation. Restoring these ecosystems could be a highly effective nature-based solution, especially in semi-arid climates like southern Spain. These prairie potholes are crucial for enhancing groundwater recharge, which is vital for maintaining water availability in regions with limited precipitation. By facilitating rainwater infiltration into the aquifer, recharge potholes increase groundwater levels. Additionally, they capture and store run-off during heavy rainfall, reducing the risk of flooding and soil erosion. Beyond their hydrological functions, these wetlands provide habitats that support biodiversity and promote ecological resilience, reinforcing the need for their protection and recovery. Full article
Show Figures

Figure 1

42 pages, 6908 KiB  
Article
Vegetation Analysis of Wetland Ecosystems in Southern Turkey Using the Fuzzy Means Method
by Deniz Boz
Biology 2025, 14(6), 710; https://doi.org/10.3390/biology14060710 - 17 Jun 2025
Viewed by 440
Abstract
In this study, the vegetation of the natural area of the Göksu Delta Special Environmental Protection Agency (SEPA), one of Turkey’s most important wetlands, is researched. The importance of this study in terms of contributing to environmental protection and land use planning studies [...] Read more.
In this study, the vegetation of the natural area of the Göksu Delta Special Environmental Protection Agency (SEPA), one of Turkey’s most important wetlands, is researched. The importance of this study in terms of contributing to environmental protection and land use planning studies reveals that this natural area, where rare ecosystems are found, has started to degrade and disappear under human influence. This study was conducted because the area is not only a designated RAMSAR wetland (a wetland site designated of international importance especially for the Waterfowl Habitat under the Ramsar Convention) but also includes nearby residential developments. With this study, the vegetation of the area was studied to determine the syntaxonomic units across different habitats. The natural area of Göksu Delta is divided into three main habitat groups: aquatic, sand dune, and halophytic. In the research, the Braun-Blanquet method was used. During the research in the Göksu Delta, 279 sample areas were surveyed. The data were analysed according to the fuzzy means cluster method. During the investigation, 29 associations were identified, and 16 of them are considered a new finding for science. These 29 associations can be classified as follows: aquatic vegetation is represented with four associations (three of them belong to Phragmito-Magnocaricetea and one of them belongs to Potametea classes), sand dune vegetation is represented with 12 associations (belonging to Ammophiletea Br.-Bl. & Tüxen ex Westhoff, Dijk, & Passchier 1946 class), and halophytic vegetation is represented with 13 associations (six of them belong to Salicornietea fruticosae Br.-Bl. & Tüxen ex A. & O. Bolòs 1950, six of them belong to Juncetea maritimi Br.-Bl. in Br.-Bl., Roussine & Nègre 1952, and one of them belong to Molinio-Juncetea Br.-Bl. (1931) 1947 classes). Three (Onopordum boissieri, Ambrosia maritima, and Chlamydophora tridentata) of the endemics and rare plants that were explored during the study were recorded as new alliance characteristics. Full article
(This article belongs to the Special Issue Wetland Ecosystems (2nd Edition))
Show Figures

Figure 1

44 pages, 34279 KiB  
Article
Identification and Optimization of Urban Avian Ecological Corridors in Kunming: Framework Construction Based on Multi-Model Coupling and Multi-Scenario Simulation
by Xiaoli Zhang and Zhe Zhang
Diversity 2025, 17(6), 427; https://doi.org/10.3390/d17060427 - 17 Jun 2025
Viewed by 743
Abstract
This study employs a multi-model coupling and multi-scenario simulation approach to construct a framework for identifying and optimizing avian ecological corridors in the urban core of Kunming. The framework focuses on the ecological needs of resident birds (64.72%), woodland-dependent birds (39.87%), and low-mobility [...] Read more.
This study employs a multi-model coupling and multi-scenario simulation approach to construct a framework for identifying and optimizing avian ecological corridors in the urban core of Kunming. The framework focuses on the ecological needs of resident birds (64.72%), woodland-dependent birds (39.87%), and low-mobility birds (47.29%) to address habitat fragmentation and enhance urban biodiversity conservation. This study identifies 54 core ecological corridors, totaling 183.58 km, primarily located in forest–urban transition zones. These corridors meet the continuous habitat requirements of resident and woodland-dependent birds, providing a stable environment for species. Additionally, 55 general corridors, spanning 537.30 km, focus on facilitating short-distance movements of low-mobility birds, enhancing habitat connectivity in urban fringe areas through ecological stepping stones. Eighteen ecological pinch points (total area 5.63 km2) play a crucial role in the network. The northern pinch points, dominated by forest land, serve as vital breeding and refuge habitats for woodland-dependent and resident birds. The southern pinch points, located in wetland-forest ecotones, function as critical stopover sites for low-mobility waterbirds. Degradation of these pinch points would significantly reduce available habitat for birds. The 27 ecological barrier points (total area 89.79 km2), characterized by urban land use, severely impede the movement of woodland-dependent birds and increase the migratory energy expenditure of low-mobility birds in agricultural areas. Following optimization, resistance to resident birds in core corridors is significantly reduced, and habitat utilization by generalist species in general corridors is markedly improved. Moreover, multi-scenario optimization measures, including the addition of ecological stepping stones, barrier improvement, and pinch-point protection, have effectively increased ecological sources, met avian habitat requirements, and secured migratory pathways for waterbirds. These measures validate the scientific rationale of a multidimensional management strategy. The comprehensive framework developed in this study, integrating species needs, corridor design, and spatial optimization, provides a replicable model for avian ecological corridor construction in subtropical montane cities. Future research may incorporate bird-tracking technologies to further validate corridor efficacy and explore planning pathways for climate-adaptive corridors. Full article
Show Figures

Figure 1

19 pages, 5381 KiB  
Article
Complementary Rhizosphere Microbial Strategies Drive Functional Specialization in Coastal Halophyte Succession: Differential Adaptation of Suaeda glauca and Phragmites communis to Saline–Alkali Stress
by Hao Dai, Mingyun Jia, Jianhui Xue, Zhuangzhuang Liu, Dongqin Zhou, Zhaoqi Hou, Jinping Yu and Shipeng Lu
Microorganisms 2025, 13(6), 1399; https://doi.org/10.3390/microorganisms13061399 - 16 Jun 2025
Viewed by 527
Abstract
While rhizosphere microbiome functions in saline soils are well documented, complementary microbial strategies between pioneer and late-successional halophytes remain unexplored. Here, we used 16S rRNA sequencing and FAPROTAX functional prediction to compare the rhizosphere bacterial communities of two key halophytes—Suaeda glauca and [...] Read more.
While rhizosphere microbiome functions in saline soils are well documented, complementary microbial strategies between pioneer and late-successional halophytes remain unexplored. Here, we used 16S rRNA sequencing and FAPROTAX functional prediction to compare the rhizosphere bacterial communities of two key halophytes—Suaeda glauca and Phragmites communis—in a reclaimed coastal wetland. The results demonstrate that both plants significantly restructured microbial communities through convergent enrichment of stress-tolerant taxa (Firmicutes, Pseudomonas, Bacillus, and Planococcus) while suppressing sulfur-oxidizing bacteria (Sulfurovum and Thiobacillus). However, they exhibited distinct microbial specialization: S. glauca uniquely enriched organic-matter-degrading taxa (Promicromonospora and Zhihengliuella) and upregulated aromatic compound degradation (2.29%) and ureolysis (0.86%) according to FAPROTAX analysis, facilitating carbon mobilization in early successional stages. Notably, P. communis selectively recruited nitrogen-cycling Serratia, with increased nitrate respiration (3.51% in P. communis vs. 0.91% in S. glauca) function, reflecting its higher nitrogen demand. Environmental factors also diverged: S. glauca’s microbiome correlated with potassium and sodium, whereas P. communis responded to phosphorus and chloride. These findings uncover distinct microbial recruitment strategies by halophytes to combat saline stress—S. glaucaP. communis synergy through microbial carbon-nitrogen coupling—offering a template for consortia design in saline soil restoration. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

Back to TopTop