Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = western tropical Atlantic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 16797 KB  
Article
Synoptic Ocean–Atmosphere Coupling at the Intertropical Convergence Zone and Its Vicinity in the Western Tropical Atlantic Ocean
by Breno Tramontini Steffen, Ronald Buss de Souza, Rose Ane Pereira de Freitas, Mauricio Almeida Noernberg and Claudia Klose Parise
Atmosphere 2026, 17(1), 101; https://doi.org/10.3390/atmos17010101 (registering DOI) - 18 Jan 2026
Abstract
In the Atlantic Ocean, the Intertropical Convergence Zone (ITCZ) sustains the climate of northeastern Brazil and northwestern Africa by modulating their rainy and dry seasons. Using observational data, radiosondes and Expendable Bathythermographs (XBTs), we investigated short-term ocean–atmosphere coupling across the ITCZ region along [...] Read more.
In the Atlantic Ocean, the Intertropical Convergence Zone (ITCZ) sustains the climate of northeastern Brazil and northwestern Africa by modulating their rainy and dry seasons. Using observational data, radiosondes and Expendable Bathythermographs (XBTs), we investigated short-term ocean–atmosphere coupling across the ITCZ region along the 38° W meridian. The data represents synchronous measurements of the marine atmospheric boundary layer (MABL) and the ocean’s mixed layer (OML) for the period between 17 October and 8 November 2018. The ITCZ demonstrated pronounced variability in position, intensity, and width, driven by the changes in the predominance of northeast and southeast trade winds. These atmospheric changes directly impacted the Equatorial Divergence (ED), which transitioned from an asymmetric structure with shallower isothermal layer depths (ILDs) (~−14 m) around 11° N to a more homogenous region between 5° N and 10° N, with an average ILD of −21.83 ± 5.23 m. A comparison with ORAS5 and WOA23 indicates that the products reproduce the vertical thermal structure of the WTAO well (r2 > 0.9) but systematically overestimate the temperature at the bottom of the ILD by 3–4 °C. The difference between the ILD and the mixed layer depth (MLD) is more pronounced south of the ED due to the Amazon River salinity front, advected by the NECC, but the ILD estimated from XBT data closely matches the MLD estimated for ORAS5 and WOA23 in the ED region. These unprecedented observations showcase, for the first time, short-term ocean–atmosphere coupled variability across the WTAO ITCZ region, highlighting the importance of atmospheric synoptic-scale processes in modulating the OML and the ED. Full article
Show Figures

Figure 1

24 pages, 4332 KB  
Article
Hotspots of Current Energy Potential in the Southwestern Tropical Atlantic
by Tarsila Sousa Lima, Syumara Queiroz, Maria Eduarda Américo Ishimaru, Eduardo José Araújo Correia Lima, Márcio das Chagas Moura and Moacyr Araujo
Energies 2026, 19(2), 329; https://doi.org/10.3390/en19020329 - 9 Jan 2026
Viewed by 289
Abstract
In the effort to mitigate climate change, the Marine Hydrokinetic (MHK) energy from ocean currents emerges as an important renewable source due to its large potential, although it remains underexploited. In the Southwestern Tropical Atlantic, surface potentials linked to the North Brazil Current [...] Read more.
In the effort to mitigate climate change, the Marine Hydrokinetic (MHK) energy from ocean currents emerges as an important renewable source due to its large potential, although it remains underexploited. In the Southwestern Tropical Atlantic, surface potentials linked to the North Brazil Current (NBC) are known, but the subsurface North Brazil Undercurrent (NBUC) remained unquantified. This study addressed this gap by applying a two-step approach using more than 20 years of high-resolution (1/12°) climatological and daily reanalysis data to estimate current power density (CPD) throughout the water column along the Brazilian shelf (4° N–12° S), with focus on energetic hotspots where maximum CPD exceeds 1000 W m−2. The climatological analysis revealed 12 persistent hotspots (H1–H12). Daily analyses show highly energetic but seasonally variable surface hotspots north of 4° S linked to the NBC (H4–H12; >885 W·m−2) and weaker but more stable subsurface hotspots south of 4° S associated with the NBUC at depths of 130–266 m (H1–H3; 831–808 W·m−2). These patterns are likely influenced by flow–topography interactions along the continental margin. Overall, subsurface resources exhibit greater reliability than surface counterparts, highlighting the importance of incorporating subsurface dynamics in future MHK assessments and development along the Brazilian margin. Full article
Show Figures

Figure 1

24 pages, 9711 KB  
Article
Inter-Basin Teleconnection of the Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation in Modulating the Decadal Variation in Winter SST in the South China Sea
by Shiqiang Yao, Mingpan Qiu, Yanyan Wang, Zhaoyun Wang, Guosheng Zhang, Wenjing Dong, Yimin Zhang and Ruili Sun
J. Mar. Sci. Eng. 2025, 13(12), 2355; https://doi.org/10.3390/jmse13122355 - 10 Dec 2025
Viewed by 341
Abstract
The South China Sea (SCS) sea surface temperature (SST) plays a crucial modulating effect on the climate of East Asia. While the interannual variability of South China Sea SST has been extensively examined, the decadal-scale linkages and underlying physical mechanisms between South China [...] Read more.
The South China Sea (SCS) sea surface temperature (SST) plays a crucial modulating effect on the climate of East Asia. While the interannual variability of South China Sea SST has been extensively examined, the decadal-scale linkages and underlying physical mechanisms between South China Sea SST and the three major ocean basins (the Atlantic, Pacific, and Indian Oceans) remain inadequately comprehended. To fill the gap, the study investigates the decadal variability of winter SST in the SCS during 1940–2023, utilizing long-term observational datasets and methods such as empirical orthogonal function decomposition, regression analysis, and teleconnections analysis. The first dominant mode of this decadal variability is characterized by basin-warming across the SCS, which is mainly driven by the Atlantic Multidecadal Oscillation (AMO, r = 0.62, p < 0.05). Specifically, the AMO imposes its remote influence on the SCS through three distinct pathways: the tropical Pacific pathway, the North Pacific pathway, and the tropical Indian Ocean pathway. These pathways collectively trigger an anomalous cyclone in the western North Pacific and SCS, and further induce basin-wide SST warming via a positive feedback that includes SST, sea level pressure, cloud cover, and longwave radiation. The second leading mode of SCS winter SST decadal variability displays a north–south dipole pattern, which is positively correlated with the Interdecadal Pacific Oscillation (IPO, r1 = 0.85, p1 < 0.05). Notably, this South China Sea SST dipole–IPO relationship weakened significantly after 1985 (r2 = 0.23, p2 < 0.05), related to the strengthening of the anomalous anticyclone over the SCS and the weakening of the anomalous cyclone over the tropical Indian Ocean. Furthermore, both the AMO and IPO influence the SST in the northern SCS by regulating wind field anomalies in the bifurcation region of the North Equatorial Current. This wind-driven modulation subsequently affects the intensity of Kuroshio intrusion into the SCS. These findings provide a novel mechanistic pathway for interpreting decadal-scale climate variability over East Asia, with implications for improving long-term climate prediction in the region. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

25 pages, 7671 KB  
Article
Improving the Knowledge on the Distribution and Ecology of the Protected Echinoid Centrostephanus longispinus (Philippi, 1845) in the Alboran Sea
by Javier Valenzuela, Emilio González-García, Ana Mena-Torres, Adrián Martín-Taboada, Marina Gallardo-Núñez, Antonio García-Ledesma, Patricia Barcenas, José L. Rueda and Ángel Mateo-Ramírez
Diversity 2025, 17(11), 758; https://doi.org/10.3390/d17110758 - 29 Oct 2025
Viewed by 851
Abstract
Centrostephanus longispinus (Philippi, 1845) is a sea urchin widely distributed across the tropical and temperate Atlantic Ocean (including the Caribbean) and Mediterranean Sea. Although it is present along the Alboran Sea coastline (Western Mediterranean), it is generally considered rare and is listed under [...] Read more.
Centrostephanus longispinus (Philippi, 1845) is a sea urchin widely distributed across the tropical and temperate Atlantic Ocean (including the Caribbean) and Mediterranean Sea. Although it is present along the Alboran Sea coastline (Western Mediterranean), it is generally considered rare and is listed under conservation and protection lists and conventions due to fragmented populations threatened by seabed degradation. This study provides the first density and size distribution data for this echinoid in the circalittoral and bathyal bottoms of the Alboran Sea, aiming to relate its presence to seabed features, environmental variables, and human pressures. A series of 131 (62 ROV and 69 TASIFE transects) underwater image transects were collected during CIRCAESAL expeditions (2021, 2023, 2024) using a ROV and a photogrammetric sledge from infralittoral to bathyal bottoms (17–856 m depth). Images were processed with OFOP software to quantify and classify individuals by size classes, depth, substrate, seafloor roughness, micro-habitat, and coverage of key benthic structuring species. A total of 524 individuals of C. longispinus were detected in 13 transects, with the highest densities recorded at 48–100 m depths in rough, rocky substrates with crevices and a moderate to low coverage of key benthic structuring species. Differences in habitat use were also observed across depth strata: individuals in shallower zones tend to remain hidden within crevices and structurally complex substrates, displaying a more cryptic behaviour, whereas those in deeper strata rely less on refuge and occupy less complex habitats. The largest aggregations occurred near the Guadiaro Canyon, outside the “Estrecho Oriental” Special Area of Conservation (SAC), suggesting this area may serve as a population reservoir deserving conservation. Despite these findings, ecological knowledge of C. longispinus remains limited, and future studies should improve the knowledge gaps, particularly in the eastern and southern Alboran Sea. Full article
(This article belongs to the Special Issue Deep-Sea Echinoderms of the European Seas)
Show Figures

Figure 1

23 pages, 2844 KB  
Article
The Increase in Global Ocean Heat Content and Favorable Conditions for Tropical Cyclone and CYCLOP Intensification: Accounting for El Niño
by Robert Keenan Forney, Paul W. Miller and Travis A. Smith
J. Mar. Sci. Eng. 2025, 13(10), 1918; https://doi.org/10.3390/jmse13101918 - 6 Oct 2025
Viewed by 1309
Abstract
The ocean heat content (“OHC”)—the heat energy within the ocean integrated to a reference depth—has physical drivers spanning spatial and temporal scales, including seasonality, the El Niño/Southern Oscillation (ENSO), and others. The present article investigates changes in the OHC100 during the period 1994–2020 [...] Read more.
The ocean heat content (“OHC”)—the heat energy within the ocean integrated to a reference depth—has physical drivers spanning spatial and temporal scales, including seasonality, the El Niño/Southern Oscillation (ENSO), and others. The present article investigates changes in the OHC100 during the period 1994–2020 using GLORYS12 monthly averaged ocean reanalysis. OHC100–ENSO correlation patterns are explored to glean insights about the oceanic mechanisms that facilitate the ENSO’s global teleconnections. After extracting known seasonality and ENSO signals using the Oceanic Niño Index (ONI), the OHC100 residual is analyzed to investigate multidecadal drivers of the OHC100. Lagged ENSO–OHC100 correlations (±12 months) reveal basin-scale oscillations in the sign of ENSO influence likely attributable to Rossby waves. The OHC100 is increasing globally (in total, 2.4 × 1022 J decade−1), with the greatest increases near western boundary currents (WBCs). Some regions are decreasing, notably the Atlantic main development region (MDR) for tropical cyclones (TCs). Correlations and multidecadal variability in the OHC100 tendency (OHCT) and zonal and meridional advections of the OHC100 (ZAO and MAO) support the hypothesis that upper-ocean dynamics mediate ENSO teleconnections as well as exert independent control on OHC100 variability. Local increases in the OHC100 would support the observed TC rapid intensification irrespective of the ENSO phase as the TC-supporting region expands. Full article
(This article belongs to the Special Issue Air-Sea Interaction and Marine Dynamics)
Show Figures

Figure 1

42 pages, 21157 KB  
Article
A Revised Checklist and Identification Key for Acotylean Flatworms (Rhabditophora: Polycladida: Acotylea) from the Caribbean Coast of Colombia
by Jorge I. Merchán-Mayorga, D. Marcela Bolaños, Lyda R. Castro and Sigmer Quiroga
Taxonomy 2025, 5(3), 51; https://doi.org/10.3390/taxonomy5030051 - 19 Sep 2025
Viewed by 1658
Abstract
The Order Polycladida comprises a diverse yet understudied group of free-living flatworms, traditionally divided into Cotylea and Acotylea based on the presence or absence of a ventral adhesive organ known as a cotyl. Species identification, particularly within Acotylea, is often challenging due to [...] Read more.
The Order Polycladida comprises a diverse yet understudied group of free-living flatworms, traditionally divided into Cotylea and Acotylea based on the presence or absence of a ventral adhesive organ known as a cotyl. Species identification, particularly within Acotylea, is often challenging due to the need for histological examination of reproductive structures and the scarcity of molecular data. The Tropical Western Atlantic, especially the Caribbean Sea, hosts high polyclad diversity but remains poorly surveyed. This study updates the checklist of Acotylea from the Colombian Caribbean, combining new collections from Santa Marta with the literature records. Field work yielded 22 acotylean species from 14 genera and 10 families, with DNA sequences (28S rDNA and/or COI mtDNA) obtained for 20 species. 11 species are new records for Colombia, and five for the Caribbean Sea: Latocestus brasiliensis Hyman, 1953, Notocomplana martae (Marcus, 1948), Interplana evelinae (Marcus, 1952), Triadomma curvum Marcus, 1949, and Adenoplana evelinae Marcus, 1950. In total, 29 species are now documented from the region. We provide photographs of live specimens, whole mounts, and histological sections; DNA barcodes for most species; and the first dichotomous key for Colombian Caribbean acotyleans, based primarily on external traits, providing a practical tool to support further taxonomic, ecological, and biodiversity research. Full article
Show Figures

Figure 1

22 pages, 4061 KB  
Article
Increasing Sea Surface Temperatures Driving Widespread Tropicalization in South Atlantic Pelagic Fisheries
by Rodrigo Sant’Ana, Daniel Thá, Lea-Anne Henry, Rafael Schroeder and José Angel Alvarez Perez
Biology 2025, 14(8), 1039; https://doi.org/10.3390/biology14081039 - 13 Aug 2025
Viewed by 1213
Abstract
Ocean warming is leading to a tropicalization of fisheries in subtropical regions around the world. Here, we scrutinize pelagic fisheries catch data from 1978 to 2018 in the South Atlantic Ocean in search of signs of tropicalization in these highly migratory and top-of-the-food-chain [...] Read more.
Ocean warming is leading to a tropicalization of fisheries in subtropical regions around the world. Here, we scrutinize pelagic fisheries catch data from 1978 to 2018 in the South Atlantic Ocean in search of signs of tropicalization in these highly migratory and top-of-the-food-chain fish. Through the analysis of catch composition data, thermal preferences, and climatic data, we described the temporal variability in the mean temperature of the catch and assessed the role of sea surface temperature and the Brazil Current’s transport volumes as drivers of such variability. We observed a significant increase in the mean temperature of the catches, indicating a transition towards a predominance of warm-water species, especially pronounced on the western side of the South Atlantic Ocean. This shift was further corroborated by a significant rise in the proportion of warm-water species over time. Additionally, this study observes a continuous increase in SST during the entire time series on both sides of the South Atlantic Ocean, with significant positive trends. The analysis of catch composition through ordination methods and estimates of beta diversity reveals a transition from an early scenario characterized by mostly cold-water species to a late scenario, dominated by a greater diversity of species with a prevalence of warm-water affinities. These findings underscore the profound impact of ocean warming on marine biodiversity, with significant implications for fisheries management and ecosystem services. Full article
Show Figures

Figure 1

25 pages, 5810 KB  
Article
Pliocene Marine Bivalvia from Vale Farpado (Pombal, Portugal): Palaeoenvironmental and Palaecological Significance
by Ricardo J. Pimentel, Pedro M. Callapez, Mahima Pai, Paulo Legoinha and Pedro A. Dinis
Geosciences 2025, 15(8), 309; https://doi.org/10.3390/geosciences15080309 - 8 Aug 2025
Viewed by 2448
Abstract
The western Iberian marine Pliocene represents a key transitional zone between tropical and boreal molluscan faunas. Recent studies at the rediscovered fossil locality of Vale Farpado have yielded 34 bivalve species, distributed among 18 families. The most diverse families identified are Veneridae and [...] Read more.
The western Iberian marine Pliocene represents a key transitional zone between tropical and boreal molluscan faunas. Recent studies at the rediscovered fossil locality of Vale Farpado have yielded 34 bivalve species, distributed among 18 families. The most diverse families identified are Veneridae and Pectinidae. The assemblage is predominantly composed of suspension- and deposit-feeding taxa, with no evidence of carnivorous feeding strategies. Most taxa exhibit an infaunal life habitat. Initial colonising bivalve communities inhabited mobile, gravel-dominated substrates, where coarse clasts and disarticulated bioclasts provided stable microhabitats for epifaunal species. Over time, later assemblages became established, primarily on sandy substrates. Palaeoenvironmental indicators, including molluscs and foraminifera, suggest that these benthic communities occupied the infralittoral zone, at depths generally shallower than 30 metres, and the sea surface temperatures were broadly subtropical. However, periodic incursions of cooler, nutrient-rich waters driven by upwelling systems influenced local conditions, enhancing primary productivity and supporting a taxonomically rich and ecologically complex benthic ecosystem. The bivalve assemblages of Vale Farpado thus contribute valuable insights into the palaeoecology and biogeographical dynamics of the Pliocene North Atlantic, particularly in the context of sea surface temperature gradients and bivalve faunal interchange between temperate and tropical marine realms. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

14 pages, 1855 KB  
Article
Response of Tree-Ring Oxygen Isotopes to Climate Variations in the Banarud Area in the West Part of the Alborz Mountains
by Yajun Wang, Shengqian Chen, Haichao Xie, Yanan Su, Shuai Ma and Tingting Xie
Forests 2025, 16(8), 1238; https://doi.org/10.3390/f16081238 - 28 Jul 2025
Cited by 1 | Viewed by 823
Abstract
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples [...] Read more.
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples collected from the Alborz Mountains in Iran. We analyzed relationships between δ18O and key climate variables: precipitation, temperature, Palmer Drought Severity Index (PDSI), vapor pressure (VP), and potential evapotranspiration (PET). Correlation analysis reveals that tree-ring δ18O is highly sensitive to hydroclimatic variations. Tree-ring cellulose δ18O shows significant negative correlations with annual total precipitation and spring PDSI, and significant positive correlations with spring temperature (particularly maximum temperature), April VP, and spring PET. The strongest correlation occurs with spring PET. These results indicate that δ18O responds strongly to the balance between springtime moisture supply (precipitation and soil moisture) and atmospheric evaporative demand (temperature, VP, and PET), reflecting an integrated signal of both regional moisture availability and energy input. The pronounced response of δ18O to spring evaporative conditions highlights its potential for capturing high-resolution changes in spring climatic conditions. Our δ18O series remained stable from the 1960s to the 1990s, but showed greater interannual variability after 2000, likely linked to regional warming and climate instability. A comparison with the δ18O variations from the eastern Alborz Mountains indicates that, despite some differences in magnitude, δ18O records from the western and eastern Alborz Mountains show broadly similar variability patterns. On a larger climatic scale, δ18O correlates significantly and positively with the Niño 3.4 index but shows no significant correlation with the Arctic Oscillation (AO) or the North Atlantic Oscillation (NAO). This suggests that ENSO-driven interannual variability in the tropical Pacific plays a key role in regulating regional hydroclimatic processes. This study confirms the strong potential of tree-ring oxygen isotopes from the Alborz Mountains for reconstructing hydroclimatic conditions and high-frequency climate variability. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

12 pages, 3793 KB  
Article
Semi-Annual Climate Modes in the Western Hemisphere
by Mark R. Jury
Climate 2025, 13(6), 111; https://doi.org/10.3390/cli13060111 - 27 May 2025
Viewed by 914
Abstract
Semi-annual climate oscillations in the Western Hemisphere (20 S–35 N, 150 W–20 E) were studied via empirical orthogonal function (EOF) eigenvector loading patterns and principal component time scores from 1980 to 2023. The spatial loading maximum for 850 hPa zonal wind extended from [...] Read more.
Semi-annual climate oscillations in the Western Hemisphere (20 S–35 N, 150 W–20 E) were studied via empirical orthogonal function (EOF) eigenvector loading patterns and principal component time scores from 1980 to 2023. The spatial loading maximum for 850 hPa zonal wind extended from the north Atlantic to the east Pacific; channeling was evident over the southwestern Caribbean. The eigenvector loading maximum for precipitation reflected an equatorial trough, while the semi-annual SST formed a dipole with loading maxima in upwelling zones off Angola (10 E) and Peru (80 W). Weakened Caribbean trade winds and strengthened tropical convection correlated with a warm Atlantic/cool Pacific pattern (R = 0.46). Wavelet spectral analysis of principal component time scores found a persistent 6-month rhythm disrupted only by major El Nino Southern Oscillation events and anomalous mid-latitude conditions associated with negative-phase Arctic Oscillation. Historical climatologies revealed that 6-month cycles of wind, precipitation, and sea temperature were tightly coupled in the Western Hemisphere by heat surplus in the equatorial ocean diffused by meridional overturning Hadley cells. External forcing emerged in early 2010 when warm anomalies over Canada diverted the subtropical jet, suppressing subtropical trade winds and evaporative cooling and intensifying the equatorial trough across the Western Hemisphere. Climatic trends of increased jet-stream instability suggest that the semi-annual amplitude may grow over time. Full article
Show Figures

Figure 1

31 pages, 14554 KB  
Article
The Spatiotemporal Fluctuations of Extreme Rainfall and Their Potential Influencing Factors in Sichuan Province, China, from 1970 to 2022
by Lin Bai, Tao Liu, Agamo Sha and Dinghong Li
Remote Sens. 2025, 17(5), 883; https://doi.org/10.3390/rs17050883 - 1 Mar 2025
Cited by 3 | Viewed by 2578
Abstract
Utilizing daily data gathered from 63 meteorological stations across Sichuan Province between 1970 and 2022, this study investigates the spatial and temporal shifts in extreme precipitation patterns, alongside the connections between changes in extreme precipitation indices (EPIs) and the underlying drivers, such as [...] Read more.
Utilizing daily data gathered from 63 meteorological stations across Sichuan Province between 1970 and 2022, this study investigates the spatial and temporal shifts in extreme precipitation patterns, alongside the connections between changes in extreme precipitation indices (EPIs) and the underlying drivers, such as geographic characteristics and atmospheric circulation influences, within the region. The response of precipitation to these factors was examined through various methods, including linear trend analysis, the Mann–Kendall test, cumulative anomaly analysis, the Pettitt test, R/S analysis, Pearson correlation analysis, and wavelet transformation. The findings revealed that (1) Sichuan Province’s EPIs generally show an upward trend, with the simple daily intensity index (SDII) demonstrating the most pronounced increase. Notably, the escalation in precipitation indices was more substantial during the summer months compared to other seasons. (2) The magnitude of extreme precipitation variations showed a rising pattern in the plateau regions of western and northern Sichuan, whereas a decline was observed in the central and southeastern basin areas. (3) The number of days with precipitation exceeding 5 mm (R5mm), 10 mm (R10mm), and 20 mm (R20mm) all exhibited a significant change point in 2012, surpassing the 95% significance threshold. The future projections for EPIs, excluding consecutive dry days (CDDs), align with historical trends and suggest a continuing possibility of an upward shift. (4) Most precipitation indices, with the exception of CDDs, demonstrated a robust positive correlation with longitude and a negative correlation with both latitude and elevation. Except for the duration indicators (CDDs, CWDs), EPIs generally showed a gradual decrease with increasing altitude. (5) Atmospheric circulation patterns were found to have a substantial impact on extreme precipitation events in Sichuan Province, with the precipitation indices showing the strongest associations with the Atlantic Multidecadal Oscillation (AMO), the Sea Surface Temperature of the East Central Tropical Pacific (Niño 3.4), and the South China Sea Summer Monsoon Index (SCSSMI). Rising global temperatures and changes in subtropical high pressure in the western Pacific may be deeper factors contributing to changes in extreme precipitation. These insights enhance the understanding and forecasting of extreme precipitation events in the region. Full article
Show Figures

Figure 1

19 pages, 4267 KB  
Article
Investigation on the Linkage Between Precipitation Trends and Atmospheric Circulation Factors in the Tianshan Mountains
by Chen Chen, Yanan Hu, Mengtian Fan, Lirui Jia, Wenyan Zhang and Tianyang Fan
Water 2025, 17(5), 726; https://doi.org/10.3390/w17050726 - 1 Mar 2025
Cited by 1 | Viewed by 1547
Abstract
The Tianshan Mountains are located in the hinterland of the Eurasian continent, spanning east to west across China, Kazakhstan, Kyrgyzstan, and Uzbekistan. As the primary water source for Central Asia’s arid regions, the Tianshan mountain system is pivotal for regional water security and [...] Read more.
The Tianshan Mountains are located in the hinterland of the Eurasian continent, spanning east to west across China, Kazakhstan, Kyrgyzstan, and Uzbekistan. As the primary water source for Central Asia’s arid regions, the Tianshan mountain system is pivotal for regional water security and is highly sensitive to the nuances of climate change. Utilizing ERA5 precipitation datasets alongside 24 atmospheric circulation indices, this study delves into the variances in Tianshan’s precipitation patterns and their correlation with large-scale atmospheric circulation within the timeframe of 1981 to 2020. We observe a seasonally driven dichotomy, with the mountains exhibiting increasing moisture during the spring, summer, and autumn months, contrasted by drier conditions in winter. There is a pronounced spatial variability; the western and northern reaches exhibit more pronounced increases in precipitation compared to their eastern and southern counterparts. Influences on Tianshan’s precipitation patterns are multifaceted, with significant factors including the North Pacific Pattern (NP), Trans-Niño Index (TNI), Tropical Northern Atlantic Index (TNA*), Extreme Eastern Tropical Pacific SST (Niño 1+2*), North Tropical Atlantic SST Index (NTA), Central Tropical Pacific SST (Niño 4*), Tripole Index for the Interdecadal Pacific Oscillation [TPI(IPO)], and the Western Hemisphere Warm Pool (WHWP*). Notably, NP and TNI emerge as the predominant factors driving the upsurge in precipitation. The study further reveals a lagged response of precipitation to atmospheric circulatory patterns, underpinning complex correlations and resonance cycles of varying magnitudes. Our findings offer valuable insights for forecasting precipitation trends in mountainous terrains amidst the ongoing shifts in global climate conditions. Full article
Show Figures

Figure 1

21 pages, 55432 KB  
Article
Significant Wave Height Retrieval in Tropical Cyclone Conditions Using CYGNSS Data
by Xiangyang Han, Xianwei Wang, Zhi He and Jinhua Wu
Remote Sens. 2024, 16(24), 4782; https://doi.org/10.3390/rs16244782 - 22 Dec 2024
Cited by 3 | Viewed by 1537
Abstract
The retrieval of global significant wave height (SWH) data is crucial for maritime navigation, aquaculture safety, and oceanographic research. Leveraging the high temporal resolution and spatial coverage of Cyclone Global Navigation Satellite System (CYGNSS) data, machine learning models have shown promise in SWH [...] Read more.
The retrieval of global significant wave height (SWH) data is crucial for maritime navigation, aquaculture safety, and oceanographic research. Leveraging the high temporal resolution and spatial coverage of Cyclone Global Navigation Satellite System (CYGNSS) data, machine learning models have shown promise in SWH retrieval. However, existing models struggle with accuracy under high-SWH conditions and discard a significant number of such observations due to low quality, which limits their effectiveness in global SWH retrieval, particularly for monitoring tropical cyclone (TC) events. To address this, this study proposes a daily global SWH retrieval framework through the enhanced eXtreme Gradient Boosting model (XGBoost-SC), which incorporates Cumulative Distribution Function (CDF) matching to introduce prior distribution information and reduce errors for SWH values exceeding 3 m. An enhanced loss function is employed to improve accuracy and mitigate the distribution bias in low-SWH retrieval induced by CDF matching. The results were tested over one million sample points and validated against the European Centre for Medium-Range Weather Forecasts (ECMWF) SWH product. With the help of CDF matching, XGBoost-SC outperformed all models, significantly reducing RMSE and bias while improving the retrieval capability for high SWHs. For SWH values between 3–6 m, the RMSE and bias were 0.94 m and −0.44 m, and for values above 6 m, they were 2.79 m and −2.0 m. The enhanced performance of XGBoost-SC for large SWHs was further confirmed in TC conditions over the Western North Pacific and in the Western Atlantic Ocean. This study provides a reference for large-scale SWH retrieval, particularly under TC conditions. Full article
(This article belongs to the Special Issue Latest Advances and Application in the GNSS-R Field)
Show Figures

Figure 1

18 pages, 5148 KB  
Article
Trends and Periodicities of Tropical Cyclone Frequencies and the Correlations with Ocean Drivers
by Guoyou Li, Huabin Shi and Zhiguo He
J. Mar. Sci. Eng. 2024, 12(10), 1707; https://doi.org/10.3390/jmse12101707 - 26 Sep 2024
Cited by 1 | Viewed by 3723
Abstract
This study presents a comprehensive analysis on the variations in the tropical cyclone (TC) frequencies during 1980–2021, including the linear trends, periodicities, and their variabilities on both global and basin-wise scales. An increasing trend in the annual number of global TCs is identified, [...] Read more.
This study presents a comprehensive analysis on the variations in the tropical cyclone (TC) frequencies during 1980–2021, including the linear trends, periodicities, and their variabilities on both global and basin-wise scales. An increasing trend in the annual number of global TCs is identified, with a significant rising trend in the numbers of tropical storms (maximum sustained wind 35 ktsUmax<64 kts) and intense typhoons (Umax96 kts) and a deceasing trend for weak typhoons (64 ktsUmax<96 kts). There is no statistically significant trend shown in the global Accumulated Cyclone Energy (ACE). On a regional scale, the Western North Pacific (WNP) and Eastern North Pacific (ENP) are the regions of the first- and second-largest numbers of TCs, respectively, while the increased TC activity in the North Atlantic (NA) contributes the most to the global increase in TCs. It is revealed in the wavelet transformation for periodicity analysis that the variations in the annual number of TCs with different intensities mostly show an inter-annual period of 3–7 years and an inter-decadal one of 10–13 years. The inter-annual and inter-decadal periods are consistent with those in the ENSO-related ocean drivers (via the Niño 3.4 index), Southern Oscillation Index (SOI), and Inter-decadal Pacific Oscillation (IPO) index. The inter-decadal variation in 10–13 years is also observed in the North Atlantic Oscillation (NAO) index. The Tropical North Atlantic (TNA) index and Atlantic Multi-decadal Oscillation (AMO) index, on the other hand, present the same inter-annual period of 7–10 years as that in the frequencies of all the named TCs in the NA. Further, the correlations between TC frequencies and ocean drivers are also quantified using the Pearson correlation coefficient. These findings contribute to an enhanced understanding of TC activity, thereby facilitating efforts to predict particular TC activity and mitigate the inflicted damage. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

31 pages, 12141 KB  
Article
Freshwater Slugs in the Caribbean: Rediscovery of Tantulidae (Acochlidimorpha, Panpulmonata) with the Description of Potamohedyle espinosai n. gen. n. sp. from Cuba
by Timea P. Neusser, Anabel Onay, Mona Pirchtner, Katharina M. Jörger and Yander L. Diez
Hydrobiology 2024, 3(4), 279-309; https://doi.org/10.3390/hydrobiology3040018 - 24 Sep 2024
Cited by 1 | Viewed by 2764
Abstract
Freshwater slugs are scarce and belong exclusively to panpulmonate Acochlidimorpha. There is a radiation of eight species of large-sized slugs living benthically in rivers on tropical Indo-Pacific Islands. In the Western Atlantic, only one small interstitial slug, Tantulum elegans Rankin, 1979, is known [...] Read more.
Freshwater slugs are scarce and belong exclusively to panpulmonate Acochlidimorpha. There is a radiation of eight species of large-sized slugs living benthically in rivers on tropical Indo-Pacific Islands. In the Western Atlantic, only one small interstitial slug, Tantulum elegans Rankin, 1979, is known from the Caribbean island of St. Vincent. We recently discovered a novel species of freshwater slugs in Cuba. Here, we describe Potamohedyle espinosai n. gen. n. sp., which is the first freshwater slug in the region of the Western Atlantic with a benthic lifestyle, in 3D-microanatomical and histological detail using light and scanning electron microscopy. It shows a mix of characters from different freshwater acochlidimorph genera, such as a medium body size, the presence of an osphradial ganglion, a distal gonoduct with a muscular sphincter, a penis with a solid thorn and cuticular comb, and a basal finger with a hollow stylet. Morphological adaptations to a life in freshwater include multiplicated renopericardioducts. The taxonomic character mix justifies the establishment of a novel genus within the herein diagnostically modified freshwater family Tantulidae. A molecular phylogenetic hypothesis of riverine slugs including the first Caribbean representatives suggests that the transition to freshwater occurred once along the stemline of limnic Acochlidiidae, secondarily marine Pseudunelidae and limnic Tantulidae. Full article
Show Figures

Figure 1

Back to TopTop