Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = wax deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1870 KiB  
Review
Recent Advances in the Development and Industrial Applications of Wax Inhibitors: A Comprehensive Review of Nano, Green, and Classic Materials Approaches
by Parham Joolaei Ahranjani, Hamed Sadatfaraji, Kamine Dehghan, Vaibhav A. Edlabadkar, Prasant Khadka, Ifeanyi Nwobodo, VN Ramachander Turaga, Justin Disney and Hamid Rashidi Nodeh
J. Compos. Sci. 2025, 9(8), 395; https://doi.org/10.3390/jcs9080395 - 26 Jul 2025
Viewed by 364
Abstract
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to [...] Read more.
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to mitigate these issues, operate by altering wax crystallization, aggregation, and adhesion over the pipelines. Classic wax inhibitors, comprising synthetic polymers and natural compounds, have been widely utilized due to their established efficiency and scalability. However, synthetic inhibitors face environmental concerns, while natural inhibitors exhibit reduced performance under extreme conditions. The advent of nano-based wax inhibitors has revolutionized wax management strategies. These advanced materials, including nanoparticles, nanoemulsions, and nanocomposites, leverage their high surface area and tunable interfacial properties to enhance efficiency, particularly in harsh environments. While offering superior performance, nano-based inhibitors are constrained by high production costs, scalability challenges, and potential environmental risks. In parallel, the development of “green” wax inhibitors derived from renewable resources such as vegetable oils addresses sustainability demands. These eco-friendly formulations introduce functionalities that reinforce inhibitory interactions with wax crystals, enabling effective deposition control while reducing reliance on synthetic components. This review provides a comprehensive analysis of the mechanisms, applications, and comparative performance of classic and nano-based wax inhibitors. It highlights the growing integration of sustainable and hybrid approaches that combine the reliability of classic inhibitors with the advanced capabilities of nano-based systems. Future directions emphasize the need for cost-effective, eco-friendly solutions through innovations in material science, computational modeling, and biotechnology. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

14 pages, 719 KiB  
Review
Progress on Wax Deposition Characteristics and Prediction Methods for Crude Oil Pipelines
by Jiangbo Wen, Yongrui Lu, Yuzhang Jia, Haijun Luo, Chuanlin You, Zhenwei Huang, Chuyu Wang and Yuxin Luo
Processes 2025, 13(6), 1651; https://doi.org/10.3390/pr13061651 - 24 May 2025
Viewed by 845
Abstract
During the pipeline transport of high-wax crude oil, paraffin precipitation often results in deposit formation, and a thorough investigation into the issue of wax deposition is crucial for ensuring the safe operation and economic benefits of the pipeline. This work critically reviews the [...] Read more.
During the pipeline transport of high-wax crude oil, paraffin precipitation often results in deposit formation, and a thorough investigation into the issue of wax deposition is crucial for ensuring the safe operation and economic benefits of the pipeline. This work critically reviews the latest research progress focusing on the mechanisms, the factors influencing it, and the kinetic models used to describe it. Although research on single-phase crude oil wax deposition has made certain progress both domestically and internationally, existing studies have limitations in terms of the diversity of crude oil types. In previous studies, the types of crude oil used to explore influencing factors were relatively singular. When modeling, the diversity of crude oil properties was not fully considered, leading to a lack of general applicability of the established models across different types of crude oil. To overcome this limitation, future research should place greater emphasis on the diversity of crude oil properties. Specifically, it is necessary to collect and analyze wax deposition data from a wider variety of crude oils and delve into the mechanisms by which different crude oil properties influence the wax deposition process. Therefore, future research needs to further take into account the diversity of crude oil properties and establish kinetic models that are quantitatively correlated with these properties. This will contribute to more accurate prediction and assessment of wax deposition risks during pipeline transportation for various types of crude oil, thereby providing robust assurance for the safe operation of pipelines. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 2776 KiB  
Article
The Mechanism of Seed Priming with Abscisic Acid for Enhancing Cuticle Deposition Under Drought Stress: Phenotypic and Transcriptomic Insights
by Luhua Yao, Sennan Li, Nana Zhou and Yanjun Guo
Agriculture 2025, 15(11), 1124; https://doi.org/10.3390/agriculture15111124 - 23 May 2025
Viewed by 487
Abstract
Plant cuticles are crucial for protecting plants from various environmental stresses. Seed priming with abscisic acid (ABA) enhances crop stress tolerance, but its molecular mechanisms in cuticular wax and cutin biosynthesis remain unclear. This study investigated ABA-priming’s role in boosting cuticular wax and [...] Read more.
Plant cuticles are crucial for protecting plants from various environmental stresses. Seed priming with abscisic acid (ABA) enhances crop stress tolerance, but its molecular mechanisms in cuticular wax and cutin biosynthesis remain unclear. This study investigated ABA-priming’s role in boosting cuticular wax and cutin accumulation in sweet sorghum (Sorghum bicolor L.) using physiological and transcriptomic analyses. Abscisic acid priming increased leaf wax (37.7%) and cutin (25.6%) under drought, reducing water loss (9.8–36.6%) and improving leaf water content (28.4–120%). Transcriptomics identified 921 differentially expressed genes, including key fatty acid biosynthesis genes (ADH2, DES2, KAS2). Co-expression analysis revealed the synergistic regulation of wax and cutin biosynthesis by the abscisic acid and jasmonic acid (JA) pathways. Exogenous ABA and JA application confirmed their roles, with combined treatment increasing wax content by 71.7% under drought stress. These findings were validated in other sweet sorghum cultivars (DLS and ML8000), highlighting the potential of ABA priming as a universal strategy to enhance wax deposition in crops. Our study provides new insights into the molecular mechanisms underlying ABA-induced drought resistance and offers a practical approach for improving crop resilience in water-limited environments. Full article
(This article belongs to the Section Seed Science and Technology)
Show Figures

Figure 1

26 pages, 1038 KiB  
Review
Advances in Stored-Product Pest Management: Combined Effects of Diatomaceous Earths with Botanicals, Insecticides, Entomopathogenic/Plant Pathogenic Fungi, and Silica Gel
by Waqas Wakil, Maria C. Boukouvala, Nickolas G. Kavallieratos, Demeter Lorentha S. Gidari, Anna Skourti and Tahira Riasat
Sustainability 2025, 17(8), 3316; https://doi.org/10.3390/su17083316 - 8 Apr 2025
Cited by 1 | Viewed by 653
Abstract
Diatomaceous earth (DE) consists of fossilized remnants of diatoms, which are marine or freshwater unicellular algae. Most DEs originate from fossilized sedimentary layers of diatoms deposited in water bodies during the Eocene and Miocene periods, much more than 20 million years ago. Processed [...] Read more.
Diatomaceous earth (DE) consists of fossilized remnants of diatoms, which are marine or freshwater unicellular algae. Most DEs originate from fossilized sedimentary layers of diatoms deposited in water bodies during the Eocene and Miocene periods, much more than 20 million years ago. Processed DE, a soft, chalky powder, is widely used as an insecticide due to the highly absorptive and abrasive nature of its particles. As an insecticide, DE removes the wax coating of the insect epicuticle, the primary barrier against water loss. This results in water evaporation, leading to desiccation and death of the targeted insects. This review emphasizes the co-treatment of DEs with biological agents that have insecticidal properties (e.g., essential oils, plant powders, silica gel, and species/isolates of fungi), reducing the quantities used in single-application treatments and suggesting paths for the sustainable management of insects damaging stored products. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

18 pages, 1976 KiB  
Review
Progress in Wax Deposition Characteristics and Prediction Methods for High Pour Point and Viscous Crude Oil Water System
by Jiangbo Wen, Yuzhang Jia, Yongrui Lu, Haijun Luo, Zhenwei Huang, Chuanlin You, Zizhe He and Xu Xiao
Processes 2025, 13(4), 1115; https://doi.org/10.3390/pr13041115 - 8 Apr 2025
Viewed by 848
Abstract
With the continuous growth of global energy demand, the exploitation of deepwater oil and gas resources has become an important part of national energy strategies. The high-viscosity crude oil in deepwater areas such as the South China Sea poses severe challenges to oil [...] Read more.
With the continuous growth of global energy demand, the exploitation of deepwater oil and gas resources has become an important part of national energy strategies. The high-viscosity crude oil in deepwater areas such as the South China Sea poses severe challenges to oil and gas pipeline transportation due to its high pour point and high viscosity characteristics. Wax deposition, particularly significant under low temperature and high viscosity conditions, can lead to reduced pipeline flow rates, decreased transportation efficiency, and even potential safety hazards. Therefore, in-depth research on the wax deposition characteristics and mechanisms in high-viscosity systems holds significant theoretical and engineering application value. Current research primarily focuses on the influencing factors of wax deposition, deposition mechanisms, and the establishment of prediction models. Studies have shown that external factors such as temperature, shear intensity, operating time, and water content have significant effects on the wax deposition process. Specifically, increased temperature differences accelerate the deposition of wax molecules, while the presence of the aqueous phase inhibits wax crystallization and deposition. Furthermore, the formation mechanisms of wax deposition mainly include molecular diffusion, shear stripping, and aging effects. Researchers have explored the dynamic changes and influencing laws of wax deposition by establishing mathematical models combined with experimental data. In summary, although some progress has been made in studying the wax deposition characteristics in high-viscosity systems, research on wax deposition characteristics in mixtures, especially under the combined action of pour point depressants and flow improvers, is still inadequate. Future research should strengthen the systematic exploration of wax deposition mechanisms, quantify the effects of different external factors, and develop wax deposition prediction models suitable for practical engineering to ensure the safe and stable operation of deepwater oil and gas pipelines. Through in depth theoretical and experimental research, robust technical support can be provided for the efficient development of deepwater oil and gas resources. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 8900 KiB  
Article
Genome-Wide Identification of β-Ketoacyl CoA Synthase Gene Family in Melon (Cucumis melo L.) and Its Expression Analysis in Autotoxicity, Saline-Alkali, and Microplastic Exposure Environments
by Lizhen Zhang, Mingcheng Wang, Xianhuan Tang, Xinyue Yang, Zhizhong Zhang and Jinghua Wu
Curr. Issues Mol. Biol. 2025, 47(3), 195; https://doi.org/10.3390/cimb47030195 - 16 Mar 2025
Viewed by 678
Abstract
β-ketoacyl CoA synthase (KCS) is a key enzyme in the synthesis of long-chain fatty acids. It affects plant stress resistance by regulating the chain length of fatty acid elongation products, the wax deposition in plant epidermis, and the formation of suberization layers. Through [...] Read more.
β-ketoacyl CoA synthase (KCS) is a key enzyme in the synthesis of long-chain fatty acids. It affects plant stress resistance by regulating the chain length of fatty acid elongation products, the wax deposition in plant epidermis, and the formation of suberization layers. Through a comprehensive, genome-wide analysis, we identified members of the melon KCS (CmKCS) family and characterized their sequence features, phylogenetic relationships, and expression profiles under three abiotic stress conditions, employing bioinformatics tools and methods. Fifteen CmKCSs were identified in the melon genome and found to be unevenly distributed across eight chromosomes. The subcellular localization of most members is located on the cytoplasmic membrane and chloroplasts. The CmKCS family amplifies its members in a tandem repeat manner, which is more closely related to the cucumber KCS and has similar gene functions. Subfamilies I, IV, and VI exhibit variations in conserved domain sequences, which may indicate specific functional differentiation. The promoter region harbors various cis-acting elements related to plant hormones and abiotic stress responses. Among these, the most abundant are elements responsive to abscisic acid, methyl jasmonate, salicylic acid, and anaerobic induction. CmKCS5, CmKCS6, CmKCS10, and CmKCS12 showed high expression in autotoxicity, saline-alkali stress, and microplastic exposure environments. These four CmKCSs may play important roles in melon development and stress response. In conclusion, this study provides a comprehensive analysis of the CmKCS gene family, revealing its potential roles in melon’s response to abiotic stresses and laying a foundation for further functional characterization of these genes in stress tolerance mechanisms. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

33 pages, 19943 KiB  
Article
Sponge Morphology of Osteosarcoma Finds Origin in Synergy Between Bone Synthesis and Tumor Growth
by Arnaud Bardouil, Thomas Bizien, Jérome Amiaud, Alain Fautrel, Séverine Battaglia, Iman Almarouk, Tanguy Rouxel, Pascal Panizza, Javier Perez, Arndt Last, Chakib Djediat, Elora Bessot, Nadine Nassif, Françoise Rédini and Franck Artzner
Nanomaterials 2025, 15(5), 374; https://doi.org/10.3390/nano15050374 - 28 Feb 2025
Viewed by 984
Abstract
Osteosarcoma is medically defined as a bone-forming tumor with associated bone-degrading activity. There is a lack of knowledge about the network that generates the overproduction of bone. We studied the early stage of osteosarcoma development with mice enduring a periosteum injection of osteosarcoma [...] Read more.
Osteosarcoma is medically defined as a bone-forming tumor with associated bone-degrading activity. There is a lack of knowledge about the network that generates the overproduction of bone. We studied the early stage of osteosarcoma development with mice enduring a periosteum injection of osteosarcoma cells at the proximal third of the tibia. On day 7 (D7), tumor cells activate the over-synthesis of bone-like material inside the medulla. This overproduction of bone is quickly (D13) followed by degradation. Samples were characterized by microfocus small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), optical and electron microscopies, and micro-indentation. This intramedullary apatite–collagen composite synthesis highlights an unknown network of bone synthesis stimulation by extramedullary osteosarcoma cells. This synthesis activation mechanism, coupled with the well-known bone induced osteosarcoma growth activation, produces a rare synergy that may enlighten the final osteosarcoma morphology. With this aim, a 3D cellular automaton was developed that only included two rules. Simulations can accurately reproduce the bi-continuous sponge macroscopic structure that was analyzed from mice tumor micro-tomography. This unknown tumor activation pathway of bone synthesis, combined with the known bone activation of tumor growth, generates a positive feedback synergy explaining the unusual sponge-like morphology of this bone cancer. From a biomaterials point of view, how nature controls self-assembly processes remains an open question. Here, we show how the synergy between two biological growth processes is responsible for the complex morphology of a bone tumor. This highlights how hierarchical morphologies, accurately defined from the nanometer to the centimeter scale, can be controlled by positive feedback between the self-assembly of a scaffold and the deposition of solid material. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

29 pages, 5698 KiB  
Article
Reconstructing Historical Land Use and Anthropogenic Inputs in Lake Victoria Basin: Insights from PAH and n-Alkane Trends
by Camille Joy Enalbes, Dennis M. Njagi, Chen Luo, Daniel Olago and Joyanto Routh
Toxics 2025, 13(2), 130; https://doi.org/10.3390/toxics13020130 - 10 Feb 2025
Viewed by 1377
Abstract
Over the past century, human activities have profoundly transformed global ecosystems. Lake Victoria in East Africa exemplifies these challenges, showcasing the interplay of anthropogenic pressures driven by land use changes, urbanization, agriculture, and industrialization. Our comprehensive study investigates polycyclic aromatic hydrocarbons (PAHs) and [...] Read more.
Over the past century, human activities have profoundly transformed global ecosystems. Lake Victoria in East Africa exemplifies these challenges, showcasing the interplay of anthropogenic pressures driven by land use changes, urbanization, agriculture, and industrialization. Our comprehensive study investigates polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in the lake and its catchment to trace their sources and historical deposition. Sediment cores were collected from six sites within the catchment, representing diverse landforms and human activities, ensuring a comprehensive understanding of the basin. The results indicate significant spatial and temporal variations in both PAH and n-alkane profiles, reflecting diverse land use changes and development trajectories in the basin. Urban sites often exhibited higher concentrations of PAHs and short-chain n-alkanes, indicative of anthropogenic sources such as fossil fuel combustion, the input of petroleum hydrocarbons, and industrial emissions. In contrast, rural areas showed low PAH levels and a dominance of long-chain n-alkanes from terrestrial plant waxes. The n-alkane ratios, including the Carbon Preference Index and the Terrigenous–Aquatic Ratio, suggested shifts in organic matter sources over time, corresponding with land use changes and increased human activities. A mid-20th century shift toward increased anthropogenic contributions was observed across sites, coinciding with post-independence development. The mid-lake sediment core integrated inputs from multiple sub-catchments, providing a comprehensive record of basin-scale changes. These findings highlight three distinct periods of organic matter input: pre-1960s, dominated by natural and biogenic sources; 1960s–1990s, marked by increasing anthropogenic influence; and post-1990s, characterized by complex mixtures of pyrogenic, petrogenic, and biogenic sources. This study underscores the cumulative environmental and aquatic ecosystem effects of urbanization (rural vs. urban sites), industrialization, and land use changes over the past century. The combined analyses of PAHs and n-alkanes provide a comprehensive understanding of historical and ongoing environmental impacts, emphasizing the need for integrated management strategies that address pollutant inputs to preserve Lake Victoria’s ecological integrity. Full article
Show Figures

Figure 1

27 pages, 27996 KiB  
Article
Microfacies Characteristics of Late Pennsylvanian Cyclothems on the Carbonate Platform Margin in Guizhou, South China
by Junjie Wang, Enpu Gong, Yongli Zhang, Xiao Li, Lifu Wang, Guanming Lai and Depeng Li
Life 2024, 14(11), 1495; https://doi.org/10.3390/life14111495 - 16 Nov 2024
Cited by 1 | Viewed by 1216
Abstract
Late Pennsylvanian cyclothems are documented from the carbonate platform margin in Guizhou, South China, providing a unique opportunity to study glacio-eustatic fluctuations and their impact on reef development. This paper focuses on a shallow-water, reef-bearing succession and a deep-water succession in the Houchang [...] Read more.
Late Pennsylvanian cyclothems are documented from the carbonate platform margin in Guizhou, South China, providing a unique opportunity to study glacio-eustatic fluctuations and their impact on reef development. This paper focuses on a shallow-water, reef-bearing succession and a deep-water succession in the Houchang area of Guizhou. Fourteen microfacies, grouped into seven associations, represent distinct depositional environments. These microfacies associations exhibit vertical cyclicity, interpreted as cyclothems, similar to those observed globally, which are attributed to the waxing and waning of the Gondwana ice sheet. The cyclothems are primarily composed of sediments below the wave base within a shallow-water platform margin and deep-water settings. Those cyclothems show strong correlations with those observed in South China, Ukraine, and the North American Midcontinent, suggesting a potential connection to global glacio-eustatic processes. A brief and rapid sea-level rise during the late Kasimovian may correspond to a recently recognized global warming event. A microfacies analysis indicates that these cyclothems reflect glacial-type sea-level fluctuations ranging from 15 to 35 m. Notably, the reef-bearing cyclothems correspond to intermediate, major cyclothems identified in South China and the Midcontinent from the late Moscovian to early Kasimovian stages. The global cyclothem correlations and reef development patterns in South China suggest that intermediate, major cycles were the primary controls on reef growth and demise, while minor cycles influenced biostromes and community succession within the reefs. These findings underscore the pivotal role of the Late Paleozoic Ice Age (LPIA) in shaping reef development in far-field regions during the Late Pennsylvanian. Full article
(This article belongs to the Section Paleobiology)
Show Figures

Figure 1

20 pages, 7109 KiB  
Article
Coating of Hemp Fibres with Hydrophobic Compounds Extracted from Pine Bark
by Robert Abbel, Regis Risani, Maxime Nourtier, Lloyd Donaldson, Christel Brunschwig, Claire Mayer-Laigle, James H. Bridson, Armin Thumm, Alan Dickson, Rachel Murray, Jessica Harris, Johnny Beaugrand and Stefan Hill
Fibers 2024, 12(11), 96; https://doi.org/10.3390/fib12110096 - 7 Nov 2024
Cited by 3 | Viewed by 2540
Abstract
Applying coatings of paraffins and other synthetic waxes is a common approach to impart hydrophobic properties to fibres and thus control their surface characteristics. Replacing these fossil-based products with alternatives derived from renewable resources can contribute to humankind’s transition to a sustainable bioeconomy. [...] Read more.
Applying coatings of paraffins and other synthetic waxes is a common approach to impart hydrophobic properties to fibres and thus control their surface characteristics. Replacing these fossil-based products with alternatives derived from renewable resources can contribute to humankind’s transition to a sustainable bioeconomy. This study presents the coating of hemp fibres with waxes extracted from pine bark as an exemplar application. Two bio-based emulsifiers were used to prepare wax emulsions suitable for a dry blending process. The coatings on the fibres were characterised, quantified, and visualised using a combination of spectroscopic and microscopic techniques. Confocal fluorescence microscopy was an excellent tool to investigate the spatial distribution of the pine bark waxes on the fibre surfaces. While successful deposition was demonstrated for all tested formulations, coating homogeneity varied for different emulsifiers. Compounding the hemp fibres with a bio-based polyester resulted in the substantial improvement of the mechanical behaviour. However, the presence of a wax coating on the fibres did not lead to a significant change in mechanical properties compared to the controls with uncoated fibres. Optimising the composite chemistry or adjusting the processing conditions might improve the compatibility of the hemp fibres with the matrix material, resulting in enhanced mechanical performance. Full article
Show Figures

Figure 1

24 pages, 6880 KiB  
Article
Petrogenesis of Granitoids from the Waxing Mo Polymetallic Deposit, NE China: Implications for Magma Fertility and Mineralization
by Yang Liu, De-You Sun, Yang Gao, Hong-Chao Wang, Yu-Xin Ma, Jun Xu and Xin-Tong Liu
Minerals 2024, 14(11), 1104; https://doi.org/10.3390/min14111104 - 29 Oct 2024
Viewed by 892
Abstract
The Waxing Mo polymetallic deposit is located in the central part of the Lesser Xing’an–Zhangguangcai Range (LXZR), NE China. The Mo (Cu) mineralization in the deposit is dominantly hosted by quartz veinlets and stockworks and is closely related to silicification and potassic alteration, [...] Read more.
The Waxing Mo polymetallic deposit is located in the central part of the Lesser Xing’an–Zhangguangcai Range (LXZR), NE China. The Mo (Cu) mineralization in the deposit is dominantly hosted by quartz veinlets and stockworks and is closely related to silicification and potassic alteration, while the W mineralization is most closely related to greisenization. Zircon samples from granodiorite, biotite monzogranite, granodiorite porphyry, and syenogranite in the Waxing deposit yielded U-Pb ages of 172.3 Ma, 172.8 Ma, 173.0 Ma, and 171.4 Ma, respectively. Six molybdenite samples from porphyry Mo ores yielded a Re-Os isochron age of 172.0 ± 1.1 Ma. The granitoids in the ore district are relatively high in total alkali (Na2O + K2O), are metaluminous to weakly peraluminous, and are classified as I-type granitoids. The zircon samples from all granitoids showed a relatively consistent Hf isotopic composition, as shown by positive εHf(t) values (3.1–8.3) and young TDM2 ages (0.69–1.25 Ga). These results, combined with the whole-rock geochemistry, suggest that the magma source of these rocks most likely derived from partial melting of a juvenile middle-lower continental crust, with a minor contribution from the mantle. These granitoids have compositional characteristics of adakites such as relatively high Sr contents (e.g., >400 ppm) and Sr/Y ratios (e.g., >33), as well as weak Eu anomalies (e.g., Eu/Eu* = 0.8–1.1), indicating extensive fractionation crystallization of a hydrous magma. The apatite geochemistry indicates that the ore-related magma in Waxing is F-rich and has a relatively low content of sulfur. The zircon geochemistry reveals that the granodiorite, biotite monzogranite, and granodiorite porphyry have relatively high oxygen fugacity (i.e., ΔFMQ = +1.1~1.3), whereas the fO2 values of the granite porphyry and syenogranite are relatively low (i.e., ΔFMQ = +0.1~0.5). The whole-rock and mineral geochemistry suggest that the Mo mineralization in Waxing is probably genetically related to granitoids (i.e., granodiorite, biotite monzogranite, and granodiorite porphyry), with higher oxygen fugacity and a high water content, whereas the magmatic S concentration is not the key factor controlling the mineralization. A comparison of the geochemical compositions of ore-forming and barren stocks for porphyry Mo deposits in the LXZR showed that geochemical ratios, including Eu/Eu* (>0.8), 10,000*(Eu/Eu*)/Y (>600), Sr/Y (>33), and V/Sc (>8), could be effective indicators in discriminating fertile granitoids for porphyry Mo deposits from barren ones in the region. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

17 pages, 4679 KiB  
Article
Decoupling Distribution of n-Alkanes in Aeolian Sand and Vegetation of the Northern Ulan Buh Desert, China: Insight into Organic Matter Preservation in Arid Regions
by Shangzhe Zhou, Lei Xi, Mengchun Cui, Guipeng Cui, Pan Gao, Jinlei Zhu, Weiyuan Kong, Yufu Jia and Qi Lu
Plants 2024, 13(20), 2898; https://doi.org/10.3390/plants13202898 - 17 Oct 2024
Viewed by 1155
Abstract
Fallen leaves and their decomposition directly deposit leaf wax n-alkanes into sediments, which can be used to identify local flora. These n-alkanes are important for studying past vegetation and climate, but their distribution in sediments must be known. Aeolian sand n [...] Read more.
Fallen leaves and their decomposition directly deposit leaf wax n-alkanes into sediments, which can be used to identify local flora. These n-alkanes are important for studying past vegetation and climate, but their distribution in sediments must be known. Aeolian sand n-alkanes are particularly important for understanding paleoclimates in arid regions, despite the challenges of extraction due to their extremely low abundance. To investigate the preservation of plant leaf wax n-alkanes in deserts, we analyzed n-alkanes in aeolian sands from the Northern Ulan Buh Desert (UBD), China, and compared them to the surrounding vegetation. We calculated the total n-alkane concentration (ΣALK), average chain length (ACL21–35), and carbon preference index (CPI21–35). In the Northern UBD, aeolian sand n-alkanes have lower ΣALK, indicating microbial degradation. The eastern aeolian sand has lower CPI21–35 and ACL21–35 than the adjacent vegetation, whereas the western sand values are consistent with the plants, likely due to the transport of plant-derived materials by wind and water from the nearby mountains. Our study shows that sedimentary n-alkane signatures are not only determined by local vegetation but also influenced by environmental factors like temperature and precipitation. Additionally, local deposition processes play a significant role in determining the properties of these n-alkanes. Full article
Show Figures

Figure 1

11 pages, 1375 KiB  
Article
Occurrences of Deposited Polycyclic Aromatic Hydrocarbons in Wax of Plant Leaves Using Laser Scanning Microscopy and Gas Chromatography–Mass Spectrometry
by Ming Yang, Qingyang Liu, Shili Tian, Zheng Yang, Yifan Yang, Peng Shao and Yanju Liu
Atmosphere 2024, 15(10), 1165; https://doi.org/10.3390/atmos15101165 - 29 Sep 2024
Viewed by 940
Abstract
The knowledge of the deposition fate of ambient polycyclic aromatic hydrocarbons (PAHs) on plant leaves is limited. To fill in this knowledge gap, this study strives to observe the intermolecular complex between the polycyclic aromatic hydrocarbons and epicuticular wax of plant leaves using [...] Read more.
The knowledge of the deposition fate of ambient polycyclic aromatic hydrocarbons (PAHs) on plant leaves is limited. To fill in this knowledge gap, this study strives to observe the intermolecular complex between the polycyclic aromatic hydrocarbons and epicuticular wax of plant leaves using laser scanning microscopy. Epicuticular wax refers to a type of organic mixture that covers the outermost layer of leaves. The leaves of 20 tree species were collected in Beijing in July 2023. The concentrations of 31 PAHs were quantified by gas chromatography–mass spectrometry. Furthermore, the intermolecular complexes of polycyclic aromatic hydrocarbons and epicuticular wax were found with a fluorescence spectrofluorometer and laser scanning microscopy. The levels of total PAHs across 20 tree species ranged from 12.4 ng g−1 to 68.4 ng g−1. Differences in the amounts of total PAHs across tree leaves were observed, which may be ascribed to the differences in leaf surface across tree types. The higher concentration of low-molecular-weight PAHs was found in leaves compared to high-molecular-weight PAHs. The fluorescence spectrofluorometer identified the formation of a new intermolecular complex with fluorescence emission at an excitation wavelength of 340 nm between PAHs and epicuticular wax relative to PAHs. We used laser scanning microscopy with a 405 nm laser for excitation to observe the new intermolecular complex of PAHs and epicuticular wax on the stomata and epicuticular wax of leaves. This study found the intermolecular complex of PAHs on the surface of leaves in situ, which provides important information about the deposition fate of ambient PAHs. Full article
Show Figures

Figure 1

27 pages, 2689 KiB  
Review
Novel Approach of Tackling Wax Deposition Problems in Pipeline Using Enzymatic Degradation Process: Challenges and Potential Solutions
by Shazleen Saadon, Raja Noor Zaliha Raja Abd Rahman, Nor Hafizah Ahmad Kamarudin, Sara Shahruddin, Siti Rohaida Mohd Shafian, Norhidayah Ahmad Wazir and Mohd Shukuri Mohamad Ali
Processes 2024, 12(10), 2074; https://doi.org/10.3390/pr12102074 - 25 Sep 2024
Cited by 2 | Viewed by 1926
Abstract
Anthropogenic activities have led to hydrocarbon spills, and while traditional bioremediation methods are costly and time-consuming, recent research has focused on engineered enzymes for managing pollutant. The potential of enzymes for resolving wax flow problems in the petroleum industry remains unexplored. This paper [...] Read more.
Anthropogenic activities have led to hydrocarbon spills, and while traditional bioremediation methods are costly and time-consuming, recent research has focused on engineered enzymes for managing pollutant. The potential of enzymes for resolving wax flow problems in the petroleum industry remains unexplored. This paper offers a comprehensive review of the current state of research activities related to the bioremediation of petroleum-polluted sites and the biodegradation of specific petroleum hydrocarbons. The assayed enzymes that took part in the degradation were discussed in detail. Lipase, laccase, alkane hydroxylase, alcohol dehydrogenase, esterase, AlkB homologs and cytochrome P450 monooxygenase are among the enzymes responsible for the degradation of more than 50% of the hydrocarbons in contaminated soil and wastewater and found to be active on carbon C8 to C40. The possible biodegradation mechanism of petroleum hydrocarbons was also elucidated. The enzymes’ primary metabolic pathways include terminal, subterminal, and ω-oxidation. Next, given the successful evidence of the hydrocarbon treatment efficiency, the authors analyzed the opportunity for the enzymatic degradation approach if it were to be applied to a different scenario: managing wax deposition in petroleum-production lines. With properties such as high transformation efficiency and high specificity, enzymes can be utilized for the treatment of viscous heavy oil for transportability, evidenced by the 20 to 99% removal of hydrocarbons. The challenges associated with the new approach are also discussed. The production cost of enzymes, the characteristics of hydrocarbons and the operating conditions of the production line may affect the biocatalysis reaction to some extent. However, the challenges can be overcome by the usage of extremophilic enzymes. The combination of technological advancement and deployment strategies such as the immobilization of a consortium of highly thermophilic and halotolerant enzymes is suggested. Recovering and reusing enzymes offers an excellent strategy to improve the economics of the technology. This paper provides insights into the opportunity for the enzymatic degradation approach to be expanded for wax deposition problems in pipelines. Full article
(This article belongs to the Special Issue Application of Enzymes in Sustainable Biocatalysis)
Show Figures

Figure 1

17 pages, 14141 KiB  
Article
Integrating Cu2O Colloidal Mie Resonators in Structurally Colored Butterfly Wings for Bio-Nanohybrid Photonic Applications
by Gábor Piszter, Krisztián Kertész, Dávid Kovács, Dániel Zámbó, Ana Cadena, Katalin Kamarás and László Péter Biró
Materials 2024, 17(18), 4575; https://doi.org/10.3390/ma17184575 - 18 Sep 2024
Cited by 2 | Viewed by 1465
Abstract
Colloidal Cu2O nanoparticles can exhibit both photocatalytic activity under visible light illumination and resonant Mie scattering, but, for their practical application, they have to be immobilized on a substrate. Butterfly wings, with complex hierarchical photonic nanoarchitectures, constitute a promising substrate for [...] Read more.
Colloidal Cu2O nanoparticles can exhibit both photocatalytic activity under visible light illumination and resonant Mie scattering, but, for their practical application, they have to be immobilized on a substrate. Butterfly wings, with complex hierarchical photonic nanoarchitectures, constitute a promising substrate for the immobilization of nanoparticles and for the tuning of their optical properties. The native wax layer covering the wing scales of Polyommatus icarus butterflies was removed by simple ethanol pretreatment prior to the deposition of Cu2O nanoparticles, which allowed reproducible deposition on the dorsal blue wing scale nanoarchitectures via drop casting. The samples were investigated by optical and electron microscopy, attenuated total reflectance infrared spectroscopy, UV–visible spectrophotometry, microspectrophotometry, and hyperspectral spectrophotometry. It was found that the Cu2O nanoparticles integrated well into the photonic nanoarchitecture of the P. icarus wing scales, they exhibited Mie resonance on the glass slides, and the spectral signature of this resonance was absent on Si(100). A novel bio-nanohybrid photonic nanoarchitecture was produced in which the spectral properties of the butterfly wings were tuned by the Cu2O nanoparticles and their backscattering due to the Mie resonance was suppressed despite the low refractive index of the chitinous substrate. Full article
Show Figures

Figure 1

Back to TopTop