Outlier Correction in Remote Sensing Retrieval of Ocean Wave Wavelength and Application to Bathymetry
Abstract
Highlights
- The mechanisms responsible for anomalous values in FFT-based wavelength retrieval from optical imagery were systematically elucidated, including local pixel distortions, overall non-stationary trend, and boundary discontinuities.
- A hybrid approach—combining distorted-pixel truncation, detrending, and windowing—effectively corrects anomalous wavelengths and enables accurate shallow-water bathymetry.
- The method significantly enhances the robustness and applicability of wave-derived bathymetry and can be widely applied to high-resolution, large-area nearshore depth mapping.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Research Methodology
2.2.1. FFT-Based Method for Wavelength Retrieval from Remote Sensing Imagery
2.2.2. Correction Methods for Anomalous Wavelength Retrievals from Remote Sensing Imagery
2.2.3. Depth Inversion from Remotely Sensed Wavelengths
3. Result
3.1. Estimation of the Conserved Wave Frequency
3.2. Patch Size Selection and Wavenumber-Resolution Analysis
3.3. Wavelength Retrieval Results Without Spectral Leakage Suppression
3.4. Wavelength Retrieval Results with Spectral Leakage Suppression
3.4.1. Results After Truncation of Distorted Pixel Values
3.4.2. Results After Detrending of Pixel Values
3.4.3. Results After Windowing of Subimages
3.4.4. Wavelength Retrieval Results After Combined Spectral Leakage Suppression
3.5. Bathymetric Results from Wave-Derived Wavelengths
4. Discussion
4.1. Sensitivity Analysis of Subimage Size
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cesbron, G.; Melet, A.; Almar, R.; Lifermann, A. Pan-European Satellite-Derived Coastal Bathymetry—Review, User Needs and Future Services. Front. Mar. Sci. 2021, 8, 740830. [Google Scholar] [CrossRef]
- Huang, R.; Yu, K.; Wang, Y.; Wang, J.; Mu, L.; Wang, W. Bathymetry of the Coral Reefs of Weizhou Island Based on Multispectral Satellite Images. Remote Sens. 2017, 9, 750. [Google Scholar] [CrossRef]
- Mavraeidopoulos, A.K.; Pallikaris, A.; Oikonomou, E. Satellite Derived Bathymetry (SDB) and Safety of Navigation. Int. Hydrogr. Rev. 2017, 7–19. Available online: https://journals.lib.unb.ca/index.php/ihr/article/view/26290 (accessed on 22 September 2025).
- Pe’eri, S.; Parrish, C.; Azuike, C.; Alexander, L.; Armstrong, A. Satellite Remote Sensing as a Reconnaissance Tool for Assessing Nautical Chart Adequacy and Complete. Mar. Geod. 2014, 37, 293–314. [Google Scholar] [CrossRef]
- Grządziel, A. Method of Time Estimation for the Bathymetric Surveys Conducted with a Multi-Beam Echosounder System. Appl. Sci. 2023, 13, 10139. [Google Scholar] [CrossRef]
- Saylam, K.; Hupp, J.R.; Andrews, J.R.; Averett, A.R.; Knudby, A.J. Quantifying Airborne Lidar Bathymetry Quality-Control Measures: A Case Study in Frio River, Texas. Sensors 2018, 18, 4153. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.O.; Andrade, L.C.D.; Teixeira, V.G.; Santos, F.C.M. State of Art of Bathymetric Surveys. Bol. Ciênc. Geod. 2022, 28, e2022002. [Google Scholar] [CrossRef]
- He, J.; Zhang, S.; Cui, X.; Feng, W. Remote Sensing for Shallow Bathymetry: A Systematic Review. Earth-Sci. Rev. 2024, 258, 104957. [Google Scholar] [CrossRef]
- Lyzenga, D.R. Passive Remote Sensing Techniques for Mapping Water Depth and Bottom Features. Appl. Opt. 1978, 17, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of Water Depth with High-resolution Satellite Imagery over Variable Bottom Types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral Remote Sensing for Shallow Waters. I. A Semianalytical Model. Appl. Opt. 1998, 37, 6329–6338. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral Remote Sensing for Shallow Waters: 2. Deriving Bottom Depths and Water Properties by Optimization. Appl. Opt. 1999, 38, 3831–3843. [Google Scholar] [CrossRef]
- Casal, G.; Monteys, X.; Hedley, J.; Harris, P.; Cahalane, C.; McCarthy, T. Assessment of Empirical Algorithms for Bathymetry Extraction Using Sentinel-2 Data. Int. J. Remote Sens. 2018, 40, 2855–2879. [Google Scholar] [CrossRef]
- Kutser, T.; Vahtmäe, E.; Praks, J. A Sun Glint Correction Method for Hyperspectral Imagery Containing Areas with Non-Negligible Water Leaving NIR Signal. Remote Sens. Environ. 2009, 113, 2267–2274. [Google Scholar] [CrossRef]
- Brusch, S.; Held, P.; Lehner, S.; Rosenthal, W.; Pleskachevsky, A. Underwater Bottom Topography in Coastal Areas from TerraSAR-X Data. Int. J. Remote Sens. 2011, 32, 4527–4543. [Google Scholar] [CrossRef]
- Boccia, V.; Renga, A.; Moccia, A.; Zoffoli, S. Tracking of Coastal Swell Fields in SAR Images for Sea Depth Retrieval: Application to ALOS L-Band Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3532–3540. [Google Scholar] [CrossRef]
- Danilo, C.; Melgani, F. Wave Period and Coastal Bathymetry Using Wave Propagation on Optical Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6307–6319. [Google Scholar] [CrossRef]
- Bergsma, E.W.J.; Almar, R.; Maisongrande, P. Radon-Augmented Sentinel-2 Satellite Imagery to Derive Wave-Patterns and Regional Bathymetry. Remote Sens. 2019, 11, 1918. [Google Scholar] [CrossRef]
- Pereira, P.; Baptista, P.; Cunha, T.; Silva, P.A.; Romão, S.; Lafon, V. Estimation of the Nearshore Bathymetry from High Temporal Resolution Sentinel-1A C-Band SAR Data—A Case Study. Remote Sens. Environ. 2019, 223, 166–178. [Google Scholar] [CrossRef]
- Poupardin, A.; Idier, D.; De Michele, M.; Raucoules, D. Water Depth Inversion From a Single SPOT-5 Dataset. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2329–2342. [Google Scholar] [CrossRef]
- Huang, L.; Meng, J.; Fan, C.; Zhang, J.; Yang, J. Shallow Sea Topography Detection from Multi-Source SAR Satellites: A Case Study of Dazhou Island in China. Remote Sens. 2022, 14, 5184. [Google Scholar] [CrossRef]
- Leu, L.-G.; Chang, H.-W. Remotely Sensing in Detecting the Water Depths and Bed Load of Shallow Waters and Their Changes. Ocean. Eng. 2005, 32, 1174–1198. [Google Scholar] [CrossRef]
- Mudiyanselage, S.D.; Wilkinson, B.; Abd-Elrahman, A. Automated High-Resolution Bathymetry from Sentinel-1 SAR Images in Deeper Nearshore Coastal Waters in Eastern Florida. Remote Sens. 2023, 16, 1. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Hou, P.; Fu, B.; Zheng, G. Mapping the Bathymetry of Shallow Coastal Water Using Single-Frame Fine-Resolution Optical Remote Sensing Imagery. Acta Oceanol. Sin. 2016, 35, 60–66. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, S.; Cheng, S.; Zhang, W.; Cao, G. Nearshore Depth Estimation Using Fine-Resolution Remote Sensing of Ocean Surface Waves. Sensors 2023, 23, 9316. [Google Scholar] [CrossRef]
- Bian, X. The Feasibility of Assessing Swell-Based Bathymetry Using SAR Imagery from Orbiting Satellites. ISPRS J. Photogramm. Remote Sens. 2020, 168, 124–130. [Google Scholar] [CrossRef]
- Jwo, D.-J.; Wu, I.-H.; Chang, Y. Windowing Design and Performance Assessment for Mitigation of Spectrum Leakage. E3S Web Conf. 2019, 94, 03001. [Google Scholar] [CrossRef]
- Manco, G.; Masciari, E. XML Class Outlier Detection. In Proceedings of the 16th International Database Engineering & Applications Sysmposium—IDEAS ’12, Prague, Czech Republic, 8–10 August 2012; ACM Press: New York, NY, USA, 2012; pp. 155–164. [Google Scholar]
- Rasheed, F.; Peng, P.; Alhajj, R.; Rokne, J. Fourier Transform Based Spatial Outlier Mining. In Intelligent Data Engineering and Automated Learning—IDEAL 2009; Corchado, E., Yin, H., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5788, pp. 317–324. ISBN 978-3-642-04393-2. [Google Scholar]
- Alexandrov, T.; Bianconcini, S.; Dagum, E.B.; Maass, P.; McElroy, T.S. A Review of Some Modern Approaches to the Problem of Trend Extraction. Econom. Rev. 2012, 31, 593–624. [Google Scholar] [CrossRef]
- Mitov, I.P. A Method for Assessment and Processing of Biomedical Signals Containing Trend and Periodic Components. Med. Eng. Phys. 1998, 20, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Harris, F.J. On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proc. IEEE 1978, 66, 51–83. [Google Scholar] [CrossRef]
- Jiao, W.; Shi, C.; Sun, J.; Wu, H.-T. China Satellite Navigation Conference (CSNC) 2013 Proceedings: BeiDou/GNSS Navigation Applications • Test & Assessment Technology • User Terminal Technology; Sun, J., Jiao, W., Wu, H., Shi, C., Eds.; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2013; Volume 243, ISBN 978-3-642-37397-8. [Google Scholar]
- Kudryavtsev, V.; Yurovskaya, M.; Chapron, B.; Collard, F.; Donlon, C. Sun Glitter Imagery of Ocean Surface Waves. Part 1: Directional Spectrum Retrieval and Validation. J. Geophys. Res. Oceans 2017, 122, 1369–1383. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 1977, 39, 1–38. [Google Scholar] [CrossRef]
- Vieira, S.R.; Carvalho, J.R.P.D.; Ceddia, M.B.; González, A.P. Detrending Non Stationary Data for Geostatistical Applications. Bragantia 2010, 69, 1–8. [Google Scholar] [CrossRef]
- Vieira, S.R. GEOESTATÍSTICA EM ESTUDOS DE VARIABILIDADE ESPACIAL DO SOLO. In Tópicos em Ciência do solo; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2000. [Google Scholar]
- Speake, T.; Mersereau, R. A Note on the Use of Windows for Two-Dimensional FIR Filter Design. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 125–127. [Google Scholar] [CrossRef]
- Labuda, C.; Labuda, I. On the Mathematics Underlying Dispersion Relations. EPJ H 2014, 39, 575–589. [Google Scholar] [CrossRef]
- Holman, R.; Haller, M.C. Remote Sensing of the Nearshore. Annu. Rev. Mar. Sci. 2013, 5, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Bondur, V.; Murynin, A. The Approach for Studying Variability of Sea Wave Spectra in a Wide Range of Wavelengths from High-Resolution Satellite Optical Imagery. J. Mar. Sci. Eng. 2021, 9, 823. [Google Scholar] [CrossRef]
- Piotrowski, C.C.; Dugan, J.P. Accuracy of Bathymetry and Current Retrievals from Airborne Optical Time-Series Imaging of Shoaling Waves. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2606–2618. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Zhu, S.; Zhang, W.; Kang, Y.; Wu, X. Outlier Correction in Remote Sensing Retrieval of Ocean Wave Wavelength and Application to Bathymetry. Remote Sens. 2025, 17, 3284. https://doi.org/10.3390/rs17193284
Xu Z, Zhu S, Zhang W, Kang Y, Wu X. Outlier Correction in Remote Sensing Retrieval of Ocean Wave Wavelength and Application to Bathymetry. Remote Sensing. 2025; 17(19):3284. https://doi.org/10.3390/rs17193284
Chicago/Turabian StyleXu, Zhengwen, Shouxian Zhu, Wenjing Zhang, Yanyan Kang, and Xiangbai Wu. 2025. "Outlier Correction in Remote Sensing Retrieval of Ocean Wave Wavelength and Application to Bathymetry" Remote Sensing 17, no. 19: 3284. https://doi.org/10.3390/rs17193284
APA StyleXu, Z., Zhu, S., Zhang, W., Kang, Y., & Wu, X. (2025). Outlier Correction in Remote Sensing Retrieval of Ocean Wave Wavelength and Application to Bathymetry. Remote Sensing, 17(19), 3284. https://doi.org/10.3390/rs17193284