Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = waterworks sludge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4765 KB  
Article
Polyethyleneimine-Modified Magnetic Multivalent Iron Derived from Iron-Based Waterwork Sludge for Cr(VI) Adsorption and Reduction
by Jingxi Tie, Huawen Wang, Junkai Zheng, Mengjia Yan, Sihao Shao, Xiaohan Duan and Zhaoyong Ye
Water 2025, 17(13), 1945; https://doi.org/10.3390/w17131945 - 29 Jun 2025
Viewed by 630
Abstract
In this study, activated carbon, iron-based waterwork sludge, and polyethyleneimine (PEI) were employed as the primary raw materials to synthesize the composite PEI@MMI(800) under the optimized conditions identified through experimental investigations. The resulting composite was employed as an adsorbent for static Cr(VI) adsorption [...] Read more.
In this study, activated carbon, iron-based waterwork sludge, and polyethyleneimine (PEI) were employed as the primary raw materials to synthesize the composite PEI@MMI(800) under the optimized conditions identified through experimental investigations. The resulting composite was employed as an adsorbent for static Cr(VI) adsorption tests. The results demonstrated that increasing the pH from 2 to 9 significantly decreased the Cr(VI) adsorption capacity from 41.09 mg/g to 15.75 mg/g. The adsorption process was well described by both the pseudo-second-order kinetic model and the Langmuir isotherm model. Thermodynamic analysis revealed that the adsorption process was spontaneous and endothermic in nature. The presence of anions (Cl, SO42−, and PO43−) negatively impacted Cr(VI) adsorption, with their inhibitory effects following the order Cl < SO42− < PO43−. Moreover, higher concentrations of these anions led to reduced Cr(VI) adsorption efficiency. After six cycles of use, PEI@MMI(800) retained 79.80% of its initial Cr(VI) adsorption capacity, indicating a loss of 20.20%. Based on the comprehensive characterization of the adsorbent and the results of the Cr(VI) adsorption tests, it was concluded that the removal of Cr(VI) by PEI@MMI(800) involved a combination of electrostatic adsorption, chelation of Cr(VI) by PEI, and reduction of Cr(VI) to Cr(III). Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 3454 KB  
Article
Enhanced Adsorption of Aqueous Ciprofloxacin Hydrochloride by a Manganese-Modified Magnetic Dual-Sludge Biochar
by Jingxi Tie, Mengjia Yan, Sihao Shao and Xiaohan Duan
Water 2025, 17(8), 1229; https://doi.org/10.3390/w17081229 - 20 Apr 2025
Viewed by 1770
Abstract
In this study, an effective composite material, manganese-modified magnetic dual-sludge biochar (Mn@MDSBC), was developed for the adsorption of ciprofloxacin hydrochloride (CIP). This composite was prepared by means of a simple one-pot method, which involved the pyrolysis of iron-based waterworks sludge (IBWS) and paper [...] Read more.
In this study, an effective composite material, manganese-modified magnetic dual-sludge biochar (Mn@MDSBC), was developed for the adsorption of ciprofloxacin hydrochloride (CIP). This composite was prepared by means of a simple one-pot method, which involved the pyrolysis of iron-based waterworks sludge (IBWS) and paper mill sludge (PMS) loaded with manganese (Mn) under controlled conditions in a nitrogen atmosphere. The synthesized Mn@MDSBC was subjected to a comprehensive suite of characterization approaches, which included N2 adsorption–desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Subsequently, static adsorption tests were conducted to investigate how different factors, including the initial solution pH, reaction time and temperature, CIP concentration, and ionic strength influence the adsorption of CIP by Mn@MDSBC. Mn@MDSBC had the maximum CIP adsorption capacity of 75.86 mg/g at pH 5, among the pH values ranging from 3 to 9. The pseudo-second order model provided the best description of the adsorption process, while the experimental data aligned more closely with the Langmuir equation than with the Freundlich model, indicating monolayer adsorption. The adsorption process was found to be non-spontaneous and exothermic according to thermodynamic analysis. The presence of Cl and SO42− enhanced CIP adsorption, while PO43− weakened it. After five cycles of reuse, Mn@MDSBC experienced a 17.17% loss in CIP adsorption capacity. The primary mechanisms for CIP removal by Mn@MDSBC were identified as physical and chemical adsorption, hydrogen bonding, and π-π stacking interactions. In summary, the study underscores the high efficiency of Mn@MDSBC as a composite material for CIP adsorption, highlighting its potential for application in wastewater treatment processes. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

23 pages, 11017 KB  
Article
Environmental Win–Win Management: Using Aluminum-Based Solid Waste for Synozol Red-KHL Dye Oxidation
by Manasik M. Nour, Zahraa A. Elsayed and Maha A. Tony
ChemEngineering 2024, 8(3), 59; https://doi.org/10.3390/chemengineering8030059 - 7 Jun 2024
Cited by 1 | Viewed by 2334
Abstract
The awareness of the concept of the “Circular Economy” is motivating scientists to convert drinking water treatment plant by-products, which are based on aluminum waste, into a valorized material for wastewater treatment. Alum sludge from a local waterworks plant in Egypt was collected [...] Read more.
The awareness of the concept of the “Circular Economy” is motivating scientists to convert drinking water treatment plant by-products, which are based on aluminum waste, into a valorized material for wastewater treatment. Alum sludge from a local waterworks plant in Egypt was collected and dewatered using chitosan-coated magnetic nanoparticles. The role of the conditioned sludge in wastewater treatment was then examined. Chitosan (Ch) augmented with magnetite nanoparticles (MNs), labeled as ChMNs, was prepared by means of a simple co-precipitation route with mixing ratios of 1:1, 2:1, and 3:1 of chitosan and magnetite nanoparticles to form the ChMN catalyst. The ChMNs were shown to beneficially enhance alum sludge conditioning and dewaterability. The conditioned and dried aluminum-based sludge (AS) loaded with ChMNs was then used as a source of Fenton’s catalyst for Synozol Red-KHL textile dyeing wastewater. The characteristics of the AS-ChMN sample were investigated using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The photocatalytic activity of the AS-ChMN composite was assessed by examining its diffuse reflectance spectra (DRS). Response surface methodological analysis was applied to optimize the operational parameters in order to reduce the use of chemicals and improve dye oxidation to form a complete (99%) dye oxidation strategy. The experiments demonstrated that the optimal operating parameters included doses of 1.5 g/L and 420 mg/L for AS-ChMNs and hydrogen peroxide, respectively, as a source of Fenton’s reaction at a working pH of 3.5. Kinetic and thermodynamic analyses for potential full-scale applications were conducted, showing the reaction to be exothermic and spontaneous in nature and following second-order reaction kinetics. Hence, the novelty of this work lies in the introduction of conditioned and dewatered alum sludge waste as a photocatalyst for textile dye effluent oxidation, which could be considered a “win–win” strategy. Full article
(This article belongs to the Special Issue Chemical Engineering in Wastewater Treatment)
Show Figures

Figure 1

14 pages, 3598 KB  
Article
Thermal Energy Storage Using Hybrid Nanofluid Phase Change Material (PCM) Based on Waste Sludge Incorp Rated ZnO/α-Fe2O3
by Ehssan Ahmed Hassan, Maha A. Tony and Mohamed M. Awad
Nanomaterials 2024, 14(7), 604; https://doi.org/10.3390/nano14070604 - 28 Mar 2024
Cited by 7 | Viewed by 2730
Abstract
Renewable solar energy storage facilities are attracting scientists’ attention since they can overcome the key issues affecting the shortage of energy. A nanofluid phase change material (PCM) is introduced as a new sort of PCM is settled by suspending small proportions of nanoparticles [...] Read more.
Renewable solar energy storage facilities are attracting scientists’ attention since they can overcome the key issues affecting the shortage of energy. A nanofluid phase change material (PCM) is introduced as a new sort of PCM is settled by suspending small proportions of nanoparticles in melting paraffin. ZnO/α-Fe2O3 nanocrystals were prepared by a simple co-precipitation route and ultrasonically dispersed in the paraffin to be a nanofluid-PCM. The behaviors of the ZnO/α-Fe2O3 nanocrystals were verified by X-ray diffraction (XRD) analysis, and the average particle size and the morphology of the nanoparticles were explored by transmission electron microscopy (TEM). For the object of industrial ecology concept, aluminum-based waste derived from water-works plants alum sludge (AS) is dried and augmented with the ZnO/α-Fe2O3 nanocrystals as a source of multimetals such as aluminum to the composite, and it is named AS-ZnO/α-Fe2O3. The melting and freezing cycles were checked to evaluate the PCM at different weight proportions of AS-ZnO/α-Fe2O3 nanocrystals, which confirmed that their presence enhanced the heat transfer rate of paraffin. The nanofluids with AS-ZnO/α-Fe2O3 nanoparticles revealed good stability in melting paraffin. Additionally, the melting and freezing cycles of nanofluid-PCM (PCM- ZnO/α-Fe2O3 nanoparticles) were significantly superior upon supplementing ZnO/α-Fe2O3 nanoparticles. Nanofluid-PCM contained the AS-ZnO/α-Fe2O3 nanocrystals in the range of 0.25, 0.5, 1.0, and 1.5 wt%. The results showed that 1.0 wt% AS-ZnO/α-Fe2O3 nanocrystals contained in the nanofluid-PCM could enhance the performance with 93% with a heat gained reached 47 kJ. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Conversion and Storage)
Show Figures

Figure 1

11 pages, 5386 KB  
Article
Ecotoxicological Assessment of Potentially Toxic Elements in Waterworks Sludge Amended Soils Using Bermudagrass Bioassay
by Sai Leung Ng
Environments 2023, 10(2), 28; https://doi.org/10.3390/environments10020028 - 3 Feb 2023
Cited by 3 | Viewed by 2992
Abstract
Waterworks sludge has the potential to be used as a soil amendment, but the ecotoxicological risk of potentially toxic elements should not be underestimated. In this regard, this study determined the contents of nine potentially toxic elements (Cr, Ni, Cd, Cu, Pb, Zn, [...] Read more.
Waterworks sludge has the potential to be used as a soil amendment, but the ecotoxicological risk of potentially toxic elements should not be underestimated. In this regard, this study determined the contents of nine potentially toxic elements (Cr, Ni, Cd, Cu, Pb, Zn, As, Mn, and Al) of bermudagrass [Cynodon dactylon (L.) Pers.] grown in waterworks sludge amended soils. Treatments involved different loading rates of waterworks sludge, soil types, and fertilization options that represented different scenarios of greening applications. The recommended metal levels in plant tissues and maximum tolerable levels for feeding cattle are adopted as benchmarks for gauging the ecotoxicological risk to the first and second trophic levels of the ecosystem, respectively. No recommended levels for potentially toxic elements are exceeded when sludge loading rate is not higher than 50% (wt/wt). When various fertilization treatments are applied to 25% (wt/wt) sludge amended soils, the accumulation of aluminum and zinc deserves our attention because a few samples exceed the recommended levels. They are mainly samples of below-ground biomass. Overall, using waterworks sludge as a soil amendment does not cause an obvious ecotoxicological risk. The findings can provide a valuable reference to other cities for the sustainable management of waterworks sludge. Full article
(This article belongs to the Special Issue Environmental Risk and Climate Change II)
Show Figures

Figure 1

17 pages, 8225 KB  
Article
Developing a Novel Alum Sludge-Based Floating Treatment Wetland for Natural Water Restoration
by Xinlong He, Xiaohong Zhao, Wenshan Zhang, Baiming Ren and Yaqian Zhao
Water 2022, 14(15), 2433; https://doi.org/10.3390/w14152433 - 5 Aug 2022
Cited by 16 | Viewed by 3759
Abstract
Novel alum sludge-based floating treatment wetland (FTW) was developed to enhance the purification performances of natural water bodies, i.e., rivers, lakes, and ponds. Polyurethane was applied to foam the lightweight alum sludge based-substrate (PU-AL) of FTW through the response surface method. Three FTWs [...] Read more.
Novel alum sludge-based floating treatment wetland (FTW) was developed to enhance the purification performances of natural water bodies, i.e., rivers, lakes, and ponds. Polyurethane was applied to foam the lightweight alum sludge based-substrate (PU-AL) of FTW through the response surface method. Three FTWs configurations were created for a half-year lab-scale operation, and the PU-AL FTW presents the greatest purification performance in the removal rate of chemical oxygen demand (COD) of 62.58 ± 6.65%, total nitrogen (TN) of 53.31 ± 4.65%, and total phosphorus (TP) of 45.39 ± 4.69%. PU-AL substrate could enhance the nutrient removal performance of existing FTW by providing a proper media for microbial and plants’ growth. This study provides a good solution and showcase not only from a natural water restoration point of view but also from the waterworks sludge management view for a better understanding of FTWs and good applications in engineering practice. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Graphical abstract

14 pages, 521 KB  
Article
Ferric Oxide-Containing Waterworks Sludge Reduces Emissions of Hydrogen Sulfide in Biogas Plants and the Needs for Virgin Chemicals
by Tobias Persson, Kenneth M. Persson and Jenny Åström
Sustainability 2021, 13(13), 7416; https://doi.org/10.3390/su13137416 - 2 Jul 2021
Cited by 8 | Viewed by 4374
Abstract
Ferric oxide-containing waterworks sludge can be used to reduce the formation of hydrogen sulfide during anaerobic digestion. The ferric compound is reduced biochemically in the digester and forms insoluble pyrite in digester sludge. Virgin ferric chloride is often used to solve the hydrogen [...] Read more.
Ferric oxide-containing waterworks sludge can be used to reduce the formation of hydrogen sulfide during anaerobic digestion. The ferric compound is reduced biochemically in the digester and forms insoluble pyrite in digester sludge. Virgin ferric chloride is often used to solve the hydrogen sulfide problem. Since 2013, Sydvatten AB has supplied a growing number of digestion plants in Sweden with ferric-containing dewatered waterworks sludge derived from the drinking water treatment plant Ringsjöverket to limit the formation of hydrogen sulfide. At the waterworks, ferric chloride is added to enhance the coagulation of organic matter from the source water. The sludge formed in this process is dewatered and landfilled, but also recycled in biogas production in order to decrease the hydrogen sulfide concentration. In this study, the use of sludge for hydrogen sulfide removal in digesters was technically and economically evaluated via case studies from 13 full-scale digesters in Sweden. Compared with the use of fresh ferric chloride, the operational costs are reduced by up to 50% by using sludge. The quality of the sludge is high and its content in metals is low or very low, especially when compared with the requirements of different certification standards for biosolid reuse applied in Sweden. The addition of waterworks sludge containing iron to a digester for the removal of dissolved hydrogen sulfide is a technically and economically good alternative when producing biogas. It is also one step closer to a circular economy, as replacing the use of virgin chemicals with the by-product waterworks sludge saves energy and materials and reduces the carbon footprint of the waterworks. Full article
(This article belongs to the Special Issue Wastewater Based Microbial Biorefinery for Bioenergy Production)
Show Figures

Figure 1

13 pages, 1455 KB  
Article
Enhanced Simultaneous Nitrogen and Phosphorus Removal in A Denitrifying Biological Filter Using Waterworks Sludge Ceramsite Coupled with Iron-Carbon
by Xiaoying Zheng, Mengqi Jin, Hang Xu, Wei Chen, Yuan Zhang, Mengmeng Yang, Xiaoyao Shao, Zhi Xu and Weihong Wang
Int. J. Environ. Res. Public Health 2019, 16(15), 2646; https://doi.org/10.3390/ijerph16152646 - 24 Jul 2019
Cited by 26 | Viewed by 4362
Abstract
In this study, waterworks sludge ceramsite (WSC) was combined with 3% iron-carbon matrix in a denitrifying biological filter (ICWSC-DNBF) to enhance the simultaneous removal of carbon, nitrogen and phosphorus in secondary effluent of wastewater treatment plant (SE-WTP). The chemical oxygen demand (COD) and [...] Read more.
In this study, waterworks sludge ceramsite (WSC) was combined with 3% iron-carbon matrix in a denitrifying biological filter (ICWSC-DNBF) to enhance the simultaneous removal of carbon, nitrogen and phosphorus in secondary effluent of wastewater treatment plant (SE-WTP). The chemical oxygen demand (COD) and nitrogen removal, as well as phosphorus removal and the adsorbed forms of phosphorus were measured and the removal mechanism of these pollutants by the ICWSC-DNBF system for treating SE-WTP were investigated. The results showed that the ICWSC-DNBF achieved good removals of COD, NH4+-N, NO3-N, total N and total P; effluent concentrations were 17.23 mg/L, 3.72 mg/L, 14.32 mg/L, 17.38 mg/L and 0.82 mg/L, respectively. WSC enhanced the P removal due to its high specific surface area and the high number of adsorption sites. Fe-P and Al-P were the main forms of P adsorbed by WSC, accounting for 78.53% of the total adsorbed P. WSC coupled with Fe and C improved the biodegradability of SE-WTP and promoted the removal of organic matter. The removal of N was attributed to the abundant denitrifying microorganisms in the system and the electrochemical effect produced by the internal electrolysis of Fe and C. Full article
(This article belongs to the Special Issue Water Quality Improvement and Ecological Restoration)
Show Figures

Figure 1

13 pages, 2745 KB  
Article
Preparation of Ceramsite Based on Waterworks Sludge and Its Application as Matrix in Constructed Wetlands
by Yaning Wang, Jinhu Yang, Hang Xu, Chenwei Liu, Zhen Shen and Kai Hu
Int. J. Environ. Res. Public Health 2019, 16(15), 2637; https://doi.org/10.3390/ijerph16152637 - 24 Jul 2019
Cited by 38 | Viewed by 4911
Abstract
The recycling of waterworks sludge has become a trending issue because it not only solves the problem of difficult disposal but also saves land resources. This paper aimed to provide a new idea for the utilization of waterworks sludge to form ceramsite and [...] Read more.
The recycling of waterworks sludge has become a trending issue because it not only solves the problem of difficult disposal but also saves land resources. This paper aimed to provide a new idea for the utilization of waterworks sludge to form ceramsite and to purify sewage. The specific surface area, average pore size, and pore volume of the made ceramsite were 8.15 m2/g, 8.53 nm, and 1.88 cm2/g, respectively. The made ceramsite was applied in a vertical-flow constructed wetland, and the removal efficiency of nitrogen, phosphorus and organic matter in sewage were investigated under the conditions of different start-up periods, hydraulic retention times, matrix filling heights and water quality. The removal rates of chemical oxygen demand (COD), ammonia nitrogen (NH3-N), and total phosphorus (TP) in the constructed wetlands were stable at 70%, 60%, and 79%, respectively. This constructed wetland with a ceramic matrix has certain advantages in the total amount of denitrifying microorganisms, with a proportion of 14.92%. The results prove the feasibility of preparing ceramsite from waterworks sludge and applying it as a matrix in a constructed wetland to purify sewage. Full article
(This article belongs to the Special Issue Water Quality Improvement and Ecological Restoration)
Show Figures

Figure 1

10 pages, 4191 KB  
Article
Valorization of Municipal Waterworks Sludge to Produce Ceramic Floor Tiles
by Lara Pessin Rodrigues and José Nilson França De Holanda
Recycling 2018, 3(1), 10; https://doi.org/10.3390/recycling3010010 - 17 Mar 2018
Cited by 9 | Viewed by 5390
Abstract
In municipal waterworks large amounts of waste in the form of sludge have to be discarded. This investigation focuses on the processing of ceramic floor tiles incorporated with a municipal waterworks sludge. Four floor tile formulations containing up to 10 wt. % of [...] Read more.
In municipal waterworks large amounts of waste in the form of sludge have to be discarded. This investigation focuses on the processing of ceramic floor tiles incorporated with a municipal waterworks sludge. Four floor tile formulations containing up to 10 wt. % of the municipal waterworks sludge were prepared in order to replace the kaolin. The floor tile processing route consisted of dry powder granulation, uniaxial pressing, and firing between 1190 and 1250 °C using a fast-firing cycle (<60 min). The densification behavior and technological properties of the floor tile pieces as function of the sludge addition and firing temperature were determined. The development of the microstructure was followed by XRD and SEM/EDS. The results show that the replacement of kaolin with municipal waterworks sludge, in the range up to 10 wt. %, allows the production of ceramic floor tiles (group BIb and group BIIa, ISO 13006 Standard) at lower firing temperatures. These results suggest a new possibility of valorization of municipal waterworks sludge in order to bring economic and environmental benefits. Full article
(This article belongs to the Special Issue Water Recovery Recycling and Resilience)
Show Figures

Figure 1

Back to TopTop