Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = watermelon fusarium wilt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5405 KiB  
Article
Weighted Gene Co-Expression Network Analysis Identifies Hub Genes Governing Resistance to Fusarium oxysporum f. sp. niveum in Watermelon (Citrullus lanatus)
by Chen Zhang, Xufeng Fang, Jing Zhang, Xinying Wang, Zhao Liu, Shusen Liu, Zhengfeng Song, Peng Gao and Feishi Luan
Horticulturae 2025, 11(6), 625; https://doi.org/10.3390/horticulturae11060625 - 3 Jun 2025
Viewed by 583
Abstract
Watermelon (Citrullus lanatus), a vital economic crop, is severely threatened by Fusarium wilt (FW), which is caused by the soil-borne fungal pathogen Fusarium oxysporum f. sp. niveum (Fon). To elucidate the molecular mechanisms underlying FW resistance in watermelon, we tracked the [...] Read more.
Watermelon (Citrullus lanatus), a vital economic crop, is severely threatened by Fusarium wilt (FW), which is caused by the soil-borne fungal pathogen Fusarium oxysporum f. sp. niveum (Fon). To elucidate the molecular mechanisms underlying FW resistance in watermelon, we tracked the infection process via microscopy, identifying three critical time points (1, 6, and 8 days post-inoculation) corresponding to spore germination, hyphal invasion of the xylem vascular system, and symptom onset, respectively. Transcriptional profiling at these stages revealed six disease-resistance-associated gene modules through differential expression analysis, expression pattern clustering, weighted gene co-expression network analysis, and functional enrichment. These modules exhibited strong correlations with distinct infection phases. Protein–protein interaction networks identified 35 hub genes, including receptor-like kinases; WRKY and ethylene-responsive factor transcription factors; and genes involved in cell wall reinforcement, hormone signaling, defense metabolism/detoxification, programmed cell death regulation, and antimicrobial compound biosynthesis. Differential expressions of these genes across infection stages likely underpin the observed phenotypic disparities. Five hub regulatory genes were identified by quantitative real-time PCR in the SRgreen and SRblack modules, namely, Cla97C01G014990 (WRKY transcription factor 42), Cla97C02G042360 (calcium-transporting ATPase), Cla97C08G155710 (AIG2), Cla97C09G170380 (ethylene-responsive factor 1B-like), and Cla97C06G121810 (receptor kinase, putative). These genes mediate early rapid defense responses via SRgreen and sustain long-term resistance through SRblack. By validating the expression patterns of hub genes, the study elucidated the watermelon resistance response and provided insights into transcriptional regulation during different stages of Fon–watermelon interactions. Additionally, it identified candidate genes that could enhance watermelon resistance to wilt disease. Full article
(This article belongs to the Special Issue Vegetable Genomics and Breeding Research)
Show Figures

Figure 1

15 pages, 2353 KiB  
Article
Mycoviral Diversity of Fusarium oxysporum f. sp. niveum in Three Major Watermelon-Production Areas in China
by Jiawang Yang, Yajiao Wang, Zihao Li, Sen Han, Bo Li and Yuxing Wu
Microorganisms 2025, 13(4), 906; https://doi.org/10.3390/microorganisms13040906 - 14 Apr 2025
Viewed by 484
Abstract
Watermelon is one of the most important fruits in China, accounting for more than 70% of the world’s total output. Fusarium wilt of watermelon is the most common and serious disease in the cultivation of watermelon. It is mainly caused by Fusarium oxysporum [...] Read more.
Watermelon is one of the most important fruits in China, accounting for more than 70% of the world’s total output. Fusarium wilt of watermelon is the most common and serious disease in the cultivation of watermelon. It is mainly caused by Fusarium oxysporum f. sp. niveum (FoN), which has caused serious damage to the watermelon-planting industry. Some mycoviruses can reduce the pathogenicity of host pathogens and have the potential for biocontrol, so their application potential in the biological control of plant fungal diseases has attracted much attention. In this study, high-throughput sequencing was performed on 150 FoN strains isolated from three major watermelon-production areas (northern semi-arid area, northwestern arid area, and southern humid area) to detect the diversity of mycoviruses and to uncover new mycoviruses. The analysis identified 25 partial or complete genome segments representing eight previously undescribed mycoviruses. The existence of six mycoviruses was verified via RT-PCR. The southern humid area had the highest diversity of mycoviruses, with 15 species identified. Among these, 40% are dsRNA viruses and 33.3% belong to the family Chrysoviridae, representing the predominant viral type and family. In the northern semi-arid area, a total of 12 viral species were identified, among these 41.7% were +ssRNA viruses and 25% belonged to the family Mymonaviridae, constituting the main viral types and family. The northwestern arid area showed relatively low viral diversity, only containing three species. Two of these were +ssRNA viruses classified under the Mitoviridae and Potyviridae families. Notably, only one virus, Fusarium oxysporum f. sp. niveum Potyvirus 1 (FoNPTV1), was shared across all three areas. These findings reveal significant regional differences in the mycoviral species composition and distribution, highlighting the complex interactions between mycoviruses and FoN in different environments. By uncovering new mycoviruses associated with FoN, this study provides valuable resources for the potential biocontrol of Fusarium wilt in watermelon, contributing to sustainable disease management and improving the quality and safety of watermelon production in China. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

25 pages, 6488 KiB  
Article
Cultivation of Watermelon (Citrullus lanatus (Tunb.)) in a Temperate Climate: Agronomic Strategies and Phytochemical Composition
by Deividas Burdulis, Aida Kašėtaitė, Sonata Trumbeckaitė, Raimondas Benetis, Jurgita Daukšienė, Kristina Burdulienė and Lina Raudonė
Agronomy 2025, 15(4), 933; https://doi.org/10.3390/agronomy15040933 - 11 Apr 2025
Cited by 1 | Viewed by 1151
Abstract
This study investigates the phytochemical composition and cultivation strategies for watermelon (Citrullus lanatus (Thunb.)) in Lithuania’s temperate climate, focusing on its biological activity. Employing innovative grafting techniques and clear plastic film mulching, we successfully countered fusarium wilt while promoting growth and bioactive [...] Read more.
This study investigates the phytochemical composition and cultivation strategies for watermelon (Citrullus lanatus (Thunb.)) in Lithuania’s temperate climate, focusing on its biological activity. Employing innovative grafting techniques and clear plastic film mulching, we successfully countered fusarium wilt while promoting growth and bioactive compound accumulation. Our analysis showed significant cultivar-dependent variations in total phenolic content (ranging from 94.34 ± 8.12 to 327.42 ± 9.14 mg GAE/kg fw in pulps and from 120.46 ± 7.52 to 364.27 ± 6.85 mg GAE/kg fw in rinds), lycopene (ranging from 1.15 ± 0.42 to 103.60 ± 1.69 mg/kg fw in pulps), sugar, and nitrate levels, revealing the influence of genetics and environment on the fruit’s phytochemical profile. Moreover, several Lithuanian watermelon cultivars exhibited comparable or superior levels of key bioactive compounds relative to imported varieties. These findings underscore the potential of watermelon rind and pulp as valuable sources of antioxidants and other bioactive phytochemicals, relevant for nutritional enhancement and medicinal applications. The results contribute to a deeper understanding of watermelon cultivation in Lithuania and highlight opportunities for optimizing agricultural practices to enhance the health benefits associated with this important fruit. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

21 pages, 8317 KiB  
Article
Genome-Wide Identification and Expression Analysis of Chitinase Genes in Watermelon under Abiotic Stimuli and Fusarium oxysporum Infection
by Changqing Xuan, Mengjiao Feng, Xin Li, Yinjie Hou, Chunhua Wei and Xian Zhang
Int. J. Mol. Sci. 2024, 25(1), 638; https://doi.org/10.3390/ijms25010638 - 4 Jan 2024
Cited by 16 | Viewed by 2855
Abstract
Chitinases, which catalyze the hydrolysis of chitin, the primary components of fungal cell walls, play key roles in defense responses, symbiotic associations, plant growth, and stress tolerance. In this study, 23 chitinase genes were identified in watermelon (Citrullus lanatus [Thunb.]) and classified [...] Read more.
Chitinases, which catalyze the hydrolysis of chitin, the primary components of fungal cell walls, play key roles in defense responses, symbiotic associations, plant growth, and stress tolerance. In this study, 23 chitinase genes were identified in watermelon (Citrullus lanatus [Thunb.]) and classified into five classes through homology search and phylogenetic analysis. The genes with similar exon-intron structures and conserved domains were clustered into the same class. The putative cis-elements involved in the responses to phytohormone, stress, and plant development were identified in their promoter regions. A tissue-specific expression analysis showed that the ClChi genes were primarily expressed in the roots (52.17%), leaves (26.09%), and flowers (34.78%). Moreover, qRT-PCR results indicate that ClChis play multifaceted roles in the interaction between plant/environment. More ClChi members were induced by Race 2 of Fusarium oxysporum f. sp. niveum, and eight genes were expressed at higher levels on the seventh day after inoculation with Races 1 and 2, suggesting that these genes play a key role in the resistance of watermelon to Fusarium wilt. Collectively, these results improve knowledge of the chitinase gene family in watermelon species and help to elucidate the roles played by chitinases in the responses of watermelon to various stresses. Full article
(This article belongs to the Special Issue Molecular Genetics and Plant Breeding 3.0)
Show Figures

Figure 1

15 pages, 9852 KiB  
Article
Antagonistic Activity of Streptomyces alfalfae 11F against Fusarium Wilt of Watermelon and Transcriptome Analysis Provides Insights into the Synthesis of Phenazine-1-Carboxamide
by Dan Dong, Maoying Li, Taotao Zhang, Zhenfeng Niu, Guoping Xue, Hongmei Bai, Wenyu Zhao, Jiajia Yu, Wei Jiang and Huiling Wu
Plants 2023, 12(22), 3796; https://doi.org/10.3390/plants12223796 - 8 Nov 2023
Cited by 4 | Viewed by 1947
Abstract
Streptomyces alfalfa strain 11F has inhibitory effects on many phytopathogenic fungi and improves the establishment and biomass yield of switchgrass. However, the antagonistic effects of strain 11F on Fusarium wilt of watermelon and its secondary metabolites that contribute to its biocontrol activity are [...] Read more.
Streptomyces alfalfa strain 11F has inhibitory effects on many phytopathogenic fungi and improves the establishment and biomass yield of switchgrass. However, the antagonistic effects of strain 11F on Fusarium wilt of watermelon and its secondary metabolites that contribute to its biocontrol activity are poorly understood. We evaluated the antagonistic and growth-promoting effects of strain 11F and conducted a transcriptome analysis to identify the metabolites contributing to antifungal activity. Strain 11F had marked inhibitory effects on six fungal pathogens. The incidence of Fusarium wilt of watermelon seedlings was decreased by 46.02%, while watermelon seedling growth was promoted, as indicated by plant height (8.7%), fresh weight (23.1%), and dry weight (60.0%). Clean RNA-sequencing data were annotated with 7553 functional genes. The 2582 differentially expressed genes (DEGs) detected in the Control vs. Case 2 comparison were divided into 42 subcategories of the biological process, cellular component, and molecular function Gene Ontology categories. Seven hundred and forty functional genes (55.47% of the DEGs) were assigned to Kyoto Encyclopedia of Genes and Genomes metabolic pathways, reflecting the complexity of the strain 11F metabolic regulatory system. The expression level of the gene phzF, which encodes an enzyme essential for phenazine-1-carboxylic acid (PCA) synthesis, was downregulated 3.7-fold between the 24 h and 48 h fermentation time points, suggesting that strain 11F can produce phenazine compounds. A phenazine compound from 11F was isolated and identified as phenazine-1-carboxamide (PCN), which contributed to the antagonistic activity against Fusarium oxysporum f. sp. niveum. PCA was speculated to be the synthetic precursor of PCN. The downregulation in phzF expression might be associated with the decrease in PCA accumulation and the increase in PCN synthesis in strain 11F from 24 to 48 h. Streptomyces alfalfae 11F protects watermelon seedlings from Fusarium wilt of watermelon and promotes seedling growth. The transcriptome analysis of strain 11F provides insights into the synthesis of PCN, which has antifungal activity against F. oxysporum f. sp. niveum of watermelon. Full article
(This article belongs to the Special Issue Embracing Systems Thinking in Crop Protection Science)
Show Figures

Figure 1

5 pages, 243 KiB  
Proceeding Paper
Clustered Regularly Interspaced Short Palindromic Repeats-Cas: A Potential Genome Editing Tool in Crop Improvement
by Lakkur Sannaiah Mamatha Bhanu
Biol. Life Sci. Forum 2023, 27(1), 48; https://doi.org/10.3390/IECAG2023-15873 - 7 Nov 2023
Viewed by 1125
Abstract
An innovative method, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system, has significantly revolutionized agriculture by improving the quality of crops and sustaining the environment. CRISPR technology is based on the natural defense mechanism that bacteria and archaea have adapted [...] Read more.
An innovative method, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system, has significantly revolutionized agriculture by improving the quality of crops and sustaining the environment. CRISPR technology is based on the natural defense mechanism that bacteria and archaea have adapted against invading viruses or other foreign DNA. A genome engineering tool employs a similar mechanism for exceptional crop breeding progression due to its precise gene editing accuracy. This study outlines the present application of CRISPR/Cas9 technology to assess agricultural crop yield, quality, and texture modulation, palatability, nutritional components, disease resistance, and environmental stress. In plants, CRISPR/Cas9 geneediting includes the selection of specific target sites, single guide (sgRNA) design and synthesis, ribonucleoprotein (RNP) or transformation carrier delivery in plant cells, and gene-edited plant transformation and regeneration. The knockout of three mlo genes in wheat confers wheat resistance to powdery mildew disease. The CRISPR/Cas9 system knockout gene Clpsk1, which encodes phytosulfokine, indicates that watermelon with enhanced Fusarium wilt disease resistance can regulate plant immunity. The geneppa6 knockout has improved rice’s ability to withstand alkaline stress. Furthermore, the simultaneous editing of multiple genes has contributed to pathway-level plant biotechnology research that widely expands the genome engineering of agronomic traits and its adoptability. All the CRISPR/Cas systems require a specific PAM sequence, which guides the editing sites with specificity. Consequently, developing a PAM-independent CRISPR/Cas system, exploring new relationship between Cas proteins and the modification of Cas enzymes for expanding PAM variants will boost the application of CRISPR/Cas in applied research on agriculture, precision breeding, and ensuring food security. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Agronomy)
19 pages, 14107 KiB  
Article
A Biocontrol Strain of Serratia plymuthica MM Promotes Growth and Controls Fusarium Wilt in Watermelon
by Zhaoyu Li, Jinxiu Ma, Jiajia Li, Yinglong Chen, Zhihong Xie, Yongqiang Tian, Xu Su, Tian Tian and Tong Shen
Agronomy 2023, 13(9), 2437; https://doi.org/10.3390/agronomy13092437 - 21 Sep 2023
Cited by 6 | Viewed by 2628
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (FON), is a predominant and devastating soil-borne disease that results in significant yield losses in watermelon cultivation. In this study, a strain MM isolated from the herbage rhizosphere soil, exhibited an inhibition rate of [...] Read more.
Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (FON), is a predominant and devastating soil-borne disease that results in significant yield losses in watermelon cultivation. In this study, a strain MM isolated from the herbage rhizosphere soil, exhibited an inhibition rate of 65.46% against FON, leading to mycelial collapse, atrophy, and deformation. In pot experiments, strain MM effectively controlled Fusarium wilt of watermelon, showing a control efficacy of 74.07%. Through morphological observation and 16S rDNA gene sequencing, strain MM was identified as Serratia plymuthica. Additionally, S. plymuthica MM demonstrated antagonistic activity against eight plant pathogens, indicating that MM had broad-spectrum antifungal activity. The strain also exhibited the ability to synthesize siderophores and indole acetic acid (IAA), both of which are growth-promoting compounds. Moreover, strain MM secreted various extracellular enzymes, including protease, chitinase, β-glucanase, and cellulase. This ability allowed S. plymuthica MM to readily colonize watermelon roots and promote seedling growth. Inoculation with S. plymuthica MM increased the activity of PAL, POD, PPO, and CAT enzymes associated with watermelon defense. Furthermore, qRT-PCR analysis revealed up-regulation of LOX, POD, PAL, ClPR3, and C4H genes, which are related to plant disease resistance. The results indicated that S. plymuthica MM enhances watermelon plants’ resistance to FON by activating the JA, SA, and shikimic acid phenylpropanoid–lignin synthesis pathways. Gas chromatography–mass spectrometry (GC-MS) analysis of S. plymuthica MM culture supernatant identified piperazinedione, pyrrolo[1,2-a]pyrazine-1,4-dione, and octadecenamide as the main antimicrobial substances. Overall, S. plymuthica MM shows promise as a biocontrol agent against Fusarium wilt of watermelon, suggesting its potential for the development of a new biocontrol agent. Full article
(This article belongs to the Special Issue Advances in Plant–Fungal Pathogen Interactions)
Show Figures

Figure 1

10 pages, 2545 KiB  
Article
Synthesis, Crystal Structure, and Antifungal Activity of Quinazolinone Derivatives
by Rong Zeng, Cong Huang, Jie Wang, Yuan Zhong, Qingwen Fang, Shuzhen Xiao, Xuliang Nie, Shangxing Chen and Dayong Peng
Crystals 2023, 13(8), 1254; https://doi.org/10.3390/cryst13081254 - 14 Aug 2023
Cited by 10 | Viewed by 2237
Abstract
In this paper, four new compounds with quinazolinone structure were designed and synthesized based on the special biological activity of quinazolinone. The four new compounds containing quinazolinone structures were synthesized using a one-pot method after intramolecular cyclization and dehydration catalyzed by aqueous methylamine [...] Read more.
In this paper, four new compounds with quinazolinone structure were designed and synthesized based on the special biological activity of quinazolinone. The four new compounds containing quinazolinone structures were synthesized using a one-pot method after intramolecular cyclization and dehydration catalyzed by aqueous methylamine solution. Their structures were characterized using 1H NMR, 13C NMR, FT-IR, and HRMS, and the crystal structure of 2a was characterized using X-ray diffraction. In their potential antifungal activity tests, it was found that the four newly synthesized compounds exhibited significant antifungal activity against all seven phytopathogenic fungi at concentrations of 150 and 300 mg/L. Among them, the target compound 2c showed the best inhibitory effect against Fusarium oxysporum f. sp. Niveum fungus, with 62.42% inhibition at a concentration of 300 mg/L. Compound 2c is expected to be a leading compound for the treatment of watermelon Fusarium wilt in the future, which is worth further study. Full article
(This article belongs to the Special Issue Coordination Complexes: Synthesis, Characterization and Application)
Show Figures

Figure 1

16 pages, 5430 KiB  
Article
The Extracellular Lipopeptides and Volatile Organic Compounds of Bacillus subtilis DHA41 Display Broad-Spectrum Antifungal Activity against Soil-Borne Phytopathogenic Fungi
by Dhabyan Mutar Kareem Al-Mutar, Muhammad Noman, Noor Salih Abduljaleel Alzawar, Hadi Hussein Qasim, Dayong Li and Fengming Song
J. Fungi 2023, 9(8), 797; https://doi.org/10.3390/jof9080797 - 28 Jul 2023
Cited by 8 | Viewed by 2511
Abstract
Fusarium oxysporum f. sp. niveum (Fon) is a devastating soil-borne fungus causing Fusarium wilt in watermelon. The present study investigated the biochemical mechanism underlying the antifungal activity exhibited by the antagonistic bacterial strain DHA41, particularly against Fon. Molecular characterization based [...] Read more.
Fusarium oxysporum f. sp. niveum (Fon) is a devastating soil-borne fungus causing Fusarium wilt in watermelon. The present study investigated the biochemical mechanism underlying the antifungal activity exhibited by the antagonistic bacterial strain DHA41, particularly against Fon. Molecular characterization based on the 16S rRNA gene confirmed that DHA41 is a strain of Bacillus subtilis, capable of synthesizing antifungal lipopeptides, such as iturins and fengycins, which was further confirmed by detecting corresponding lipopeptide biosynthesis genes, namely ItuB, ItuD, and FenD. The cell-free culture filtrate and extracellular lipopeptide extract of B. subtilis DHA41 demonstrated significant inhibitory effects on the mycelial growth of Fon, Didymella bryoniae, Sclerotinia sclerotiorum, Fusarium graminearum, and Rhizoctonia solani. The lipopeptide extract showed emulsification activity and inhibited Fon mycelial growth by 86.4% at 100 µg/mL. Transmission electron microscope observations confirmed that the lipopeptide extract disrupted Fon cellular integrity. Furthermore, B. subtilis DHA41 emitted volatile organic compounds (VOCs) that exhibited antifungal activity against Fon, D. bryoniae, S. sclerotiorum, and F. graminearum. These findings provide evidence that B. subtilis DHA41 possesses broad-spectrum antifungal activity against different fungi pathogens, including Fon, through the production of extracellular lipopeptides and VOCs. Full article
(This article belongs to the Special Issue Control of Crop Fungal Diseases)
Show Figures

Figure 1

19 pages, 3057 KiB  
Article
Cyclic Lipopeptides of Bacillus amyloliquefaciens DHA6 Are the Determinants to Suppress Watermelon Fusarium Wilt by Direct Antifungal Activity and Host Defense Modulation
by Dhabyan Mutar Kareem Al-Mutar, Muhammad Noman, Noor Salih Abduljaleel Alzawar, Azizullah, Dayong Li and Fengming Song
J. Fungi 2023, 9(6), 687; https://doi.org/10.3390/jof9060687 - 19 Jun 2023
Cited by 6 | Viewed by 2463
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (Fon), poses a serious threat to watermelon productivity. We previously characterized six antagonistic bacterial strains, including DHA6, capable of suppressing watermelon Fusarium wilt under greenhouse conditions. This study investigates the role of [...] Read more.
Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (Fon), poses a serious threat to watermelon productivity. We previously characterized six antagonistic bacterial strains, including DHA6, capable of suppressing watermelon Fusarium wilt under greenhouse conditions. This study investigates the role of extracellular cyclic lipopeptides (CLPs) produced by strain DHA6 in Fusarium wilt suppression. Taxonomic analysis based on the 16S rRNA gene sequence categorized strain DHA6 as Bacillus amyloliquefaciens. MALDI-TOF mass spectrometry identified five families of CLPs, i.e., iturin, surfactin, bacillomycin, syringfactin, and pumilacidin, in the culture filtrate of B. amyloliquefaciens DHA6. These CLPs exhibited significant antifungal activity against Fon by inducing oxidative stress and disrupting structural integrity, inhibiting mycelial growth and spore germination. Furthermore, pretreatment with CLPs promoted plant growth and suppressed watermelon Fusarium wilt by activating antioxidant enzymes (e.g., catalase, superoxide dismutase, and peroxidase) and triggering genes involved in salicylic acid and jasmonic acid/ethylene signaling in watermelon plants. These results highlight the critical roles of CLPs as determinants for B. amyloliquefaciens DHA6 in suppressing Fusarium wilt through direct antifungal activity and modulation of plant defense responses. This study provides a foundation for developing B. amyloliquefaciens DHA6-based biopesticides, serving as both antimicrobial agents and resistance inducers, to effectively control Fusarium wilt in watermelon and other crops. Full article
Show Figures

Figure 1

12 pages, 3197 KiB  
Article
Screening Biocontrol Agents for Cash Crop Fusarium Wilt Based on Fusaric Acid Tolerance and Antagonistic Activity against Fusarium oxysporum
by Qinggang Guo, Shixin Li, Lihong Dong, Zhenhe Su, Peipei Wang, Xiaomeng Liu and Ping Ma
Toxins 2023, 15(6), 381; https://doi.org/10.3390/toxins15060381 - 5 Jun 2023
Cited by 4 | Viewed by 2898
Abstract
Fusarium wilt, caused by Fusarium oxysporum, is one of the most notorious diseases of cash crops. The use of microbial fungicides is an effective measure for controlling Fusarium wilt, and the genus Bacillus is an important resource for the development of microbial [...] Read more.
Fusarium wilt, caused by Fusarium oxysporum, is one of the most notorious diseases of cash crops. The use of microbial fungicides is an effective measure for controlling Fusarium wilt, and the genus Bacillus is an important resource for the development of microbial fungicides. Fusaric acid (FA) produced by F. oxysporum can inhibit the growth of Bacillus, thus affecting the control efficacy of microbial fungicides. Therefore, screening FA-tolerant biocontrol Bacillus may help to improve the biocontrol effect on Fusarium wilt. In this study, a method for screening biocontrol agents against Fusarium wilt was established based on tolerance to FA and antagonism against F. oxysporum. Three promising biocontrol bacteria, named B31, F68, and 30833, were obtained to successfully control tomato, watermelon, and cucumber Fusarium wilt. Strains B31, F68, and 30833 were identified as B. velezensis by phylogenetic analysis of the 16S rDNA, gyrB, rpoB, and rpoC gene sequences. Coculture assays revealed that strains B31, F68, and 30833 showed increased tolerance to F. oxysporum and its metabolites compared with B. velezensis strain FZB42. Further experiments confirmed that 10 µg/mL FA completely inhibited the growth of strain FZB42, while strains B31, F68, and 30833 maintained normal growth at 20 µg/mL FA and partial growth at 40 µg/mL FA. Compared with strain FZB42, strains B31, F68, and 30833 exhibited significantly greater tolerance to FA. Full article
Show Figures

Figure 1

19 pages, 2180 KiB  
Article
Molecular Variability of the Fusarium solani Species Complex Associated with Fusarium Wilt of Melon in Iran
by Fatemeh Sabahi, Zia Banihashemi, Maryam Mirtalebi, Martijn Rep and Santa Olga Cacciola
J. Fungi 2023, 9(4), 486; https://doi.org/10.3390/jof9040486 - 18 Apr 2023
Cited by 7 | Viewed by 4071
Abstract
Species of the Fusarium solani species complex (FSSC) are responsible for the Fusarium wilt disease of melon (Cucumis melo), a major disease of this crop in Iran. According to a recent taxonomic revision of Fusarium based primarily on multilocus phylogenetic analysis, [...] Read more.
Species of the Fusarium solani species complex (FSSC) are responsible for the Fusarium wilt disease of melon (Cucumis melo), a major disease of this crop in Iran. According to a recent taxonomic revision of Fusarium based primarily on multilocus phylogenetic analysis, Neocosmospora, a genus distinct from Fusarium sensu stricto, has been proposed to accommodate the FSSC. This study characterized 25 representative FSSC isolates from melon collected in 2009–2011 during a field survey carried out in five provinces of Iran. Pathogenicity assays showed the isolates were pathogenic on different varieties of melon and other cucurbits, including cucumber, watermelon, zucchini, pumpkin, and bottle gourd. Based on morphological characteristics and phylogenetic analysis of three genetic regions, including nrDNA internal transcribed spacer (ITS), 28S nrDNA large subunit (LSU) and translation elongation factor 1-alpha (tef1), Neocosmospora falciformis (syn. F. falciforme), N. keratoplastica (syn. F. keratoplasticum), N. pisi (syn. F. vanettenii), and Neocosmospora sp. were identified among the Iranian FSSC isolates. The N. falciformis isolates were the most numerous. This is the first report of N. pisi causing wilt and root rot disease in melon. Iranian FSSC isolates from different regions in the country shared the same multilocus haplotypes suggesting a long-distance dispersal of FSSC, probably through seeds. Full article
Show Figures

Figure 1

22 pages, 4404 KiB  
Article
Suppression of Fusarium Wilt in Watermelon by Bacillus amyloliquefaciens DHA55 through Extracellular Production of Antifungal Lipopeptides
by Dhabyan Mutar Kareem Al-Mutar, Noor Salih Abduljaleel Alzawar, Muhammad Noman, Azizullah, Dayong Li and Fengming Song
J. Fungi 2023, 9(3), 336; https://doi.org/10.3390/jof9030336 - 9 Mar 2023
Cited by 28 | Viewed by 4419
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. niveum is one of the most devastating fungal diseases affecting watermelon (Citrullus lanatus L.). The present study aimed to identify potent antagonistic bacterial strains with substantial antifungal activity against F. oxysporum f. sp. niveum [...] Read more.
Fusarium wilt caused by Fusarium oxysporum f. sp. niveum is one of the most devastating fungal diseases affecting watermelon (Citrullus lanatus L.). The present study aimed to identify potent antagonistic bacterial strains with substantial antifungal activity against F. oxysporum f. sp. niveum and to explore their potential for biocontrol of Fusarium wilt in watermelon. Out of 77 isolates from watermelon rhizosphere, six bacterial strains—namely, DHA4, DHA6, DHA10, DHA12, DHA41, and DHA55—exhibited significant antifungal activity against F. oxysporum f. sp. niveum, as well as other phytopathogenic fungi, including Didymella bryoniae, Sclerotinia sclerotiorum, Fusarium graminearum, and Rhizoctonia solani. These Gram-positive, rod-shaped, antagonistic bacterial strains were able to produce exo-enzymes (e.g., catalase, protease, and cellulase), siderophore, and indole-3-acetic acid and had the ability to solubilize phosphate. In greenhouse experiments, these antagonistic bacterial strains not only promoted plant growth but also suppressed Fusarium wilt in watermelon. Among these strains, DHA55 was the most effective, achieving the highest disease suppression of 74.9%. Strain DHA55 was identified as Bacillus amyloliquefaciens based on physiological, biochemical, and molecular characterization. B. amyloliquefaciens DHA55 produced various antifungal lipopeptides, including iturin, surfactin, and fengycin, that showed significant antifungal activities against F. oxysporum f. sp. niveum. Microscopic observations revealed that B. amyloliquefaciens DHA55 exhibited an inhibitory effect against F. oxysporum f. sp. niveum on the root surface of watermelon plants. These results demonstrate that B. amyloliquefaciens DHA55 can effectively promote plant growth and suppress the development of watermelon Fusarium wilt, providing a promising agent for the biocontrol of Fusarium wilt in watermelon. Full article
(This article belongs to the Special Issue Plant Protection: New Green Antifungal Agents)
Show Figures

Figure 1

23 pages, 4310 KiB  
Article
The SUMOylation Pathway Components Are Required for Vegetative Growth, Asexual Development, Cytotoxic Responses, and Programmed Cell Death Events in Fusarium oxysporum f. sp. niveum
by Azizullah, Muhammad Noman, Yizhou Gao, Hui Wang, Xiaohui Xiong, Jiajing Wang, Dayong Li and Fengming Song
J. Fungi 2023, 9(1), 94; https://doi.org/10.3390/jof9010094 - 9 Jan 2023
Cited by 11 | Viewed by 2684
Abstract
SUMOylation is an essential protein modification process that regulates numerous crucial cellular and biochemical processes in phytopathogenic fungi, and thus plays important roles in multiple biological functions. The present study characterizes the SUMOylation pathway components, including SMT3 (SUMO), AOS1 (an E1 enzyme), UBC9 [...] Read more.
SUMOylation is an essential protein modification process that regulates numerous crucial cellular and biochemical processes in phytopathogenic fungi, and thus plays important roles in multiple biological functions. The present study characterizes the SUMOylation pathway components, including SMT3 (SUMO), AOS1 (an E1 enzyme), UBC9 (an E2 enzyme), and MMS21 (an E3 ligase), in Fusarium oxysporum f. sp. niveum (Fon), the causative agent of watermelon Fusarium wilt, in terms of the phylogenetic relationship, gene/protein structures, and basic biological functions. The SUMOylation components FonSMT3, FonAOS1, FonUBC9, and FonMMS21 are predominantly located in the nucleus. FonSMT3, FonAOS1, FonUBC9, and FonMMS21 are highly expressed in the germinating macroconidia, but their expression is downregulated gradually in infected watermelon roots with the disease progression. The disruption of FonUBA2 and FonSIZ1 seems to be lethal in Fon. The deletion mutant strains for FonSMT3, FonAOS1, FonUBC9, and FonMMS21 are viable, but exhibit significant defects in vegetative growth, asexual reproduction, conidial morphology, spore germination, responses to metal ions and DNA-damaging agents, and apoptosis. The disruption of FonSMT3, FonAOS1, FonUBC9, and FonMMS21 enhances sensitivity to cell wall-perturbing agents, but confers tolerance to digestion by cell wall-degrading enzymes. Furthermore, the disruption of FonSMT3, FonAOS1, and FonUBC9 negatively regulates autophagy in Fon. Overall, these results demonstrate that the SUMOylation pathway plays vital roles in regulating multiple basic biological processes in Fon, and, thus, can serve as a potential target for developing a disease management approach to control Fusarium wilt in watermelon. Full article
(This article belongs to the Special Issue Signal Transductions in Fungi 2.0)
Show Figures

Figure 1

13 pages, 3049 KiB  
Article
Thymol Induces Cell Death of Fusarium oxysporum f. sp. niveum via Triggering Superoxide Radical Accumulation and Oxidative Injury In Vitro
by Yini Hao, Jiao Zhang, Changwei Sun, Xuenai Chen, Yuxiao Wang, Haiyan Lu, Jian Chen, Zhiqi Shi, Li Zhang, Lifei Yang and Sijie Huang
Agronomy 2023, 13(1), 189; https://doi.org/10.3390/agronomy13010189 - 6 Jan 2023
Cited by 8 | Viewed by 2985
Abstract
Fusarium oxysporum f. sp. niveum (FON) causes watermelon wilt that is one of the major disease-causing yield losses of watermelon. Sustainable development of agriculture requires controlling watermelon wilt disease with good environmental performance. One important approach is to identify environmental-friendly compounds [...] Read more.
Fusarium oxysporum f. sp. niveum (FON) causes watermelon wilt that is one of the major disease-causing yield losses of watermelon. Sustainable development of agriculture requires controlling watermelon wilt disease with good environmental performance. One important approach is to identify environmental-friendly compounds with inhibitory activity against FON. Thymol is a plant-derived compound that is safe for ecology. Little is known about the application of thymol in agriculture. In this study, we studied the inhibitory activity of thymol against FON by using morphological, physiological, and histochemical approaches. Thymol significantly inhibited colony diameter of FON in a dose-dependent manner, with EC50 at 21 µg/mL. Thymol at 10, 21, and 35 µg/mL decreased the fresh weight of FON mycelia by 29.0%, 50.6%, and 69.5%, respectively. Microscopic observation revealed irregular damage and loss of shape of mycelia upon thymol exposure. Thymol induced the accumulation of superoxide radical in mycelial cells and accompanied increased activity of antioxidative enzymes (SOD, superoxide dismutase; CAT, catalase). Thymol induced membrane permeability was indicated by lipid peroxidation and electrolyte leakage (increased by 29–58%) in mycelial cells. These results suggested that thymol induced oxidative damage in mycelia, which may be one of the possible reasons for thymol-induced mycelial cell death observed with fluorescent detection. Thymol decreased the production of conidia and inhibited the germination of conidia. Thymol induced superoxide radical accumulation, lipid peroxidation, and cell death in conidia as well. All of these results revealed the inhibitory activity of thymol against FON, which may have resulted from the superoxide radical-induced oxidative injury in both conidia and mycelia of FON. Full article
Show Figures

Figure 1

Back to TopTop