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Abstract: An innovative method, the clustered regularly interspaced short palindromic repeats
(CRISPR)/Cas9 gene editing system, has significantly revolutionized agriculture by improving the
quality of crops and sustaining the environment. CRISPR technology is based on the natural defense
mechanism that bacteria and archaea have adapted against invading viruses or other foreign DNA. A
genome engineering tool employs a similar mechanism for exceptional crop breeding progression
due to its precise gene editing accuracy. This study outlines the present application of CRISPR/Cas9
technology to assess agricultural crop yield, quality, and texture modulation, palatability, nutritional
components, disease resistance, and environmental stress. In plants, CRISPR/Cas9 geneediting
includes the selection of specific target sites, single guide (sgRNA) design and synthesis, ribonucleo-
protein (RNP) or transformation carrier delivery in plant cells, and gene-edited plant transformation
and regeneration. The knockout of three mlo genes in wheat confers wheat resistance to powdery
mildew disease. The CRISPR/Cas9 system knockout gene Clpsk1, which encodes phytosulfokine,
indicates that watermelon with enhanced Fusarium wilt disease resistance can regulate plant immu-
nity. The geneppa6 knockout has improved rice’s ability to withstand alkaline stress. Furthermore,
the simultaneous editing of multiple genes has contributed to pathway-level plant biotechnology
research that widely expands the genome engineering of agronomic traits and its adoptability. All the
CRISPR/Cas systems require a specific PAM sequence, which guides the editing sites with specificity.
Consequently, developing a PAM-independent CRISPR/Cas system, exploring new relationship
between Cas proteins and the modification of Cas enzymes for expanding PAM variants will boost
the application of CRISPR/Cas in applied research on agriculture, precision breeding, and ensuring
food security.
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1. Introduction

The agricultural food production system is currently facing challenges due to climate
change and environmental stress, resulting in reduced grain quality and crop yield. Crop
yield and quality areof utmost significance to provide nutritional security to mankind; the
current scenario of food security is challenging with the growing population and extreme
climatic fluctuations [1]. By 2025, the global population is projected to reach nearly 10 mil-
lion, necessitating urgent efforts to eradicate global hunger., a sustainable increase in food
production by around 60–100% is needed (FAOSTAT, 2016). World food production and its
distribution depends on farmers, breeders as well as policy makers and the government
adapting scientific approaches to ensure food security and eliminate hunger [2]. Traditional
breeding methods are insufficient for growing populations, leading to the use of recent
genome editing techniques for effective population growth management. Genome editing
(GE) is a heritable technique that involves the deletion and insertion of single nucleotides
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or large-fragment substitutions in the plant genome [3]. However, Genome editing sig-
nificantly impacts the agronomic quality traits of various monocots and dicots, thereby
reducing environmental stress, climatic fluctuations, yield, and nutritional quality [4].
Genome editing involvessequence-specific nucleases that targets the DNA at a specific
site and create double-stranded breaks (DSB); these breaks are repaired through (NHEJ)
non-homologous end joining or (HDR) homologous-directed recombination pathways,
producing insertion, deletions (INDEL) or substitutions of the base in the target region of
the DNA [5]. Gene-edited crops are of much use nowadays for breeding new varieties,
as there areno marketing and consumption issues. Waltz [6] argues that the ethical issue
surrounding genetically modified crops is less significant than that of genome-edited crops.
First-generation genome editing technologies, developed in the 1900s, involve zinc finger
nucleases (ZFNs) and FoK1 endonuclease breaks on DNA zinc finger motifs [7]. This has
been advantageous in many plants, like maize, soya bean and tobacco [8]. Transcription
activator-like effector nucleases (TALENs), a substitute for ZFNs, are naturally occurring
extended segments of transcription activator-like effector (TALE) sequences attached to the
Fokl domain, with TALE repeat arrays [9]. They are advantages over ZFNs and areused
to initiate non-homologous mutations in plants [10] and are used in rice [11], tobacco [12]
and Arabidopsis [13]. The advancement of genome editing technologies, particularly
CRISPR/Cas9, has significantly influenced plant breeding research, enabling effective
application of this second-generation gene editing technique in various crop plants [14].

2. CRISPR/Cas9 GeneEditing Technology

Escherichia coli were the first model organism to be studied using the CRISPR sys-
tem, and archaea were also examined over 30 years ago [15,16].Cas proteins, linked to
CRISPR, are involved in DNA repair, forming an adaptive immune system RNA-guided
and regulated by CRISPR RNA (crRNA) with either class 1 or class 2 Cas proteins. [17,18]
Based on a particular protein that cleaves specific DNA, the two classes of Cas proteins are
divided into three types. In the class 1 CRISPR-Cas systems, the effector module consists of
a multi-protein complex in the effector module with three types, I, III and IV, whereas the
class 2 systems have a single effector protein with the II, V and VI types [18]. Furthermore,
based on the CRISPR-Cas locus architecture, there are many subtypes. Makarova et al.
(2020) reported two classes of CRISPR-Cas, six types and thirty-three subtypes.

MechanismsofCRISPR/Cas9

CRISPR-Cas9 recognizes and cleaves foreign DNA or RNA segment in a sequence-
specific manner. This is an adaptive defense mechanism in prokaryotes which can be
divided into three stages: (i) spacer acquisition/adaptation, (ii) the biogenesis of crRNA,
and (iii) target interference [19]. In The CRISPR array includes a sequence of mobile genetic
elements and a protospacer for spacer acquisition/adaptation, resulting in the creation
of a new spacer. This process allows one to memorize the foreign DNA/RNA inthe host
organism, and then it is transcribed into long-precursor CRISPR RNA (pre-crRNA) by
the two proteins, Cas1 and Cas2 [20]. The spacer acquisition event is processed by the
Cas6 protein in the type I and III systems.In the type II CRISPR-Cas systems, crRNA
maturation requires tracrRNA, RNase III and the Cas9 protein. In the type II-A CRISPR-Cas
systems, the (protospacer adjacent motif) PAM-recognizing domain of Cas9 is involved in
protospacer selection [21]. Later, Cas9 recruits the other proteins, Cas1, Cas2 and possibly
Csn2, for the integration of the new spacer into the CRISPR array, which is conserved
among all the class II CRISPR-Cas systems [22]. The biogenesis of crRNA after adaptation
is a crucial process, the CRISPR array is transcribed into a long-precursor crRNA (pre-
crRNA) that is again processed into mature guide crRNAs containing the memorized
foreign sequences [23]. The type I and III Cas6 proteins carryout the processing step to
obtain intermediate species of crRNAs that are flanked by a short 5′ tag. In the type II
systems, tracrRNA carries out the processing of pre-crRNA. The anti-repeat sequence of this
RNA creates an RNA duplex that repeats the pre-crRNA using Cas9. The duplex is cleaved
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by RNase III, forming an intermediate crRNA that undergoes further maturation, resulting
in the mature small-guide RNA. Small-guide RNA, which has matured guide interference
with invading nucleic acids, serves as the final defense step against these invaders [24].
The class 1 systems engage cascade (CRISPR-associated complex for antiviral defense)-like
Cas3 complexes to achieve target degradation, while in the class 2 systems, a single effector
protein is sufficient for target interference; the tracrRNA: crRNA duplex guides the effector
protein Cas9 to create a break in the target double-stranded DNA [5,25,26].

3. Applications of CRISPR-Cas in Crop Improvement

CRISPR/Cas9 gene editing has been successfully utilized to develop disease-resistant
crop varieties and enhance their resistance to significant environmental stressors. Shan
et al. [27] study tested rice protoplasts for rice genes responsible for abiotic stresses using
CRISPR-Cas9 technique, including betaine aldehyde dehydrogenase (OsBADH2), mitogen-
activated protein kinase (OsMPK2) and phytoene desaturase (OsPDS). The CRISPR/Cas9-
mediated genome editing of OsERF922 in rice has been found to enhance resistance against
the pathogen Magnaporthe oryzae, which causes blast disease [28]. Gene editing wasalso
demonstrated in wheat; CRISPR TaMLO knockout showed resistance to powdery mildew
disease caused by Blumeriagraminis f. sp. Tritici (Btg). Kim et al. [29] successfully expressed
around 70% of wheat protoplasts for dehydration-responsive element binding protein 2
(TaDREB2) and wheat ethylene-responsive factor 3 (TaERF3), revealing the importance
of these proteins in the plant’s development. Similarly, the genes ZmIPK1A, ZmIPK,
and ZmMRP4 were targeted to knockout, resulting in the synthesis of anti-nutritional
factors, such as phytic acid [30]. Furthermore, the maize U6 snRNA promoter modified
the carotenoid biosynthesis gene (PSY1) in maize, resulting in white kernels and albino
seedlings [31]. The studies on Arabidopsis by Wang et al. [32] showed CRISPR/Cas9-
based target genome editing;three phenology-related Arabidopsis genes, brassinosteroid
insensitive1 (BRI1), jasmonate-zim-domain protein 1 (JAZ1) and gibberellic acid insensitive
(GAI), were observed in the succeeding generations. A CRISPR/Cas9 genetic improvement
study on the Wx gene in the japonica rice variety successfully produced 5–12% grain
amylose content. The knockout of the gene DcMYB7, R2R3-MYB, in the solid purple
carrot resulted in yellow roots [33]. Most of the World Trade Organization members are
supporting the use of gene editing in agricultural innovation; this isthe first step towards
establishing a worldwide regulatory framework for a hunger-free world [34].

4. Conclusions

CRISPR/Cas-mediated gene editing is a game-changing technique with wide appli-
cation in crop improvement to increase the yield, nutritional value, disease resistance
and tolerance to environmental stress. In the last decade, it has beenused in many plant
systems, both in dicots and monocots, to combat abiotic and biotic stresses and to improve
the desirable agronomic traits. However, CRISPR/Cas9-based genome editing is gaining
popularity with several modifications to obtain suitable, edited, desired plants that will
help achieve the zero hunger sustainable goals ofthe growing human population.
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