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Abstract: Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (Fon), poses a serious threat
to watermelon productivity. We previously characterized six antagonistic bacterial strains, includ-
ing DHA6, capable of suppressing watermelon Fusarium wilt under greenhouse conditions. This
study investigates the role of extracellular cyclic lipopeptides (CLPs) produced by strain DHA6 in
Fusarium wilt suppression. Taxonomic analysis based on the 16S rRNA gene sequence categorized
strain DHA6 as Bacillus amyloliquefaciens. MALDI-TOF mass spectrometry identified five families
of CLPs, i.e., iturin, surfactin, bacillomycin, syringfactin, and pumilacidin, in the culture filtrate of
B. amyloliquefaciens DHA6. These CLPs exhibited significant antifungal activity against Fon by in-
ducing oxidative stress and disrupting structural integrity, inhibiting mycelial growth and spore
germination. Furthermore, pretreatment with CLPs promoted plant growth and suppressed wa-
termelon Fusarium wilt by activating antioxidant enzymes (e.g., catalase, superoxide dismutase,
and peroxidase) and triggering genes involved in salicylic acid and jasmonic acid/ethylene sig-
naling in watermelon plants. These results highlight the critical roles of CLPs as determinants for
B. amyloliquefaciens DHA6 in suppressing Fusarium wilt through direct antifungal activity and modu-
lation of plant defense responses. This study provides a foundation for developing B. amyloliquefaciens
DHA6-based biopesticides, serving as both antimicrobial agents and resistance inducers, to effectively
control Fusarium wilt in watermelon and other crops.

Keywords: biocontrol; extracellular lipopeptides; Fusarium oxysporum f. sp. niveum; Fusarium wilt;
induced systemic resistance; watermelon

1. Introduction

Beneficial microbes offer a promising and sustainable alternative to traditional chemi-
cal pesticides for the biological control of crop diseases [1,2]. Among these, bacteria from
the genus Bacillus and Pseudomonas as well as fungi such as Trichoderma spp. have been
extensively studied as biocontrol agents [1–3]. A multitude of microbial biocontrol agents
has been developed using Pseudomonas, Trichoderma, and Bacillus species (spp.) and applied
to manage fungal and bacterial diseases in crops [4]. Bacillus spp., due to their ubiqui-
tous distribution in soil, rhizosphere, and plant surfaces, are the most exploited beneficial
bacteria [1,5–9]. Specifically, Bacillus subtilis, Bacillus velezensis, and Bacillus amyloliquefa-
ciens have demonstrated effective suppression of Fusarium oxysporum (Fo)-caused Fusar-
ium wilt and root rot in a wide range of crop plants [9]. For instance, B. subtilis YB-04
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provided remarkable efficacy (>90%) in controlling cucumber Fusarium wilt (Fo f. sp.
cucumerinum) [10]. Similarly, B. amyloliquefaciens YN0904 and B. subtillis YN1419 conferred
an efficacy of >80% in controlling banana Fusarium wilt (Fo f. sp. cubense tropical race
4) [11]. The application of B. velezensis F21 significantly suppressed watermelon Fusarium
wilt (Fo f. sp. niveum; Fon) by 80.35% in the greenhouse and 65.81% in the field [12]. More-
over, seed treatment with Bacillus tequilensis PKDN31 and Bacillus licheniformis PKDL10
reduced (85%) the severity of tomato Fusarium wilt (Fo f. sp. lycopersici) [13]. These studies
strongly support the use of beneficial Bacillus spp. as an effective strategy for managing
Fusarium wilt in crops [9], a major threat to agriculture sustainability [14,15].

Bacillus spp., as biocontrol agents, can produce various bioactive metabolites that
operate distinct mechanisms involved in direct antimicrobial activity, plant growth pro-
motion, and defense response induction [16–18]. Among these, cyclic lipopeptides (CLPs),
such as iturins, fengycins, bacillomycin, and surfactins, represent the most important class
of bioactive compounds produced by Bacillus spp. [16,18]. For example, B. amyloliquefa-
ciens DHA55 produces four CLPs, iturin A, fengycin, surfactin, and bacillomycin, while
B. velezensis WB and Bs006 synthesize iturin A, fengycin, surfactin, and bacitracin [19–21].
These CLPs possess direct antimicrobial activity, making them potential candidates for
controlling plant diseases. For example, iturin A from B. amyloliquefaciens significantly
inhibited Fon and other pathogenic fungi [19,22], while fengycins produced by B. amyloliq-
uefaciens PPL showed inhibitory effects against Fo f. sp. lycopersici [23]. CLPs derived from
B. velezensis WB have been found to trigger oxidative stress and decrease toxin synthesis
in Fon, thus conferring antifungal activity [20]. Moreover, volatile antifungal compounds
such as phenylacetic acid and methylphenyl acetate produced by B. mycoides BM02, and
myriocin produced by B. amyloliquefaciens LZN01, have been reported to inhibit the growth
of Fo f. sp. lycopersici and Fon, respectively [24,25]. These facts suggest that Bacillus spp. can
produce a wide range of antimicrobial compounds, including CLPs, which hold potential
for development as biopesticides for direct application in the field for managing crop
diseases [1,18].

Although the direct antifungal activity of CLPs is recognized as a primary mechanism
in controlling plant diseases, they have also been demonstrated to stimulate an innate
immune response in plants, called induced systemic resistance (ISR), against multiple
biotic stresses [1,8]. For instance, plipastatin, surfactin, and mycosubtilin derived from
B. amyloliquefaciens and B. subtilis have been shown to induce disease resistance in straw-
berry and grapevines against anthracnose (Colletotrichum gloeosporioides) and gray mold
(Botrytis cinerea), respectively, via activating defense-related genes [26,27]. Similarly, CLPs
produced by B. amyloliquefaciens subsp. plantarum were found to induce defense genes
in lettuce against bottom rot fungus Rhizoctonia solani [28]. Further, Bacillus-produced
phenylacetic acid activated ISR against Fusarium wilt in tomato and banana [29–34]. The
CLPs-triggered ISR is generally dependent on the jasmonic acid (JA), ethylene (ET), or
brassino-steroid signaling pathways that regulate a sophisticated network of defense-
related genes in plants [29,31,35]. CLPs not only modulate defense-related genetic mecha-
nisms but also boost the antioxidant defense capacity in plants. For example, a B. velezensis
L-H15-produced CLP, P852, enhanced the basal immunity of faba beans against Fusarium
wilt by activating antioxidant enzymes, such as catalase, superoxide dismutase, and per-
oxidase [36]. However, further investigations are required to elucidate the specific role of
CLPs in inducing plant defense signaling pathways.

Watermelon Fusarium wilt, caused by the soil-borne root-infecting fungus Fon, is
a devastating disease that can result in serious yield loss [37]. Fon can persist in the
soil for extended periods, resulting in severe disease outbreaks, especially when mono-
cropping the system. Therefore, it is crucial to implement effective strategies to manage
Fusarium wilt and ensure the sustainable development of the watermelon industry. In
a previous study, we characterized six antagonistic bacterial strains isolated from the
rhizosphere of field-grown watermelon plants, which exhibited plant growth-promoting
and Fusarium wilt-suppressing ability in watermelon [19]. In the present study, we aimed
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to elucidate the role and underlying mechanisms of B. amyloliquefaciens DHA6-derived
CLPs in promoting plant growth and suppressing Fusarium wilt in watermelon. Our
findings demonstrate that CLPs are critical determinants of the biocontrol capacity of
B. amyloliquefaciens DHA6 against Fusarium wilt, which displayed not only direct antifungal
activity against Fon but also performed the immunomodulatory role in watermelon plants.
Thus, our study highlights the significance of CLPs as key bioactive compounds in the
biocontrol of Fusarium wilt in watermelon by B. amyloliquefaciens DHA6, and provides a
basis for developing more sustainable and eco-friendly strategies for crop protection.

2. Materials and Methods
2.1. Growth Conditions for Fon, DHA6, and Watermelon Plants

The Fon strain ZJ1 was cultured on potato dextrose agar (PDA; 200 g potato extract,
20 g glucose, 1 L ddH2O) [38], while the spore suspension (3 × 106 spores/mL) used for
inoculation was prepared by growing the fungus in mung bean broth (15 g mung bean
extract, 1 L ddH2O) at 28 ± 2 ◦C and 150 rpm for 48 h, as previously described [38]. The
bacterial strain DHA6 was maintained on a Luria-Bertani (LB; Sigma-Aldrich, St. Louis,
MO, USA) plate. To extract CLPs, a single colony of DHA6 was inoculated into 100 mL LB
broth in 250 mL Erlenmeyer flasks and incubated with shaking at 150 rpm and 28 ± 2 ◦C
for 72 h.

Watermelon (Citrullus lanatus L. cv. Zaojia) seeds were surface sterilized by immersing
in 3% sodium hypochlorite solution (Sigma-Aldrich, St. Louis, MO, USA) for 3 min, rinsed
twice with ddH2O, and germinated under moist conditions at 26 ◦C. The germinated
seeds were transplanted into pots (6 cm × 4 cm) filled with sterilized soil mixture (soil:
organic manure: sand = 2:1:1, w/w). The plants were grown in a greenhouse under natural
light at 32/18 ◦C (day/night) temperature and 70% humidity. At the two-true-leaf stage,
plants were shifted into soil-filled pots (50 cm length × 25 cm width × 5 cm height) with
25 plants/pot.

2.2. Molecular Characterization of the Bacterial Strain DHA6

Genomic DNA was extracted from DHA6 cells using the MiniBEST Bacterial Genomic
DNA Extraction Kit Ver3.0 (Takara, Dalian, China). The universal primer pair 27F (5′-
AGAGTTTGATCATGGCTCAG-3′) and 1479R (5′-TACGGTTACCTTGTTACGACTT-3′) [39]
was used to amplify a 16S rRNA gene fragment, which was then commercially sequenced
(Zhejiang Youkang Biotech, Hangzhou, China). The obtained sequences were trimmed,
processed for contig formation, and the final sequence was aligned with its homologues
using the ClustalX program [40]. A phylogenetic tree was constructed using the neighbor-
joining method in the MEGA 11.0 software package [41].

2.3. Extraction, Purification, and Characterization of CLPs from Strain DHA6

The cell-free supernatant was collected from a 200 mL culture of strain DHA6, acidified
using 2 M HCl (pH 2.0), and kept overnight at 4 ◦C. After incubation, CLPs were precip-
itated through centrifugation at 14,000 rpm for 20 min at 4 ◦C, re-dissolved in methanol
(pH 7.0), and dried using a rotary vacuum [42]. The dried CLPs were subsequently dis-
solved in dimethyl sulfoxide (DMSO; Sigma-Aldrich, St. Louis, MO, USA) at 100 µg/mL
for further experimental use.

The CLPs produced by strain DHA6 were characterized using matrix-assisted laser
desorption ionization-time of flight (MALDI-TOF)-mass spectrometry (MS) method [43,44].
DHA6 was cultured in tryptic soy broth medium at 28 ± 2 ◦C for 48 h, and a single
colony was suspended in a matrix solution (10 mg/mL cyano-4-hydroxycinnamic acid in
70% water, 30% acetonitrile, and 0.1% trifluoroacetic acid). The bacterial samples were
homogenized, and 1 µL of the solution was spotted onto a MALDI-TOF MTP 384 objective
plate (Bruker Daltonik GmbH, Leipzig, Germany). After air-drying, MALDI-TOF-mass
spectra were recorded using a Bruker Ultraflextreme MALDI-TOF instrument (Bruker,
Bremen, Germany) equipped with a Smartbeam laser operating at a 2-kHz repetition rate.
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Spectra were acquired in positive linear ion mode within the mass range of 300 to 3000
Dalton (Da).

2.4. Antifungal Activity of CLPs against Fon

The antifungal activity of CLPs against Fon mycelial growth was determined using
the dual culture method [45,46]. PDA plates were prepared with CLPs added at final
concentrations of 12.5, 25, 50, and 100 µg/mL, or with 100 µL of DMSO as control. Fon
mycelial plugs (0.5 cm in diameter) were inoculated onto the plates, followed by incubation
at 28 ± 2 ◦C for ~5 d. The inhibitory zones were measured to determine the extent of
growth inhibition.

To evaluate the effect of CLPs on Fon spore germination, 1 mL Fon conidia suspension
(103 conidia/mL) was incubated with different concentrations of CLPs, 21, 24, 27, and
30 µg/mL, or with 100 µL of DMSO as control at 28 ± 2 ◦C for 24 h with shaking at
180 rpm. The spore germination rate was assessed by observing the appearance and growth
of germ tubes.

2.5. Optical and Electronic Microscopy Observation

The viability of Fon mycelia and conidia was assessed using fluorescein diacetate (FDA;
Yeasen Biotech, Shanghai, China) and propidium iodide (PI; Yeasen Biotech, Shanghai,
China) staining methods [47]. Mycelia and conidia were treated with or without CLPs
(30 µg/mL) for 12 h, collected by centrifugation at 1000 rpm for 10 min, and resuspended in
10 mM phosphate buffer saline (PBS, pH 7.4). After staining with FDA and PI at 25 ◦C for
15 min in the dark, fluorescent signals were observed under a Zeiss LSM 880 confocal laser
microscope (Zeiss, Jena, Germany) at excitation/emission wavelengths of 488/500–550 nm
for FDA and 561/600–650 nm for PI.

The impact of CLPs on Fon mycelial and conidial morphology was examined using
scanning electron microscopy (SEM; Model TM-1000, Hitachi, Japan) and transmission
electron microscopy (TEM; Model JEM–1230JEOL, Akishima, Japan) [48,49]. Fon mycelia
and conidia were treated with or without CLPs (30 µg/mL) for 12 h and then collected
by centrifugation at 1000 rpm for 10 min. The collected mycelia and conidia were pre-
fixed overnight in 2.5% glutaraldehyde in 100 mM PBS (pH 7.0), post-fixed with 1%
osmic acid for 1 h, and dehydrated using an ethanol gradient (30–100%). For SEM, the
samples were incubated in an alcohol and isoamyl acetate (1:1, v/v) mixture for 30 min,
treated in pure isoamyl acetate for 1 h, and dehydrated in a critical point dryer (Model
HCP-2, Hitachi, Tokyo, Japan) with liquid CO2. After coating with gold-palladium, the
samples were examined under SEM at 15 kV. For TEM, the dehydrated mycelia and
conidia were embedded in epoxy resin, sectioned into ultrathin sections using an EM
UC7 ultramicrotome (Leica Microsystems, Vienna, Austria), stained with uranyl acetate
or lead citrate, and examined under TEM. Six samples from each treatment were used for
TEM/SEM analysis, and at least 5 fields were examined for each sample.

2.6. Detection of Reactive Oxygen Species (ROS) Accumulation

ROS production was detected using the 2′,7′-dichlorodihydrofluorescein diacetate
(DCFH-DA; Sigma-Aldrich, St. Louis, MO, USA) probe [50,51]. Fon mycelia and conidia
were treated with or without CLPs (30 µg/mL) for 5 h, collected by centrifugation at
1000 rpm for 10 min, and resuspended in 10 mM PBS (pH 7.4). The samples were then
treated with 10 mM DCFH-DA and incubated at 25 ◦C for 30 min in the dark. ROS levels
were visualized using the Zeiss LSM 880 confocal laser microscope (Zeiss, Jena, Germany;
excitation wavelength, 488 nm; emission wavelength, 535 nm).

2.7. Effect of CLPs on Plant Growth and Fusarium Wilt in Watermelon

Four treatments, including ddH2O (Mock), CLPs, Fon, and CLPs + Fon, were set
up with three replicates in each treatment (25 plants/replicate). To avoid direct contact
between CLPs and Fon, a plastic plate (50 cm length × 25 cm width × 5 cm height) system
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was used. Watermelon plants with two true leaves were transferred into a soil mixture in
plastic pots and placed in a container tray for 10 d until the roots reached the tray across
the holes on the bottom of the pots. The plants were root-treated with or without CLPs
(10 µM) solution in ddH2O. After 24 h post-treatment, one set of the CLPs-treated and
untreated plants was inoculated with Fon using the root-dipping method [52]. For this,
10 mL of Fon spore suspension (4 × 106 spore/mL) or ddH2O (as a mock control) was
applied to the plants by adding to the tank tray. The inoculated plants were covered with
plastic membranes for 3 d to favor disease development [47]. Root samples were taken
from three plants/treatment at 3 and 6 d after inoculation for the analysis of antioxidative
enzyme activity and defense gene expression. The disease index was assessed using a
4-scale rating standard (0 = no symptoms, 1 = chlorosis, 2 = wilting, and 3 = death) [38] at
2 weeks post-inoculation. Additionally, growth parameters, including plant (aboveground
part) height, root length, and fresh and dry weights of plants and roots, were measured as
previously described [19].

2.8. Measurement of Antioxidative Enzyme Activity

Root samples were thoroughly washed with ddH2O and homogenized in liquid nitro-
gen. The homogenate (~100 mg) was then extracted in PBS (pH 7.8) containing 2.0 mM β-
mercapto-ethanol (Sigma-Aldrich, St. Louis, MO, USA), 1.0 mM Ethylenediaminetetraacetic
acid (EDTA; Sigma-Aldrich, St. Louis, MO, USA), and 1% (w/v) polyvinylpyrrolidone
(Sigma-Aldrich, St. Louis, MO, USA). Following centrifugation at 12,000× g for 20 min at
4 ◦C, the resulting supernatant was collected as enzyme extract, and the activities of super-
oxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were spectrophotometrically
evaluated as described previously [53,54]. Briefly, CAT activity was measured in a reaction
containing 2.9 mL 0.1% hydrogen peroxide (H2O2; Sigma-Aldrich, St. Louis, MO, USA)
and 100 µL enzyme extract by recording the absorbance at 240 nm at 1 s intervals for
3 min. SOD reactions contained 1.5 mL 50 mM PBS (pH 7.8), 0.3 mL 130 mM methionine,
0.3 mL 1 mM EDTA-Na2, 0.3 mL 0.2 mM riboflavin, 0.3 mL 750 µM nitrogen blue tetra-
zolium, and 0.3 mL enzyme extract or 0.3 mL ddH2O as a blank. The reactions were
exposed to 4000 lx of light for 10 min, and the absorbance at 560 nm was recorded. POD
activity was determined in a reaction containing 1.0 mL 50 mM PBS (pH 7.0), 1.0 mL 0.3%
H2O2, 0.9 mL 0.2% guaiacol, and 0.1 mL enzyme extract by recording the absorbance at
470 nm at 1 s intervals for 3 min.

2.9. RNA Extraction and RT-qPCR Analysis of Gene Expression

Total RNA was extracted from root samples using Trizol reagent (Vazyme Biotech,
Nanjing, China) and then reverse transcribed into cDNA using HiScript super mix (Vazyme
Biotech, Nanjing, China). For qPCR reactions, 10 µL 2 × AceQ qPCR SYBR Green Master
Mix (Vazyme, Nanjing, China), 0.1 µg cDNA, and 7.5 pmol of each gene-specific primer
were combined in a final volume of 20 µL. The qPCR reactions were run on a CFX96
real-time PCR detection system (Bio-Rad, Hercules, CA, USA) using the following reaction
conditions: 94 ◦C for 5 min, followed by 45 cycles of 94 ◦C for 10 s, 55 ◦C for 20 s, and 72 ◦C
for 30 s, and end at 72 ◦C for 5 min. Watermelon ClGAPDH was used as an internal control
for data normalization [55], and the relative gene expression level was calculated using the
2−∆∆Ct method. Gene-specific primers used for qPCR are listed in Table 1.
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Table 1. Gene-specific primers used in this study.

Primers Sequences (5′–3′)

ClPR1-rt-1F CTTGAGCTTTGCCATGCTGC
ClPR1-rt-1R GCGTTGGTTGGCATATTGTCG
ClPR2-rt-1F AACAACCTTCCAACCCAAAGAG
ClPR2-rt-1R ATTCTTTGGAGGTCGGTATTGG
ClICS1-rt-1F TAGGCAAAATTCAGCCACCG
ClICS1-rt-1R AAGCTACGGCTGCTGGAATG
ClEDS5-rt-1F GTGGCTTCACTTCATCTTCGTTC
ClEDS5-rt-1R GCTGAGAAGTGAAGGAAGCGAG
ClAOS-rt-1F TTCAACCCCACTTGCGATTTC
ClAOS-rt-1R GATTGGGCGTAGGGAAACG

ClPDF1.2-rt-1F GCTGCAATTTTGTTGCTCCTC
ClPDF1.2-rt-1R TGTCCTTGCGTCTGTCACCA
ClCTR1-rt-1F CCATTGTTGGCTTCCCTTATTG
ClCTR1-rt-1R CGATGCTTGTGAAGGATGGG
ClEIN2-rt-1F CTGCATACAACTCATCAGTCGGG
ClEIN2-rt-1R CCACTTTCCAGGGTCAACATAAC
ClPAL2-rt-1F TTGCGCCATTACTACTCATCCTG
ClPAL2-rt-1R CGACCATGCGCTTCACCTC
qClGAPDH-F ATGGGCAAAGTTAAGATCGGCATCA
qClGAPDH-R CCAATTCGATATCATCACTCTGC

2.10. Experimental Design and Data Analysis

All experiments were conducted three times independently, with three replicates
in each treatment. Statistical analysis was performed on the data obtained from three
independent experiments using SPSS 14.0 software, and the difference among treatments
was considered significant at p-value ≤ 0.05.

3. Results
3.1. Molecular Characterization of Strain DHA6

To characterize strain DHA6 taxonomically, a 1023 bp fragment of the 16S rRNA gene
was amplified and sequenced. Sequence alignment and phylogenetic analysis revealed a
high similarity between the 16S rRNA gene sequence of strain DHA6 (GenBank accession
no. MN519404) and other Bacillus spp. The DHA6 16S rRNA sequence closely clustered
with B. amyloliquefaciens N72, showing >99% sequence identity to strain N72 (Figure 1).
Therefore, it is likely that strain DHA6 belongs to B. amyloliquefaciens.

3.2. Identification of CLPs Produced by B. amyloliquefaciens Strain DHA6

MALDI-TOF analysis identified different B. amyloliquefaciens DHA6-produced CLPs,
with standard peaks ranging from 1000 to 1120 m/z (Figure 2). The highest peak in the
MALDI-TOF profile typically corresponds to non-ribosomal CLPs. B. amyloliquefaciens
DHA6 was found to produce five classes of CLPs, namely iturin (m/z:1065.510, 1079.546,
and 1093.554), surfactin (m/z:1055.566, and 1023.444), bacillomycin (m/z:1034.469, and
1051.475), pumilacidin (m/z:1037.465), and syringfactin (m/z:1105.531) (Figure 2). These
data indicate that B. amyloliquefaciens DHA6 can produce diverse CLPs, which could
contribute to its antifungal activity against different phytopathogenic fungi [19].
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3.3. Plant Growth Promotion and Fusarium Wilt Suppression in Watermelon by CLPs

We previously demonstrated that B. amyloliquefaciens DHA6 could improve plant
growth and suppress watermelon Fusarium wilt [19]. In this study, we investigated the
potential roles of B. amyloliquefaciens DHA6-produced CLPs in promoting plant growth
and suppressing Fusarium wilt in watermelon. Repeated greenhouse experiments showed
a significant improvement in the growth performance of uninfected CLPs-treated plants
compared to untreated healthy controls (Figure 3A), which was evident from the increased
plant height (35.17%), root length (31.37%), as well as the fresh and dry weight of above-
ground plants (46.29% and 58.88%, respectively) and roots (43.41% and 69.82%, respectively)
(Figure 3B–D).
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Figure 3. Plant growth promotion and Fusarium wilt suppression by B. amyloliquefaciens DHA6-
produced cyclic lipopeptides (CLPs). (A) The growth and disease phenotype of CLPs (30 µg/mL)-
treated and untreated watermelon plants after infection with or without F. oxysporum f. sp. niveum
(Fon). (B,C) Plant height and root length; (C,D) Fresh and dry weights of aboveground plants and
roots. (E) Disease index. The experiments in (A) were independently performed three times, and
similar results were obtained. Data presented in (B–E) are the means ± standard deviation from three
independent experiments, and different letters indicate significant differences among the treatments
inferred using one-way analysis of variance (p-value ≤ 0.05).

In disease assays, Fon-inoculated plants showed a higher disease index (83.33) and
typical Fusarium wilt disease symptoms, including yellowing and wilting of leaves, while
the Fon-inoculated CLPs-pretreated plants displayed significantly less disease severity
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index (38.67) and disease symptoms, such as slight chlorosis (Figure 3A), leading to a
reduction of 54.6% in disease index (Figure 3E). During the experiments, no obvious disease
symptom was observed in mock- and CLPs-pretreated plants (Figure 3E). Furthermore,
the growth parameters of the Fon-infected plants were dramatically reduced compared
to the uninfected control plants (Figure 3B–D). In contrast, the growth of Fon-inoculated
CLPs-pretreated plants was comparable to the control healthy plants (Figure 3B–D). These
results indicate that B. amyloliquefaciens DHA6-produced CLPs can promote plant growth
and suppress Fusarium wilt in watermelon under greenhouse conditions.

3.4. Antifungal Activity of CLPs against Fon

To explore the mechanisms underlying B. amyloliquefaciens DHA6-mediated suppres-
sion of watermelon Fusarium wilt, as previously reported [19], we examined the impact of
CLPs on mycelial growth and spore germination in Fon. In these experiments, the specific
CLPs concentrations for mycelial growth and spore germination were selected based on
pilot experiments that indicated varying sensitivities of Fon mycelia and conidia to CLPs.
Overall, CLPs significantly inhibited the mycelial growth of Fon (Figure 4A), resulting in
smaller mycelial colonies of Fon on CLPs-supplemented PDA (Figure 4B). CLPs inhibited
the mycelial growth of Fon in a dosage-dependent manner, with a maximum antifungal
activity observed at 100 µg/mL CLPs, leading to an 87.3% inhibition of Fon mycelial growth
(Figure 4A,B). Furthermore, CLPs also inhibited the germination of Fon spores in a dosage-
dependent manner. At 30 µg/mL, CLPs inhibited the spore germination, resulting in a
93.8% reduction compared to untreated spores (Figure 4C). These results indicate that
B. amyloliquefaciens DHA6-produced CLPs exhibit remarkable antifungal activity against
Fon, with the effectiveness varying based on the dosage, and contribute to the biocontrol
potential of B. amyloliquefaciens DHA6 in suppressing watermelon Fusarium wilt.
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Figure 4. Inhibition of F. oxysporum f. sp. niveum (Fon) mycelial growth and spore germination by
B. amyloliquefaciens DHA6-produced cyclic lipopeptides (CLPs). (A,B) Phenotype (A) and colony
size (B) of Fon grown in the presence of different CLPs concentrations. (C) Inhibition of spore
germination of Fon by CLPs. The experiments in (A) were independently performed three times, and
similar results were obtained. Data presented in (B,C) are the means ± standard deviation from three
independent experiments, and different letters indicate a significant difference among the treatments
inferred using one-way analysis of variance (p-value ≤ 0.05).

3.5. Inhibitory Effect of CLPs on Fon Viability

To explore the putative causes of the antifungal activity of CLPs, we examined their
effect on the viability and ultrastructural changes of Fon through FDA and PI staining.
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FDA generates green fluorescence after entering living cells, serving as an indicator of
living cells, while PI is a nucleus-specific dye for detecting apoptosis, serving as a marker
of dead cells [50,56]. Without CLPs treatment, Fon mycelia and conidia showed strong
FDA-generated green fluorescence, indicating normal morphology and intact structures,
with minimal red fluorescence in mycelia only, representing dead or damaged fungal cells
(Figure 5A,B). However, the CLPs-treated Fon mycelia and conidia exhibited bright red
fluorescence, indicating disrupted morphology and structure. After staining, the CLPs-
treated mycelia showed diffuse red and green fluorescence, but the CLPs-treated conidia
no longer exhibited green fluorescence (Figure 5A). These observations suggest that B.
amyloliquefaciens DHA6-produced CLPs affect the integrity of Fon cells, leading to cell
damage and reduced viability.
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Figure 5. B. amyloliquefaciens DHA6-produced cyclic lipopeptides (CLPs) affect F. oxysporum f.
sp. niveum (Fon) viability. Fon mycelia (A) and conidia (B) were treated with or without CLPs
(30 µg/mL) and stained with fluorescein diacetate (FDA) and propidium iodide (PI) 12 h after
treatment. Green and red fluorescent signals were detected using a confocal laser microscope, with
excitation at 488 nm for FDA and 561 nm for PI, respectively. Scale bar, 10 µm. The experiments
were independently performed three times with similar results, and data from one representative
experiment are shown.
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To further investigate the effect of CLPs on the morphology and integrity of Fon, we
examined ultrastructural changes in mycelia and conidia through SEM and TEM. SEM
images revealed that untreated mycelia had regular, intact and column-like trunks, while
the CLPs-treated mycelia showed obvious structural damages, such as disintegrated and
collapsed mycelial structures (Figure 6A). Similarly, TEM images showed that untreated
mycelia and conidia maintained normal cellular morphology and structure, with intact
cell walls, plasma membranes, and cytoplasm (Figure 6B,C). In contrast, CLPs-treated
mycelia and conidia displayed abnormal morphology and structure, with damaged plasma
membrane and cell wall (Figure 6B,C). These results indicate that B. amyloliquefaciens DHA6-
produced CLPs can disrupt the cellular structures and compromise the integrity of Fon,
thereby influencing its viability.
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Figure 6. Ultrastructural changes in F. oxysporum f. sp. niveum (Fon) mycelia and conidia caused by
B. amyloliquefaciens DHA6-produced cyclic lipopeptides (CLPs). (A) Scanning electron microscopic
images showing the impact of CLPs (30 µg/mL) on the mycelial morphology of Fon. (B,C) Trans-
mission electron microscopic images showing the ultrastructural changes in the mycelia (B) and
conidia (C) with or without CLPs (30 µg/mL) treatment. The ultrastructural changes in the mycelia
and conidia of Fon were examined at 12 h after CLPs treatment. CW, cell wall; CY, cytoplasm; PM,
plasma membrane. Scale bars are shown at the bottom right for SEM images and the bottom left for
TEM images. The experiments were independently performed three times with similar results, and
data from one representative experiment are shown. Red arrows represent normal and damaged Fon
hyphal and cellular structures.
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3.6. Induction of ROS Accumulation in Fon by CLPs

To gain insights into the physiological and biochemical mechanisms underlying CLPs-
induced structural damages and antifungal activity against Fon, we assessed the effect of
CLPs on ROS accumulation in the fungus using the DCFH-DA staining method. Results
indicated that untreated Fon mycelia and conidia showed no significant green fluorescence,
while CLPs-treated mycelia and conidia exhibited strong green fluorescence, reflecting
higher ROS accumulation (Figure 7). These data indicate that B. amyloliquefaciens DHA6-
produced CLPs can induce ROS accumulation in Fon, resulting in structural disintegration.
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Figure 7. Reactive oxygen species (ROS) accumulation in F. oxysporum f. sp. niveum (Fon) mycelia
and conidia triggered by B. amyloliquefaciens DHA6-produced cyclic lipopeptides (CLPs). The Fon
mycelia and conidia were treated with CLPs (30 µg/mL) or dimethyl sulfoxide (control), and ROS
accumulation was detected by 2′,7′-dichlorodihydrofluorescein diacetate staining. Scale bar, 10 µm.
The experiments were separately performed three times with similar results, and data from one
representative experiment are shown.

3.7. Enhancement of Antioxidative Capacity and Upregulation of Defense Gene Expression
by CLPs

We further investigated the effect of B. amyloliquefaciens DHA6-produced CLPs on
the defense response in watermelon plants to decipher the Fusarium wilt-suppressing
mechanism. We examined the activities of CAT, SOD, and POD, three main ROS scav-
enging enzymes, in CLPs-pretreated plants before and after Fon infection. The activities
of these antioxidant enzymes were significantly induced in CLPs-pretreated uninfected
plants compared to untreated healthy plants at 3 dpi (except SOD), while CLPs-pretreated
healthy plants showed significantly higher CAT level (97.98%) than untreated healthy
controls at 6 dpi (Figure 8A). In Fon-infected plants, the SOD activity was significantly
decreased by 24.65% at 3 dpi, while CAT activity was markedly increased by 95.62% at
6 dpi compared to untreated healthy plants (Figure 8A). In CLPs-pretreated Fon-infected
plants, the activities of these enzymatic antioxidants were significantly higher compared to
untreated Fon-infected plants at 3 dpi (except CAT) and 6 dpi (Figure 8A). These results
indicate that B. amyloliquefaciens DHA6-produced CLPs can strengthen the antioxidative
capacity by boosting CAT and SOD activities in watermelon plants, particularly in response
to Fon infection.
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Figure 8. Effect of B. amyloliquefaciens DHA6-produced cyclic lipopeptides (CLPs) on antioxidative
enzyme activities and expression of defense genes in watermelon plants. (A) Activities of catalase
(CAT), superoxide dismutase (SOD), and peroxidase (POD) in F. oxysporum f. sp. niveum (Fon)-infected
and uninfected watermelon plants pretreated with or without CLPs (30 µg/mL). (B) Expression
levels of selected defense-related genes in Fon-infected and uninfected watermelon plants pretreated
with or without CLPs (30 µg/mL). Data presented are the means ± standard deviation from three
independent experiments, and different letters indicate a significant difference among the treatments
inferred using one-way analysis of variance (p-value ≤ 0.05).

To understand the molecular mechanism underlying the suppression of Fusarium
wilt by B. amyloliquefaciens DHA6-produced CLPs, we analyzed the expression changes
of selected defense-related genes in watermelon plants following CLPs treatment and
Fon infection. In healthy plants, the expression levels of defense genes (ClPR1, ClPR2,
and ClPDF1.2), salicylic acid (SA) signaling genes (ClICS1, ClEDS5, and ClPAL2), and
JA/ET signaling genes (ClAOS, ClEIN2, and ClCTR1) were significantly upregulated in
CLPs-pretreated healthy plants compared to untreated healthy controls (Figure 8B). In
diseased plants, Fon infection induced the expression of these genes compared to un-
treated healthy plants, but their levels (except ClEDS5, ClPAL1.2, and ClEIN2 at 6 d) were
lower than those in CLPs-treated healthy plants (Figure 8B). In CLPs-pretreated infected
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plants, the expression levels of these genes were significantly upregulated compared to
untreated/CLPs-pretreated healthy and untreated Fon-infected plants (Figure 8B). These
results suggest that B. amyloliquefaciens DHA6-produced CLPs can induce the expression
of genes involved in both SA and JA/ET signaling and defense response, especially upon
Fon infection.

4. Discussion

Bacillus spp. employ multiple mechanisms to suppress phytopathogens and improve
plant growth [1,2]. These mechanisms include direct and indirect antagonistic approaches,
such as competition for nutrients and space, production of antimicrobial agents, and induc-
tion of plant defense networks. Among these, the production of antimicrobial metabolites
is the primary inhibitory mechanism of Bacillus spp. [1,5]. In a previous study, we charac-
terized six antagonistic watermelon rhizosphere colonizing bacterial strains, DHA4, DHA6,
DHA10, DHA12, DHA41, and DHA55, which displayed substantial potential in promoting
plant growth and suppressing watermelon Fusarium wilt [19]. In the present study, we in-
vestigated the underlying plant growth-promoting and disease-suppressing mechanism of
strain DHA6, which previously provided significant protection against Fusarium wilt [19].
Molecular and biochemical characterization revealed that strain DHA6, belonging to B.
amyloliquefaciens, produces antifungal CLPs (Figure 1). Our results showed that B. amy-
loliquefaciens DHA6-produced CLPs suppressed watermelon Fusarium wilt by inhibiting
its hyphal growth and spore germination. Moreover, CLPs purified from DHA6 strain
induced significant structural damage and ROS accumulation in Fon, reducing viability.
These findings suggest that B. amyloliquefaciens DHA6-produced CLPs can be an effective
alternative to conventional fungicides for managing Fon-induced wilt disease.

B. amyloliquefaciens strains have previously demonstrated biocontrol potential against
Fusarium wilt in cucumber, tomato, and banana [11,57,58]. The production of bioactive
compounds, including CLPs, is recognized as a crucial factor contributing to their biocontrol
potential against crop diseases [16–18]. Bacillus spp. have been found to produce different
CLPs, such as iturin, iturinA, bacillomycin D, and fengycin, which are well known for their
disease-controlling ability [16–19]. In the present study, MALDI-TOF MS analysis revealed
that B. amyloliquefaciens DHA6 produces five families of CLPs, i.e., iturin, iturinA, bacil-
lomycin D, pumilacidin, and fengycin (Figure 2), consistent with CLPs profiles observed in
other B. amyloliquefaciens strains, such as DHA55, NCPSJ7, YN201732, and PPL [19,22,23,59].
Pot experiments revealed that CLPs, similar to their source B. amyloliquefaciens DHA6 [19],
possess significant potential in promoting plant growth and suppressing Fusarium wilt
in watermelon (Figure 3), indicating that the production of CLPs is a prominent mecha-
nism of B. amyloliquefaciens DHA6 involved in plant growth promotion and biocontrol of
Fusarium wilt. Similarly, previous studies have demonstrated that iturin A- and surfactin
A-enriched CLPs derived from B. subtilis BS-1 and B. amyloliquefaciens S76-3 have been
shown to suppress kiwifruit rot (Botryosphaeria dothidea), rice bakanae disease (Fusarium
moniliforme), wheat head scab (Fusarium graminearum), and lettuce Fusarium wilt [47,60–62].
Thus, antagonistic bacteria employ different antimicrobial CLPs as a primary mechanism
for the biocontrol of crop diseases [16].

Previously, B. amyloliquefaciens DHA6 displayed antifungal activity against five dif-
ferent fungi, including Fon, Didymella bryoniae (causing gummy stem blight on cucurbits),
Sclerotinia sclerotiorum (causing stem rot on a wide range of plants), F. graminearum, and
R. solani (causing damping-off in a wide range of plants) [19]. This study found that CLPs
from B. amyloliquefaciens DHA6 significantly inhibited mycelial growth and conidia germi-
nation of Fon (Figure 4), providing mechanistic insights into the direct antifungal activity of
B. amyloliquefaciens DHA6 against phytopathogenic fungi. Previous studies have reported
that CLPs purified from different B. amyloliquefaciens strains, such as fengycins and iturins,
inhibited mycelial growth and spore germination of Fo in vitro [21–23,63,64]. Iturins pro-
duced by Bacillus spp. have been well known for their strong antifungal activity against
Fo [63,64]. B. amyloliquefaciens DHA6 produced at least three types of iturins (Figure 2),
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which caused damage to the mycelia and conidia, disrupting the plasma membrane and
cell wall, affecting Fon viability (Figures 4–6). Similarly, CLPs produced by B. velezensis
WB caused morphological changes, such as surface subsidence and cytoplasmic shrink-
age, in Fon [20], while bacillomycin D, produced by B. amyloliquefaciens FZB42, induced
disruptions in the plasma membrane and cell wall, leading to cell death of mycelia and
conidia in F. graminearum [50]. The B. amyloliquefaciens DHA6-produced CLPs triggered
a significant accumulation of ROS in the mycelia and conidia of Fon (Figure 7). These
results align with previous observations indicating that iturins, fengycins, bacillomycin D
and other CLPs triggered excessive ROS accumulation in Fon, F. graminearum, Verticillium
dahliae, Magnaporthe oryzae, and S. sclerotiorum [20,50,65–67]. Although a physiological level
of ROS is critical as an intracellular messenger in many biological events, the excessive
accumulation of ROS can cause oxidative stress and severe cellular damage by disrupting
cellular integrity. Thus, the disruption of ROS homeostasis is one of the physiological and
biochemical mechanisms through which CLPs induce cell death and exhibit antifungal
activity against different phytopathogenic fungi.

In addition to the direct antimicrobial activity, certain Bacillus spp., including B. sub-
tilis and B. amyloliquefaciens, have been shown to strengthen plant defenses by priming
ISR [7,68]. Bioactive compounds produced by different Bacillus spp., including CLPs, have
been identified as key elicitors of ISR [7,69]. For example, iturins, surfactins, and fengycins
produced by different Bacillus spp. have been found to induce significant ISR-mediated pro-
tection in various crop plants against different fungal infections [27,70–72]. In the present
study, pretreatment with the B. amyloliquefaciens DHA6-produced CLPs, containing iturins,
surfactins, pumilacidin, and fengycins (Figure 2), significantly reduced Fusarium wilt in
watermelon (Figure 3). This reduction can be attributed to an enhanced defense response
primed by CLPs in the plants, as direct contact between CLPs and Fon was avoided using a
specific approach. The induction of plant defense responses by CLPs was further confirmed
by the increased activity of antioxidative enzymes, i.e., CAT, SOD, and POD (Figure 8A),
in watermelon plants upon CLPs pretreatment, supporting the notion that CLPs pretreat-
ment induced plant innate defense mechanisms to suppress Fusarium wilt development.
Similar results have been reported in infected watermelon and tomato plants, where B.
velezensis F21 and B. amyloliquefaciens Oj-2.16 induced the activities of CAT, POD, and SOD
through the production of antioxidant-triggering CLPs [12,73]. The plant immune system
is believed to rely on coordinated signaling pathways, including SA, JA, and ET pathways,
to mount an effective defense response against pathogen attack [12]. Bacillus-primed ISR
has been shown to involve the JA/ET and SA signaling pathways and multiple early
signaling events, such as MAPK cascades and ROS [26,28,74–77]. In lettuce, B. amyloliquefa-
ciens FZB42-produced surfactin, and other immunomodulatory CLPs triggered immunity
against R. solani by inducing the expression of defense-related genes, including LsPDF1.2,
LsPR1, and LsLOX [28], while fusaricidin, purified from Paenibacillus polymyxa WLY78,
induced SA-specific ISR to suppress Fusarium wilt in cucumber [78]. Consistent with
these findings, we observed significant upregulation of SA-signaling/responsive, JA/ET
signaling, and JA-responsive genes by CLPs, with or without Fon infection (Figure 8B),
indicating their potential to activate a broad-spectrum defense response in watermelon
plants. Therefore, it is likely that B. amyloliquefaciens DHA6-produced CLPs activate defense
responses through the SA and JA/ET signaling pathways, thereby protecting watermelon
plants from Fon infection.

5. Conclusions

In this study, the antagonistic bacterium B. amyloliquefaciens DHA6 was found to
produce five families of antifungal CLPs, i.e., iturin, surfactin, bacillomycin, syrignfactin,
and pumilacidin, which showed inhibitory effects against Fon. These CLPs inhibited
mycelial growth and spore germination of Fon by promoting ROS accumulation and
disrupting structural integrity of the pathogen. Furthermore, under greenhouse conditions,
B. amyloliquefaciens DHA56-produced CLPs displayed plant growth-promoting activity



J. Fungi 2023, 9, 687 16 of 19

and effectively suppressed Fusarium wilt in watermelon. This was accompanied by the
activation of defense responses, as evidenced by enhanced activity of antioxidative enzymes
and upregulation of genes involved in SA and JA/ET signaling pathways in watermelon
plants. Our findings suggest that CLPs play a crucial role in the biocontrol capacity of
B. amyloliquefaciens DHA6 against Fusarium wilt, acting through their direct antifungal
activity and ability to induce plant defense responses. The potential of B. amyloliquefaciens
DHA6-produced CLPs in promoting plant growth and suppressing Fusarium wilt in
watermelon provides a basis for the development of B. amyloliquefaciens DHA6-based
biopesticides, which can serve as both antimicrobial agents and resistance inducers, offering
sustainable protection to important crops against disease damage under field conditions.
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