Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,934)

Search Parameters:
Keywords = water-stimulated

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 790 KB  
Article
One Step Forward in Understanding the Mechanism of Action of Wood Vinegar: Gas Exchange Analysis Reveals New Information
by Sara Desideri, Lisa Grifoni, Riccardo Fedeli and Stefano Loppi
Plants 2026, 15(2), 262; https://doi.org/10.3390/plants15020262 - 15 Jan 2026
Abstract
Wood vinegar (WV), a by-product of woody biomass pyrolysis, is increasingly used in agriculture as a sustainable biostimulant, although its effects on plant stress resistance and underlying mechanisms remain poorly understood. Recent studies propose that WV may act through a eustress [...] Read more.
Wood vinegar (WV), a by-product of woody biomass pyrolysis, is increasingly used in agriculture as a sustainable biostimulant, although its effects on plant stress resistance and underlying mechanisms remain poorly understood. Recent studies propose that WV may act through a eustress-based mechanism, defined as a mild and controlled stress that activates adaptive physiological responses and enhances plant performance without causing structural or metabolic damage. This study investigated the physiological and biochemical effects of WV on strawberry plants grown under three water-deficit stress levels [no stress (NS), moderate stress (MS), and high stress (HS)] and treated with WV either via fertigation (0.5% v/v, WV1) or foliar spray (0.2% v/v, WV2). Gas exchange parameters (A, gsw, E, Ci, WUE), total chlorophyll content, and nutrient balance ratios (Fe/Mn and K/Ca) were measured after a three-month growth period. PERMANOVA revealed significant effects of both WV and water-deficit stress, as well as their interaction, on most parameters. Under NS and MS conditions, WV reduced A, gsw, E, and Ci while increasing WUE, indicating enhanced water-use efficiency and improved physiological adjustment to water limitation. Chlorophyll content remained stable, demonstrating preserved photosynthetic integrity. Nutrient ratios further supported a controlled ion rebalancing associated with adaptive stress responses under NS and MS, whereas HS conditions indicated the onset of distress. Overall, the data demonstrate that WV enhances plant stress resistance primarily by inducing eustress-mediated physiological regulation rather than by directly stimulating growth. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

29 pages, 25804 KB  
Review
Rhodoliths as Global Contributors to a Carbonate Ecosystem Dominated by Coralline Red Algae with an Established Fossil Record
by Markes E. Johnson
J. Mar. Sci. Eng. 2026, 14(2), 169; https://doi.org/10.3390/jmse14020169 - 13 Jan 2026
Abstract
Rhodoliths (from Greek etymology meaning red + stone) are spheroidal accretions composed of various types of crustose coralline red algae that dwell in relatively shallow waters where sunlight allows for photosynthesis. Unlike most other kinds of algae that are attached to the seabed [...] Read more.
Rhodoliths (from Greek etymology meaning red + stone) are spheroidal accretions composed of various types of crustose coralline red algae that dwell in relatively shallow waters where sunlight allows for photosynthesis. Unlike most other kinds of algae that are attached to the seabed by a holdfast, rhodoliths are free to roll about by circumrotary movements stimulated mainly by gentle wave action and bottom currents, as well as by disruptions by associated fauna. Frequent movement exposes every part of the algal surface to an equitable amount of sunlight, which generally results in an evenly concentric pattern of growth over time. Individual structures may attain a diameter of 10 to 20 cm, representing 100 years of growth or more. Initiation typically involves encrustation by founder cells on a rock pebble or shell fragment. In life, the functional outer surface is red or pink in complexion, whereas the structure’s inner core amounts to dead weight. Chemically, rhodoliths are composed of high magnesium calcite [(Ca,Mg)CO3], with examples known around many oceanic islands and virtually all continental shelves in the present world. The oldest fossil rhodoliths appeared during the early Cretaceous, 113 million years ago. Geologically, rhodoliths may occur in massive limestone beds composed of densely packed accumulations. Living rhodoliths commonly occur in waters as shallow as −2 to −10 m, as well as seaward in mesophotic waters up to −100 m under exceptional conditions of water clarity. Especially in shallower waters, rhodoliths are vulnerable to transfer by storm waves to supratidal settings, which result in bleaching under direct sunlight and death. Increasingly, marine biologists recognize that rhodolith beds represent a habitat that offers shelter to a community of other algae and diverse marine invertebrates. Full article
(This article belongs to the Special Issue Feature Review Papers in Geological Oceanography)
Show Figures

Figure 1

26 pages, 11478 KB  
Article
Controls on Microscopic Distribution and Flow Characteristics of Remaining Oil in Tight Sandstone Reservoirs: Chang 7 Reservoirs, Yanchang Formation, Ordos Basin
by Yawen He, Tao Yi, Linjun Yu, Yulongzhuo Chen, Jing Yang, Buhuan Zhang, Pengbo He, Zhiyu Wu and Wei Dang
Minerals 2026, 16(1), 72; https://doi.org/10.3390/min16010072 - 13 Jan 2026
Viewed by 42
Abstract
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory [...] Read more.
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory techniques—including nuclear magnetic resonance, mercury intrusion porosimetry, oil–water relative permeability, spontaneous imbibition experiments, scanning electron microscopy, and thin section analysis—this study systematically characterizes representative tight sandstone samples and examines the microscopic distribution of remaining oil, flow behavior, and their controlling factors. Results indicate that residual oil is mainly stored in nanoscale micropores, whereas movable fluids are predominantly concentrated in medium to large pores. The bimodal or trimodal T2 spectra reflect the presence of multiscale pore–fracture systems. Spontaneous imbibition and relative permeability experiments reveal low displacement efficiency (average 41.07%), with flow behavior controlled by capillary forces and imbibition rates exhibiting a three-stage pattern. The primary factors influencing movable fluid distribution include mineral composition (quartz, feldspar, lithic fragments), pore–throat structure (pore size, sorting, displacement pressure), physical properties (porosity, permeability), and heterogeneity (fractal dimension). High quartz and illite contents enhance effective flow pathways, whereas lithic fragments and swelling clay minerals significantly impede fluid migration. Overall, this study clarifies the coupled “lithology–pore–flow” control mechanism, providing a theoretical foundation and practical guidance for the fine characterization and efficient development of tight oil reservoirs. The findings can directly guide the optimization of hydraulic fracturing and enhanced oil recovery strategies by identifying high-mobility zones and key mineralogical constraints, enabling targeted stimulation and improved recovery in the Chang 7 and analogous tight reservoirs. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

14 pages, 871 KB  
Article
Efavirenz Interacts with Hormones Involved in Appetite and Satiety, Affecting Body Weight in Mice
by Sandra Angélica Rojas-Osornio, Leticia Manuel-Apolinar, Minerva Crespo-Ramírez, Vladimir Paredes-Cervantes, Antonio Mata-Marín, José Molina-López, Miguel Pérez de la Mora, Dasiel Borroto-Escuela, Ricardo Martínez-Lara and Emiliano Tesoro-Cruz
Int. J. Mol. Sci. 2026, 27(2), 735; https://doi.org/10.3390/ijms27020735 - 11 Jan 2026
Viewed by 110
Abstract
Antiretroviral drugs are associated with increased body weight and metabolic disorders. Fat gain and insulin resistance are commonly associated with abdominal obesity in people with HIV (PWH). There is currently an open ongoing discussion about how antiretroviral therapy affects body weight and its [...] Read more.
Antiretroviral drugs are associated with increased body weight and metabolic disorders. Fat gain and insulin resistance are commonly associated with abdominal obesity in people with HIV (PWH). There is currently an open ongoing discussion about how antiretroviral therapy affects body weight and its significance in hunger–satiety circuit alteration. Until now, the impact of the drug on this circuit has not been explored. This study aimed to assess the hormones involved in appetite and satiety regulation in the serum and hypothalamus after efavirenz (EFV) administration in mice. EFV (10 mg/kg) and distilled water (1.5 μL/kg) (control group) were orally administered for 36 days to CD1 mice. Body weight and food intake were determined throughout treatment. At the end of the treatment, the metabolic profile (glucose, triglycerides, cholesterol) was assessed, and leptin, soluble receptor of leptin (sOB-R), and ghrelin were measured in serum; moreover, we evaluated the expression of growth hormone secretagogue receptor 1a (GHS-R1a), neuropeptide Y receptor 1 (NPYR1), and leptin in the hypothalamus, and a sucrose preference test (SPT) was conducted. Outcomes showed an increase in serum ghrelin and the expression of GHS-R1a and NPYR1 receptors in the hypothalamus, coinciding with an increase in appetite and preference for sucrose in mice in the EFV group. Furthermore, serum leptin, sOB-R, and the free leptin index (FLI) showed that hunger is not related to a lack of satiety. Despite increased food intake, a reduction in body weight was observed, and triglyceride and cholesterol levels were increased. According to our findings, mice treated with EFV showed a decrease in body weight, despite increased food intake resulting from appetite stimulation, which is caused by specific compounds, hormones, and neural signals acting on the brain’s hunger centres, primarily in the hypothalamus, promoting eating behaviours. However, further studies are necessary to investigate the mechanisms of EFV’s effects on energy expenditure. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

25 pages, 4210 KB  
Article
Adaptive Capacity of Scots Pine Trees to Meteorological Extremes in Highly Oligotrophic Soil in Hemi-Boreal Forest
by Algirdas Augustaitis and Diana Sidabriene
Forests 2026, 17(1), 98; https://doi.org/10.3390/f17010098 - 11 Jan 2026
Viewed by 67
Abstract
Understanding how climatic variability affects growth and water relations of Scots pine (Pinus sylvestris L.) is essential for assessing stand sustainability in hemi-boreal regions. Linear mixed-effects models were used to quantify the effects of climatic variability and tree characteristics on stem volume [...] Read more.
Understanding how climatic variability affects growth and water relations of Scots pine (Pinus sylvestris L.) is essential for assessing stand sustainability in hemi-boreal regions. Linear mixed-effects models were used to quantify the effects of climatic variability and tree characteristics on stem volume increment (ZV), sap flow (SF), and water-use efficiency (WUE) of Scots pine growing on highly oligotrophic soils in Curonian Spit National Park. Annual ZV was strongly controlled by tree size and seasonal temperature conditions. Higher temperatures in late winter and mid-summer enhanced growth, whereas elevated temperatures in April–May reduced increment. June moisture availability, expressed by the hydrothermal coefficient, had a positive effect, highlighting the sensitivity of growth to early-summer drought and heat waves. Sap-flow density during May–October was primarily driven by climatic factors, with temperature stimulating and relative humidity reducing SF, while tree size played a minor role. Random-effects analysis showed that unexplained variability in ZV was mainly associated with persistent differences among trees and sites, whereas SF variability occurred largely at the within-tree level. In contrast, WUE was dominated by climatic drivers, with no detectable site- or tree-level random effects. Higher June precipitation increased WUE, while warmer growing-season conditions reduced it. Overall, Scots pine growth and WUE are mainly regulated by intra-annual climatic conditions, particularly summer water availability. Despite rapid climatic change, no critical physiological thresholds or growth collapse were detected during the study period, indicating substantial adaptive capacity of Scots pine even under the observed exceptional conditions. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

18 pages, 5163 KB  
Article
CO2 Quasi-Dry Fracturing Technology and Field Application in the Lulehe Formation of the Qaidam Basin
by Hengli Zhai, Xing Yu, Xianbo Meng, Kai Sun, Xiaowei Zhang, Yaopu Xu, Haizhu Wang, Bin Wang and Yan Zheng
Processes 2026, 14(2), 216; https://doi.org/10.3390/pr14020216 - 7 Jan 2026
Viewed by 159
Abstract
Sensitive reservoirs with high clay content commonly suffer from severe water/salt sensitivity and water-lock damage during conventional water-based hydraulic fracturing, which reduces fracture conductivity and post-stimulation performance. To address this issue, we propose a CO2 quasi-dry fracturing approach that combines the low-damage [...] Read more.
Sensitive reservoirs with high clay content commonly suffer from severe water/salt sensitivity and water-lock damage during conventional water-based hydraulic fracturing, which reduces fracture conductivity and post-stimulation performance. To address this issue, we propose a CO2 quasi-dry fracturing approach that combines the low-damage feature of CO2 dry fracturing with the proppant-carrying capacity of a water-based system under atmospheric sand mixing conditions. Taking Well S in the Lulehe Formation (Qaidam Basin) as a case study, we conducted reservoir sensitivity evaluation, laboratory fluid/rock interaction tests, and a field trial with microseismic monitoring. The reservoir is dominated by water and salt sensitivity, indicating high risk of damage when using conventional fluids. Laboratory results show that the CO2 quasi-dry system improves swelling inhibition and enhances core structural stability compared with fresh water. Field implementation was operationally stable and generated an effective stimulated reservoir volume on the order of 105 m3; post-fracturing oil production increased relative to nearby offset wells with a high flowback ratio. The results demonstrate that CO2 quasi-dry fracturing provides an effective low-damage stimulation option for strongly sensitive reservoirs and can be transferred to similar formations. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

26 pages, 5371 KB  
Article
Purple Ipe Leaf as a Sustainable Biosorbent for the Removal of Co(II) and Cd(II) Ions from Aqueous Samples
by Bárbara Poso Gregnanin, Toncler da Silva, Marcos Vinícius Nunes Filipovitch Molina, Adrielli Cristina Peres da Silva, Diego Rafael Nespeque Corrêa, Margarida Juri Saeki, José Fábian Schneider, Valber de Albuquerque Pedrosa, Marco Antonio Utrera Martines and Gustavo Rocha de Castro
Sustainability 2026, 18(2), 612; https://doi.org/10.3390/su18020612 - 7 Jan 2026
Viewed by 134
Abstract
The increasing contamination of water resources by wastewater has stimulated extensive research into advanced methods for effluent analysis, monitoring, and treatment. Heavy metals are among the most concerning pollutants due to their toxicity, persistence, and potential for bioaccumulation and biomagnification in living organisms. [...] Read more.
The increasing contamination of water resources by wastewater has stimulated extensive research into advanced methods for effluent analysis, monitoring, and treatment. Heavy metals are among the most concerning pollutants due to their toxicity, persistence, and potential for bioaccumulation and biomagnification in living organisms. This study investigates the use of purple ipe (Handroanthus impetiginosus) leaves as a biosorbent for the removal of Co(II) and Cd(II) ions from aqueous solutions. The biosorbent was characterized using FTIR, NMR, EDX, SEM, and elemental analysis, revealing a porous and heterogeneous surface with functional groups suitable for metal adsorption. The point of zero charge (pHPZC) was 5.8, and the zeta potential was −14.7 mV, indicating a negatively charged surface at higher pH values. Maximum removal efficiency was observed in the pH range of 5–6. Kinetic data showed the best fit to a pseudo-second order model, while adsorption equilibrium was most accurately described by the Langmuir isotherm, suggesting a monolayer adsorption process. The maximum adsorption capacities were 0.823 mmol g−1 for Co(II) and 0.270 mmol g−1 for Cd(II). The results demonstrate that purple ipe leaves are a sustainable, efficient, and low-cost biosorbent for wastewater treatment, showing great potential for mitigating environmental impacts associated with heavy metal pollution. Full article
Show Figures

Figure 1

15 pages, 2753 KB  
Article
Tolerance and Antioxidant Activity of Watermelon Cultivars Pre-Treated with Stress Attenuators and Subjected to Water Deficit
by Moadir de Sousa Leite, Salvador Barros Torres, Clarisse Pereira Benedito, Kleane Targino Oliveira Pereira, Maria Valdiglezia de Mesquita Arruda, Roseane Rodrigues de Oliveira, Giovanna Dias de Sousa, Cynthia Cavalcanti de Albuquerque, Marciana Bizerra de Morais, Charline Zaratin Alves, Givanildo Zildo da Silva, Emerson de Medeiros Sousa, Pablo Ferreira da Silva, Cibele Chalita Martins and Francisco Vanies da Silva Sá
Plants 2026, 15(2), 184; https://doi.org/10.3390/plants15020184 - 7 Jan 2026
Viewed by 140
Abstract
This study aimed to evaluate the effect of stress attenuators on the tolerance and antioxidant activity of watermelon cultivars under water deficit. The experiment was conducted in two stages, Stage I corresponding to water deficit levels (N1 = 0; N2 = −0.1; N3 [...] Read more.
This study aimed to evaluate the effect of stress attenuators on the tolerance and antioxidant activity of watermelon cultivars under water deficit. The experiment was conducted in two stages, Stage I corresponding to water deficit levels (N1 = 0; N2 = −0.1; N3 = −0.2 MPa) and six watermelon cultivars. Stage II comprises two cultivars selected in Stage I (one sensitive and one tolerant) and the combination of water restriction with attenuators (T1 = 0.0 MPa (control), T2 = −0.2 MPa (water deficit), T3 = −0.2 MPa + hydropriming, T4 = −0.2 MPa + gibberellic acid, T5 = −0.2 MPa + salicylic acid, and T6 = −0.2 MPa + hydrogen peroxide). The concentration and exposure times of the attenuators were determined through preliminary tests. In Stage I, physiological and biochemical analyses were performed. In Stage II, in addition to these tests, hydrogen peroxide content, malondialdehyde levels, and the activity of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) were assessed. Water deficit impaired germination and seedling vigor of watermelon, with Crimson Sweet, Omaru, Charleston Gray, and Congo being the most sensitive cultivars, while Fairfax was the most tolerant. For Crimson Sweet, pre-germination treatments reduced oxidative stress and enhanced tolerance by stimulating antioxidant enzyme activity, with GA and H2O2 providing the most effective results. For Fairfax, greater tolerance was associated with osmotic adjustment through the accumulation of compatible solutes, a mechanism further enhanced by the use of attenuators. Full article
Show Figures

Figure 1

14 pages, 1082 KB  
Article
Chemical Composition of Extracts from Fruiting Bodies of Tinder Fungi and Their Effect on the Early Stages of Wheat Development
by Alexander Ermoshin, Marina Byzova, Chaomei Ma and Irina Kiseleva
Appl. Biosci. 2026, 5(1), 3; https://doi.org/10.3390/applbiosci5010003 - 6 Jan 2026
Viewed by 149
Abstract
One of the global challenges is the deficit of food. Food production is highly dependent on the productivity of agricultural plants used by humans and livestock. Various chemical and natural compounds are used to stimulate plant growth and increase their resistance to stress. [...] Read more.
One of the global challenges is the deficit of food. Food production is highly dependent on the productivity of agricultural plants used by humans and livestock. Various chemical and natural compounds are used to stimulate plant growth and increase their resistance to stress. The aim of our study was to analyze the chemical composition of extracts of the most common Ural tinder fungi and their effect on the early stages of wheat growth. Water–alcohol extracts from five wood-destroying fungi contained biologically active compounds (BACs), such as phenolics, free amino acids and reducing sugars. F. pinicola was characterized by the smallest amount of extracted substances. F. fomentarius has the largest amount of phenolic compounds and sugars, and I. obliquus had the highest concentration of free amino acids. Qualitative analysis revealed alkaloids in P. betulinus, and anthraquinones in F. fomentarius. Saponins were found in all tested species, except F. fomentarius. The extracts stimulated the early stages of wheat development at concentrations of 1.0–0.2 g of fungal biomass per liter. Seed germination rate was comparable to the control samples or exceeded it, and the length of roots and shoots increased. Thus, extracts from fruiting bodies of studied fungi can be recommended for priming wheat seeds, and for biotechnological cultivation. Full article
Show Figures

Graphical abstract

18 pages, 1613 KB  
Article
Electrical Evoked Potentials After Perioperative Pain Neuroscience Education or Back School Education: A Subgroup Analysis of a Randomized Controlled Trial
by Lisa Goudman, Eva Huysmans, Wouter Van Bogaert, Iris Coppieters, Kelly Ickmans, Jo Nijs, Ronald Buyl and Maarten Moens
J. Clin. Med. 2026, 15(1), 398; https://doi.org/10.3390/jcm15010398 - 5 Jan 2026
Viewed by 219
Abstract
Background/Objectives: Biopsychosocial pain neuroscience education (PNE) has recently gained attention in preparing patients for surgery. PNE is expected to influence pain coping strategies and descending nociceptive inhibition. The goal of this study was to compare cortical evoked responses during experimental pain processing [...] Read more.
Background/Objectives: Biopsychosocial pain neuroscience education (PNE) has recently gained attention in preparing patients for surgery. PNE is expected to influence pain coping strategies and descending nociceptive inhibition. The goal of this study was to compare cortical evoked responses during experimental pain processing using a conditioned pain modulation (CPM) paradigm between patients receiving perioperative PNE (PPNE) or perioperative biomedical back school education (PBSE). Methods: This predefined EEG subgroup analysis included only participants with complete EEG recordings at baseline and 6 weeks. Of these, twenty-three patients with low back-related leg pain, scheduled for lumbar spine surgery, were randomized to either two sessions of PPNE or two sessions of PBSE. All patients were stimulated electrically at the median nerve of the symptomatic side and the sural nerve of the symptomatic and non-symptomatic side before and 6 weeks after the educational sessions, while evoked potentials were recorded by electroencephalography (EEG). Subsequently, this protocol was repeated during the application of the CPM paradigm by immersing the hand contralateral to the symptomatic side into cold water. Results: A significant decrease in the amplitude of the waveforms during CPM was found compared to the waveforms before CPM at the non-symptomatic sural nerve. No significant differences were found at the other test locations. For the waveforms of the CPM effect (subtracted waveforms), no significant treatment effects were revealed between the PPNE and PBSE groups. Conclusions: These exploratory findings suggest that PPNE was not associated with differential modulation of EEG evoked potentials during CPM compared with PBSE at 6 weeks post-surgery. Full article
(This article belongs to the Section Anesthesiology)
Show Figures

Figure 1

19 pages, 6411 KB  
Article
Viniferin-Rich Phytocomplex from Vitis vinifera L. Plant Cell Culture Mitigates Neuroinflammation in BV2 Microglia Cells
by Giacomina Videtta, Chiara Sasia, Sofia Quadrino, Oriana Bertaiola, Chiara Guarnerio, Elisa Bianchi, Giacomo Biagiotti, Barbara Richichi, Stefano Cicchi, Giovanna Pressi and Nicoletta Galeotti
Molecules 2026, 31(1), 196; https://doi.org/10.3390/molecules31010196 - 5 Jan 2026
Viewed by 200
Abstract
Activation of microglia and resulting neuroinflammation are central processes that significantly contribute to neurodegenerative disease progression. Treatments capable of attenuating neuroinflammation are therefore an urgent medical need. Vitis vinifera L., cultivated since ancient times for its fruits, is known for its antioxidant and [...] Read more.
Activation of microglia and resulting neuroinflammation are central processes that significantly contribute to neurodegenerative disease progression. Treatments capable of attenuating neuroinflammation are therefore an urgent medical need. Vitis vinifera L., cultivated since ancient times for its fruits, is known for its antioxidant and anti-inflammatory activities. However, polyphenols, the main bioactive molecules in V. vinifera extracts, exhibit considerable variability due to numerous hard-to-control factors, which complicates the production of standardized extracts with consistent biological activity. To address this issue, plant cell culture biotechnology was used to produce a highly standardized V. vinifera phytocomplex (VP), and its anti-neuroinflammatory profile was investigated in LPS-stimulated microglial cells, an in vitro model of neuroinflammation. VP reduced the LPS-induced pro-inflammatory phenotype, improved cell viability and cell number, attenuated NF-κB activation and ERK1/2 phosphorylation, and increased SIRT1 levels. To overcome VP’s poor water solubility, water-soluble cellulose nanocrystal (CNC)-based formulations were developed and tested. VP-CNC formulations markedly reduced the BV2 pro-inflammatory phenotype and increased cell viability under both basal and LPS-stimulated conditions. The nanoformulations also decreased pERK1/2 levels and increased SIRT1 expression, exhibiting biological activities comparable to VP alone. V. vinifera phytocomplex derived from plant cell cultures represents an innovative and standardized product with promising anti-neuroinflammatory properties. Full article
Show Figures

Graphical abstract

21 pages, 1320 KB  
Article
Microencapsulation of Black Carrot Pomace Bioactive Compounds: Artificial Neural Network Modeling of Cytotoxicity on L929 Fibroblast Cells
by Rumeyse Önal, Derya Dursun Saydam, Merve Terzi and Mehmet Fatih Seyhan
Gels 2026, 12(1), 53; https://doi.org/10.3390/gels12010053 - 5 Jan 2026
Viewed by 326
Abstract
Valorization of black carrot pomace (BCP), an industrial by-product rich in bioactive compounds, was performed using sustainable extraction and formulation approaches. Bioactive compounds were extracted, using water as a solvent, via ultrasonic processing. The resulting liquid extract (BCP-E) was then freeze-dried with a [...] Read more.
Valorization of black carrot pomace (BCP), an industrial by-product rich in bioactive compounds, was performed using sustainable extraction and formulation approaches. Bioactive compounds were extracted, using water as a solvent, via ultrasonic processing. The resulting liquid extract (BCP-E) was then freeze-dried with a gum Arabic gel system to obtain a powder formulation (FD-BCP). The technological, physicochemical, and bioactive characteristics of both formulations are described. Total monomeric anthocyanin and antioxidant activities (DPPH and ABTS) did not differ substantially (p > 0.05), but the liquid extract’s total phenolic content was significantly higher (4.95 mg GAE/g db) than the powder formulation’s (4.46 mg GAE/g db). While FD-BCP had three main hydrophilic phenolic compounds, suggesting partial encapsulation, high-resolution LC-MS analysis identified 21 phenolic compounds in BCP-E, dominated by chlorogenic, quinic, and protocatechuic acids. The development of a stable gum Arabic matrix that maintains the phenolics’ structural integrity was confirmed by SEM and FTIR observations. According to cytotoxicity tests conducted on L929 fibroblast cells, both formulations were biocompatible (>70% viability) and even stimulated cell growth at moderate dosages. Dose- and time-dependent viability patterns were successfully described by Principal Component Analysis and Artificial Neural Network models, highlighting the fact that formulation type is the main factor influencing biological response. Overall, ultrasonic extraction and freeze-drying offer efficient and sustainable strategies for producing stable and bioactive-rich components from black carrot pomace that may be used in functional foods and biomedical products. Full article
(This article belongs to the Special Issue Design, Fabrication, and Applications of Food Composite Gels)
Show Figures

Figure 1

28 pages, 3111 KB  
Article
Foliar Application of Nanoselenium Enhances Drought Tolerance in Brassica oleracea var. italica Through Antioxidant Reinforcement and Pigment Stabilization
by Simona Ioana Vicas, Cristina Adriana Rosan, Daniela Padilla-Contreras, Simona Daniela Cavalu, Richard Zsiros, Ioana Maria Borza, Daniela Gitea, Carmen Violeta Iancu, Ertan Yildirim, Murat Aydin, Melek Ekinci, Esma Yigider and Manuel Alexandru Gitea
Life 2026, 16(1), 70; https://doi.org/10.3390/life16010070 - 2 Jan 2026
Viewed by 310
Abstract
Drought stress is one of the major constraints limiting crop productivity, primarily through oxidative damage, pigment degradation, and metabolic imbalance. Nanostructured selenium particles (SeNPs) have recently attracted attention for their potential to enhance plant tolerance to abiotic stress. In this study, green-synthesized SeNPs, [...] Read more.
Drought stress is one of the major constraints limiting crop productivity, primarily through oxidative damage, pigment degradation, and metabolic imbalance. Nanostructured selenium particles (SeNPs) have recently attracted attention for their potential to enhance plant tolerance to abiotic stress. In this study, green-synthesized SeNPs, with a main hydrodynamic size distribution in the range of 90–100 nm, were foliar applied to broccoli (Brassica oleracea var. italica) plants grown under well-watered (100% water holding capacity) and drought (50% water holding capacity) conditions at concentrations of 0, 10, 20 and 50 ppm. Drought stress significantly decreased chlorophyll a and b, total chlorophyll, and carotenoids, while increasing malondialdehyde (MDA) and proline levels, confirming oxidative stress and membrane damage. SeNPs treatments partially mitigated these effects by enhancing pigment stability, increasing carotenoid content, and reducing both MDA and proline accumulation. Phenolic and flavonoid responses exhibited a dose-dependent pattern with the highest stimulation at 50 ppm under drought and moderate enhancement at 10 ppm under optimal irrigation. Antioxidant capacity assays demonstrated that SeNPs modulate plant redox metabolism, in a context-dependent manner, particularly under water deficit. Peroxidase (POD) activity was also significantly induced under drought stress, mainly at 20 ppm. These results indicate that foliar-applied SeNPs can influence physiological and biochemical responses associated with drought tolerance in broccoli. The observed effects are consistent with nanoparticle–leaf surface interactions contributing to redox regulation and stress adaptation, rather than implying direct nanoparticle internalization. Full article
(This article belongs to the Special Issue Physiological Responses of Plants Under Abiotic Stresses)
Show Figures

Figure 1

21 pages, 2849 KB  
Review
Arbuscular Mycorrhizal Fungi Mitigate Crop Multi-Stresses Under Mediterranean Climate: A Systematic Review
by Claudia Formenti, Giovanni Mauromicale, Gaetano Pandino and Sara Lombardo
Agronomy 2026, 16(1), 113; https://doi.org/10.3390/agronomy16010113 - 1 Jan 2026
Viewed by 396
Abstract
Agricultural systems in Mediterranean-type climates are increasingly threatened by drought, salinity, extreme temperatures, heavy metal contamination, and pathogen pressure, all of which undermine crop productivity and agroecosystem stability. In this context, arbuscular mycorrhizal fungi (AMF), natural symbionts of most terrestrial plants, emerge as [...] Read more.
Agricultural systems in Mediterranean-type climates are increasingly threatened by drought, salinity, extreme temperatures, heavy metal contamination, and pathogen pressure, all of which undermine crop productivity and agroecosystem stability. In this context, arbuscular mycorrhizal fungi (AMF), natural symbionts of most terrestrial plants, emerge as key biological agents capable of enhancing crop resilience. Following PRISMA guidelines, this systematic review synthesizes current knowledge on the role of AMF in mitigating abiotic and biotic stresses, highlighting their potential as a central component of sustainable Mediterranean agriculture. The available evidence demonstrates that AMF symbiosis significantly increases plant tolerance to multiple stressors across major crop families, including Poaceae, Fabaceae, Solanaceae, and Asteraceae. Under abiotic constraints, AMF improve water and nutrient uptake via extensive hyphal networks, modulate ion homeostasis under salinity, enhance tolerance to thermal extremes, and reduce heavy metal toxicity by immobilizing contaminants. Regarding biotic stresses, AMF induce systemic resistance to pathogens, stimulate secondary metabolite production that deters herbivores, and suppress parasitic nematode populations. Moreover, co-inoculation with other biostimulants, such as plant growth-promoting rhizobacteria, shows synergistic benefits, further improving crop productivity and resource-use efficiency. Overall, AMF represent an effective and multifunctional nature-based tool for improving the sustainability of Mediterranean agroecosystems. However, further research is required to evaluate AMF performance under simultaneous multiple stress factors, thereby reflecting real-world conditions and enabling a more integrated understanding of their agronomic potential. Full article
(This article belongs to the Special Issue Adaptations and Responses of Cropping Systems to Climate Change)
Show Figures

Figure 1

27 pages, 1445 KB  
Review
Smart Healing for Wound Repair: Emerging Multifunctional Strategies in Personalized Regenerative Medicine and Their Relevance to Orthopedics
by Carla Renata Arciola, Veronica Panichi, Gloria Bua, Silvia Costantini, Giulia Bottau, Stefano Ravaioli, Eleonora Capponi and Davide Campoccia
Antibiotics 2026, 15(1), 36; https://doi.org/10.3390/antibiotics15010036 - 1 Jan 2026
Viewed by 495
Abstract
To address the challenges in wound healing, clinical management increasingly demands targeted, adaptive, responsive, and patient-centered strategies. This is especially true for wounds characterized by delayed healing and a high risk of infection. Advances in regenerative medicine and biomaterial technologies are fostering the [...] Read more.
To address the challenges in wound healing, clinical management increasingly demands targeted, adaptive, responsive, and patient-centered strategies. This is especially true for wounds characterized by delayed healing and a high risk of infection. Advances in regenerative medicine and biomaterial technologies are fostering the development of multifunctional approaches that integrate tissue regeneration, antibacterial/antibiofilm activity, immunomodulation, and real-time monitoring. This paper surveys emerging platforms, including both natural and synthetic scaffolds, hydrogels enriched with platelet-derived growth factors, glycosaminoglycan mimetics, bioactive peptides (such as GHK-Cu and antimicrobial peptides), nanoscaffolds, and stimuli-responsive systems. The paper also explores cutting-edge technologies such as water-powered, electronics-free dressings that deliver localized electrical stimulation; biodegradable bioelectric sutures that produce self-sustained mechano-electrical signals; and sensory bandages that monitor pH, moisture, temperature, and bacterial contamination in real-time while enabling on-demand drug release with pro-regenerative, antibacterial, and other therapeutic functionalities. Further therapeutic approaches include natural matrices, exosomes, gene editing, 3D bioprinting, and AI-assisted design. Particular attention is paid to orthopedic applications and orthopedic implant infection. A brief section addresses the still unresolved challenge of articular cartilage regeneration. Interdisciplinary innovation, integrating insights from molecular biology through engineering, plays a central role in translating novel strategies into tailored, clinically effective wound management solutions. Full article
Show Figures

Figure 1

Back to TopTop