Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (342)

Search Parameters:
Keywords = water-repellent surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3671 KiB  
Article
Sustainable Benzoxazine Copolymers with Enhanced Thermal Stability, Flame Resistance, and Dielectric Tunability
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(15), 2092; https://doi.org/10.3390/polym17152092 - 30 Jul 2025
Viewed by 292
Abstract
Benzoxazine resins are gaining attention for their impressive thermal stability, low water uptake, and strong mechanical properties. In this work, two new bio-based benzoxazine monomers were developed using renewable arbutin: one combined with 3-(2-aminoethylamino) propyltrimethoxysilane (AB), and the other with furfurylamine (AF). Both [...] Read more.
Benzoxazine resins are gaining attention for their impressive thermal stability, low water uptake, and strong mechanical properties. In this work, two new bio-based benzoxazine monomers were developed using renewable arbutin: one combined with 3-(2-aminoethylamino) propyltrimethoxysilane (AB), and the other with furfurylamine (AF). Both were synthesized using a simple Mannich-type reaction and verified through FT-IR and 1H-NMR spectroscopy. By blending these monomers in different ratios, copolymers with adjustable thermal, dielectric, and surface characteristics were produced. Thermal analysis showed that the materials had broad processing windows and cured effectively, while thermogravimetric testing confirmed excellent heat resistance—especially in AF-rich blends, which left behind more char. The structural changes obtained during curing process were monitored using FT-IR, and XPS verified the presence of key elements like carbon, oxygen, nitrogen, and silicon. SEM imaging revealed that AB-based materials had smoother surfaces, while AF-based ones were rougher; the copolymers fell in between. Dielectric testing showed that increasing AF content raised both permittivity and loss, and contact angle measurements confirmed that surfaces ranged from water-repellent (AB) to water-attracting (AF). Overall, these biopolymers (AB/AF copolymers) synthesized from arbutin combine environmental sustainability with customizability, making them strong candidates for use in electronics, protective coatings, and flame-resistant composite materials. Full article
Show Figures

Figure 1

13 pages, 1764 KiB  
Article
Functionalization of Oligosiloxane for Polyester Comonomer
by Satoru Saotome, Jiaorong Kuang, Reina Akashi, Momoko Takahashi, Yujia Liu, Takayuki Iijima and Masafumi Unno
Molecules 2025, 30(13), 2775; https://doi.org/10.3390/molecules30132775 - 27 Jun 2025
Viewed by 298
Abstract
This paper proposes a new functionalized oligosiloxane as a comonomer for polyester, designed to provide hydrophobic surface properties and enhance low-temperature impact resistance. The functionalization of polymer resin itself has attracted attention in the context of monomaterialization. Chemically designing the primary structure of [...] Read more.
This paper proposes a new functionalized oligosiloxane as a comonomer for polyester, designed to provide hydrophobic surface properties and enhance low-temperature impact resistance. The functionalization of polymer resin itself has attracted attention in the context of monomaterialization. Chemically designing the primary structure of not only polymers but also monomers is crucial for enhancing the intrinsic performance of the resin. However, little is known about oligosiloxane monomers for polyester that can provide oligosiloxane-like properties such as hydrophobicity and flexibility at low temperatures. Here, we report the functional design of a polyester material through silicone copolymerization. A novel comonomer was designed and synthesized to optimize both the molecular structure and the compatibility of the silicone segments, promoting uniform copolymer formation. Incorporating silicone into the polymer matrix reduced surface energy, thereby improving water repellency. Furthermore, the flexibility imparted by the silicone components effectively mitigated the brittleness of polyester at sub-zero temperatures, resulting in superior impact resistance. Structural analysis, contact angle measurements, and low-temperature impact tests were conducted on the copolymers. The results confirmed that optimizing comonomer design enables significant enhancement of both hydrophobicity and impact durability, contributing to the development of high-performance polyester materials suitable for demanding environments. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

12 pages, 2254 KiB  
Article
Hydrophobic Boron Nitride Nanoflower Coatings on Mild Steel Surfaces
by Aamir Nadeem, Muhammad Faheem Maqsood, Mohsin Ali Raza, Syed Muhammad Zain Mehdi and Shahbaz Ahmad
Surfaces 2025, 8(3), 42; https://doi.org/10.3390/surfaces8030042 - 25 Jun 2025
Viewed by 547
Abstract
Growing demand for chemically resistant, thermally stable, and anti-icing coatings has intensified interest in boron nitride (BN)-based materials and surface coatings. In this study, BN coatings were developed on mild steel (MS) via chemical vapour deposition (CVD) at 1200 °C for 15, 30, [...] Read more.
Growing demand for chemically resistant, thermally stable, and anti-icing coatings has intensified interest in boron nitride (BN)-based materials and surface coatings. In this study, BN coatings were developed on mild steel (MS) via chemical vapour deposition (CVD) at 1200 °C for 15, 30, and 60 min, and their structural, surface, and water-repellent characteristics were evaluated. X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy confirmed the successful formation of BN, while water contact angle measurements indicated high hydrophobicity, demonstrating excellent barrier properties. Scanning electron microscopy (SEM) revealed morphological evolution from flower- and needle-like BN structures in the sample placed in the CVD furnace for 15 min to dense, coral-like, and tubular networks in the samples placed for 30 and 60 min. These findings highlight that BN coatings, particularly the one obtained after 30 min of deposition, have a high hydrophobic character following the Cassie–Baxter model and can be used for corrosion resistance and anti-icing on MS, making them ideal for industrial applications requiring long-lasting protection. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

15 pages, 2497 KiB  
Review
Utilization of SiO2 Nanoparticles in Developing Superhydrophobic Coatings for Road Construction: A Short Review
by Nazerke Kydyrbay, Mergen Zhazitov, Muhammad Abdullah, Zhexenbek Toktarbay, Yerbolat Tezekbay, Tolagay Duisebayev and Olzat Toktarbaiuly
Molecules 2025, 30(13), 2705; https://doi.org/10.3390/molecules30132705 - 23 Jun 2025
Viewed by 489
Abstract
The application of superhydrophobic (SH) coatings in road construction has attracted growing attention due to their potential to improve surface durability, reduce cracking, and enhance skid resistance. Among various materials, SiO2 nanoparticles have emerged as key components in SH coatings by contributing [...] Read more.
The application of superhydrophobic (SH) coatings in road construction has attracted growing attention due to their potential to improve surface durability, reduce cracking, and enhance skid resistance. Among various materials, SiO2 nanoparticles have emerged as key components in SH coatings by contributing essential surface roughness and hydrophobicity. This review paper analyzes the role of SiO2 nanoparticles in enhancing the water-repellent properties of coatings applied to road surfaces, particularly concrete and asphalt. Emphasis is placed on their influence on road longevity, reduced maintenance, and overall performance under adverse weather conditions. Furthermore, this review compares functionalization techniques for SiO2 using different hydrophobic modifiers, evaluating their efficiency, cost effectiveness, and scalability for large-scale infrastructure. In addition to highlighting recent advancements, this study discusses persistent challenges—including environmental compatibility, mechanical wear, and long-term durability—that must be addressed for practical implementation. By offering a critical assessment of current approaches and future prospects, this short review aims to guide the development of robust, high-performance SH coatings for sustainable road construction. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

15 pages, 3020 KiB  
Article
Metal Oxide-Modified PES Membranes for Efficient Separation of Oil-in-Water Emulsions and Trace Organic Compounds
by Jinze Li, Wensheng Yang, Yang Xu, Chengfeng Sun, Yingying Zhu and Geng Chen
Catalysts 2025, 15(6), 604; https://doi.org/10.3390/catal15060604 - 19 Jun 2025
Viewed by 506
Abstract
The efficient removal of emulsified oil and trace organic pollutants via forward osmosis (FO) technology remains challenging due to limited water flux and membrane fouling. In this study, a series of metal oxide-modified PES-based composite FO membranes were fabricated and systematically evaluated to [...] Read more.
The efficient removal of emulsified oil and trace organic pollutants via forward osmosis (FO) technology remains challenging due to limited water flux and membrane fouling. In this study, a series of metal oxide-modified PES-based composite FO membranes were fabricated and systematically evaluated to compare the effects of ZnO, Al2O3, and CuO nanoparticles on membrane structure and separation performance. The results demonstrated that the membrane modified with 0.04 g of ZnO nanoparticles achieved optimal synergy in terms of hydrophilicity, surface charge, and pore structure. The pure water flux increased from 5.48 L·m−2·h−1 for the pristine membrane to 18.5 L·m−2·h−1 for the ZnO-modified membrane, exhibiting a 237.5% increase in pure water flux compared to the pristine PES membrane, an oil rejection rate exceeding 97%, and over 95% rejection of typical negatively charged trace organic pollutants such as ibuprofen and tetracycline. Moreover, the ZnO-modified membrane showed excellent antifouling performance and structural stability in various organic solvent systems. This study not only optimized the interfacial chemistry and microstructure of the FO membrane but also enhanced pollutant repellence and the self-cleaning capability through increased hydrophilicity and surface negative charge density. These findings highlight the significant potential of ZnO modification for enhancing the overall performance of FO membranes and provide an effective strategy for developing high-performance, broadly applicable FO membranes for complex water purification. Full article
Show Figures

Graphical abstract

11 pages, 1825 KiB  
Article
Polyarylene Ether Nitrile/Modified Hollow Silica Composite Films for Ultralow Dielectric Properties and Enhanced Thermal Resistance
by Shuning Liu, Jinqi Wu, Yani Chen, Ting Zhang, Lifen Tong and Xiaobo Liu
Polymers 2025, 17(12), 1623; https://doi.org/10.3390/polym17121623 - 11 Jun 2025
Viewed by 426
Abstract
Highly heat-resistant and low-dielectric materials are crucial for achieving high-frequency communication, high-density integration, and high-temperature stability in modern electronics. In this work, surface modification of hollow silica microspheres (HGMs) using a silane coupling agent ((3-aminopropyl)triethoxysilane, KH550) yielded KHGM particles with a coating content [...] Read more.
Highly heat-resistant and low-dielectric materials are crucial for achieving high-frequency communication, high-density integration, and high-temperature stability in modern electronics. In this work, surface modification of hollow silica microspheres (HGMs) using a silane coupling agent ((3-aminopropyl)triethoxysilane, KH550) yielded KHGM particles with a coating content of approximately 9.3 wt%, which were subsequently incorporated into high-performance polyarylene ether nitrile (PEN) polymers to fabricate composite films. The modified nanoparticles demonstrated significantly enhanced compatibility with the polymer matrix, while their hollow structure effectively reduced the dielectric constant of the composite film. When loaded with 50 wt% KHGM particles, the PEN-based composite film exhibited an elevated glass transition temperature of 198 °C and achieved a dielectric constant as low as 2.32 at 1 MHz frequency, coupled with dielectric loss below 0.016; compared with pure PEN, the dielectric constant of PEN/KHGM-50% decreased by 26.47%. Additionally, the composite demonstrated excellent water repellency. These advancements provide high-performance material support for applications in electronic communications, aerospace, and related fields. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

16 pages, 11809 KiB  
Article
Multi-Layer Filter Material with a Superoleophobic Pore Size Gradient for the Coalescence Separation of Surfactant-Stabilized Oil-in-Water Emulsions
by Xingdong Wu, Ying Wang, Chengzhi Li, Lang Liu, Xiaowei Li and Cheng Chang
Processes 2025, 13(5), 1600; https://doi.org/10.3390/pr13051600 - 21 May 2025
Viewed by 517
Abstract
The performance of oil–water coalescence separation elements currently fails to meet the increasing demands of the oily wastewater treatment industry. To address this challenge, a series of fiber coalescing filters were developed through an underwater superoleophobic modification process using a simple impregnation technique. [...] Read more.
The performance of oil–water coalescence separation elements currently fails to meet the increasing demands of the oily wastewater treatment industry. To address this challenge, a series of fiber coalescing filters were developed through an underwater superoleophobic modification process using a simple impregnation technique. The effect of varying surface wettability on the separation efficiency of oil-in-water (O/W) emulsions stabilized with surfactants was investigated. The results demonstrate that, after undergoing underwater superoleophobic modification, the separation efficiency of the fiber filter material improved by 33.9%, the pressure drop was reduced by 46.1%, and the steady-state quality factor increased by 83.3%. Building upon these findings, an oil-repellent pore size gradient structure was introduced for the coalescence separation of surfactant-stabilized oil-in-water emulsions. This structure exhibited outstanding characteristics, including a low pressure drop and a high-quality factor. Furthermore, when processing emulsions stabilized with surfactants such as OP-10 (nonionic), CTAB (cationic), and SDS (anionic), the structure maintained high separation efficiencies of 93.6%, 96.4%, and 97.2%, respectively, after 10 cycles. Finally, based on experimental data and theoretical analysis, a separation mechanism for oil–water coalescence using superoleophobic pore size gradient filtration materials is proposed. This structure demonstrates significant potential for widespread application in liquid–liquid separation technologies. Full article
(This article belongs to the Special Issue Multiphase Flow Process and Separation Technology)
Show Figures

Figure 1

14 pages, 6772 KiB  
Article
Water Impact on Superhydrophobic Surface: One Hydrophilic Spot Morphing and Controlling Droplet Rebounce
by Jiali Guo, Haoran Zhao, Ching-Wen Lou and Ting Dong
Biomimetics 2025, 10(5), 319; https://doi.org/10.3390/biomimetics10050319 - 15 May 2025
Viewed by 510
Abstract
Motion control of droplets undergoing collisions with solid surface is required in a number of technological and industrial situations. Droplet dynamics after lifting off is often unpredictable, leading to a major problem in many technologies that droplets move in uncontrolled and potentially undesirable [...] Read more.
Motion control of droplets undergoing collisions with solid surface is required in a number of technological and industrial situations. Droplet dynamics after lifting off is often unpredictable, leading to a major problem in many technologies that droplets move in uncontrolled and potentially undesirable ways. Herein, this work shows that well-designed surface chemistry can produce an accurate control of force transmission to impinging droplets, permitting precise controlled droplet rebounce. The non-wetting surfaces (superhydrophobic), which mimics the water-repellent mechanism of lotus leaves via micro-to-nanoscale hierarchical morphology, with patterned “defect” of extreme wettability (hydrophilic), are synthesized by photolithography using only one inexpensive fluorine-free reagent (methyltrichlorosilane). The contact line of impinging droplet during flatting and receding is free to move on the superhydrophobic region and pinned as it meets with the hydrophilic defect, which introduces a net surface tension force allowing patterned droplet deposition, controlled droplet splitting, and directed droplet rebound. The work also achieves controlled vertical rebound of impinging droplets on inclined surfaces by controlling defect’s size, impact position, and impact velocity. This research demonstrates pinning forces as a general strategy to attain sophisticated droplet motions, which opens an avenue in future explorations, such as matter transportation, energy transformation, and object actuation. Full article
Show Figures

Figure 1

15 pages, 5674 KiB  
Article
Stearic-Acid-Coated Sand: A Game Changer for Agriculture Water Management
by Muhammad Abdullah, Mergen Zhazitov, Nazerke Kydyrbay, Tolagay Duisebayev, Yerbolat Tezekbay and Olzat Toktarbaiuly
Nanomaterials 2025, 15(10), 721; https://doi.org/10.3390/nano15100721 - 11 May 2025
Cited by 1 | Viewed by 671
Abstract
This study presents the synthesis, characterization, and evaluation of stearic-acid-coated sand (SACS) as a superhydrophobic material for agricultural water management applications. The fabrication process involves coating silica sand particles with stearic acid in an ethanol-based solution, followed by controlled drying to achieve a [...] Read more.
This study presents the synthesis, characterization, and evaluation of stearic-acid-coated sand (SACS) as a superhydrophobic material for agricultural water management applications. The fabrication process involves coating silica sand particles with stearic acid in an ethanol-based solution, followed by controlled drying to achieve a stable and uniform hydrophobic layer. Structural, chemical, and physical characterizations confirmed the successful functionalization of the sand surface. The coated sand exhibited a high water contact angle (WCA > 150°), indicating strong water repellency and potential for reducing water loss in soil systems. Experimental results demonstrated enhanced moisture retention in SACS-treated soil, prolonging water availability by up to four additional days compared to untreated samples. Despite its promising performance, potential degradation under acidic or organic solvent exposure remains a concern for long-term application. Overall, this work presents SACS as a low-cost, scalable solution to improve water conservation in dry agricultural areas, supporting sustainable farming practices. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

37 pages, 12224 KiB  
Review
Research Progress of Photothermal Superhydrophobic Surfaces for Anti-Icing/Deicing
by Hui Gao, Tianjun Yin, Jieyin Ma, Yuqin Zhou, Ke Li and Jiayi Bao
Molecules 2025, 30(9), 1865; https://doi.org/10.3390/molecules30091865 - 22 Apr 2025
Cited by 1 | Viewed by 1602
Abstract
Photothermal superhydrophobic surfaces with micro/nano-structured morphologies have emerged as promising candidates for anti-icing and deicing applications due to their exceptional water repellency and efficient solar-to-thermal conversion. These surfaces synergistically integrate the passive icephobicity of superhydrophobic coatings with the active heating capability of photothermal [...] Read more.
Photothermal superhydrophobic surfaces with micro/nano-structured morphologies have emerged as promising candidates for anti-icing and deicing applications due to their exceptional water repellency and efficient solar-to-thermal conversion. These surfaces synergistically integrate the passive icephobicity of superhydrophobic coatings with the active heating capability of photothermal materials, offering energy-efficient and environmentally friendly solutions for sectors such as aviation, wind energy, and transportation. Hence, they have received widespread attention in recent years. This review provides a comprehensive overview of recent advances in photothermal superhydrophobic coatings, focusing on their anti-icing/deicing mechanisms, surface wettability, and photothermal conversion performance for anti-icing/deicing applications. Special emphasis is placed on material categories, including metals and their compounds, carbon-based materials, and polymers, analyzing their structural features and application effectiveness. Furthermore, the application of anti-icing/deicing in various fields is described. Finally, perspectives on future development are presented, including pursuing fluorine-free, cost-effective, and multifunctional coatings to meet the growing demand for innovative, sustainable anti-icing/deicing technologies. Full article
(This article belongs to the Special Issue Micro/Nano-Materials for Anti-Icing and/or De-Icing Applications)
Show Figures

Figure 1

7 pages, 2607 KiB  
Proceeding Paper
Perspective on the Biomimetic Approaches for the Design of Hydrophobic and Antimicrobial Paper Coatings with Hierarchical Surface Structures
by Pieter Samyn
Mater. Proc. 2025, 20(1), 8; https://doi.org/10.3390/materproc2025020008 - 17 Apr 2025
Viewed by 704
Abstract
The design of functional paper coatings with excellent barrier properties, including water repellence, anti-microbial properties, and recyclability, is highly demanded in view of the sustainable use of paper as flexible substrates for various industrial applications such as packaging. The enhanced coating functionalities should [...] Read more.
The design of functional paper coatings with excellent barrier properties, including water repellence, anti-microbial properties, and recyclability, is highly demanded in view of the sustainable use of paper as flexible substrates for various industrial applications such as packaging. The enhanced coating functionalities should be incorporated through a combination of selected bio-based materials and the creation of appropriate surface textures enhancing coating performance. The bio-inspired approaches through the replication of hierarchical surface structures with multi-scale dimensional features in combination with selection of appropriate bio-based functional groups offer new concepts for coating design. In this short perspective paper, concepts in the field are illustrated with a focus on the combination of hydrophobic and anti-microbial properties. Based on long-term work with the available toolbox of bio-based building blocks and nanoscale architectures, they can be processed into applicable aqueous suspensions for sprayable paper coatings. The macroscopic roughness profile of paper substrates can be complemented through the decoration of nanoscale bio-based polymer particles of polyhydroxybutyrate or vegetable oil capsules with dimensions in the range of 20–50 nm or 100–500 nm depending on the synthesis conditions. The anti-microbial properties can be provided by the surface modification of nanocellulose with biologically active molecules sourced from nature. Besides the more fundamental issues in design and synthesis, the industrial application of the bio-inspired coatings through spray-coating becomes relevant. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Biomimetics)
Show Figures

Figure 1

32 pages, 2425 KiB  
Review
Development, Challenges, and Applications of Concrete Coating Technology: Exploring Paths to Enhance Durability and Standardization
by Hongbin Zhao, Qingzhou Wang, Ruipeng Shang and Shengkai Li
Coatings 2025, 15(4), 409; https://doi.org/10.3390/coatings15040409 - 30 Mar 2025
Cited by 2 | Viewed by 1068
Abstract
Concrete coating technology is a key measure that enhances the durability of concrete structures. This paper systematically studies the performance, applicability, and impact of different types of anti-corrosion coatings on concrete durability, focusing on their resistance to chloride ion penetration, freeze–thaw cycles, carbonation, [...] Read more.
Concrete coating technology is a key measure that enhances the durability of concrete structures. This paper systematically studies the performance, applicability, and impact of different types of anti-corrosion coatings on concrete durability, focusing on their resistance to chloride ion penetration, freeze–thaw cycles, carbonation, and sulfate corrosion. The applicability of existing testing methods and standard systems is also evaluated. This study shows that surface-film-forming coatings can create a dense barrier, reducing chloride ion diffusion coefficients by more than 50%, making them suitable for humid and high-chloride environments. Pore-sealing coatings fill capillary pores, improving the concrete’s impermeability and making them ideal for highly corrosive environments. Penetrating hydrophobic coatings form a water-repellent layer, reducing water absorption by over 75%, which is particularly beneficial for coastal and underwater concrete structures. Additionally, composite coating technology is becoming a key approach to addressing multi-environment adaptability challenges. Experimental results have indicated that combining penetrating hydrophobic coatings with surface-film-forming coatings can enhance concrete’s resistance to chloride ion penetration while ensuring weather resistance and wear resistance. However, this study also reveals that there are several challenges in the standardization, engineering application, and long-term performance assessment of coating technology. The lack of globally unified testing standards leads to difficulties in comparing the results obtained from different test methods, affecting the practical application of these coatings in engineering. Moreover, construction quality control and long-term service performance monitoring remain weak points in their use in engineering applications. Some engineering case studies indicate that coating failures are often related to an insufficient coating thickness, improper interface treatment, or lack of maintenance. To further improve the effectiveness and long-term durability of coatings, future research should focus on the following aspects: (1) developing intelligent coating materials with self-healing, high-temperature resistance, and chemical corrosion resistance capabilities; (2) optimizing multilayer composite coating system designs to enhance the synergistic protective capabilities of different coatings; and (3) promoting the creation of global concrete coating testing standards and establishing adaptability testing methods for various environments. This study provides theoretical support for the optimization and standardization of concrete coating technology, contributing to the durability and long-term service safety of infrastructure. Full article
(This article belongs to the Special Issue Recent Progress in Reinforced Concrete and Building Materials)
Show Figures

Figure 1

13 pages, 3097 KiB  
Article
Moth-Eye-Inspired Antireflective Structures in Hybrid Polymers: Depth-Variable Etching Techniques, Optical Performance, Thermal Stability, and Hydrophobicity
by Lukas Werner, Zhaolu Diao, Joachim P. Spatz, Marcus Abend, Steffen Resche, Nico Hagen, Richard Busch and Robert Brunner
Nanomaterials 2025, 15(7), 490; https://doi.org/10.3390/nano15070490 - 25 Mar 2025
Viewed by 758
Abstract
Hybrid polymers combine the benefits of inorganic and organic material properties, offering superior thermal, mechanical, and chemical stability, making them ideal for optical applications. This study focuses on the fabrication and characterization of antireflective (AR) structures within hybrid polymers using reactive ion etching [...] Read more.
Hybrid polymers combine the benefits of inorganic and organic material properties, offering superior thermal, mechanical, and chemical stability, making them ideal for optical applications. This study focuses on the fabrication and characterization of antireflective (AR) structures within hybrid polymers using reactive ion etching (RIE). The etching process produces nanopillars with controlled heights, achieving excellent AR performance across a broad spectral range from 450 nm to 2 µm. Optical characterization, including angle-resolved transmission and reflection measurements, shows that the structured samples maintain high transmission efficiency and reduced reflectance at varying incidence angles. Thermal stability tests reveal that the AR structures preserve their optical properties after exposure to temperatures up to 250 °C. Higher temperatures cause significant material yellowing, which is attributed to changes in the bulk material rather than damage to the structured surface. Hydrophobicity measurements show significant water repellency in structured samples, with contact angles more than twice those of unstructured layers. These findings highlight the potential of hybrid polymers with moth-eye-inspired nanostructures for high-performance, durable optical components in demanding environments. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

23 pages, 7257 KiB  
Article
Effect of Nanosecond Laser Ablation and Oxidation on the Surface Wettability and Microstructure of Cu-ETP Copper Sheets
by Monika Walkowicz, Piotr Osuch, Małgorzata Zasadzińska, Paweł Strzępek and Klaudia Kludacz
Coatings 2025, 15(4), 383; https://doi.org/10.3390/coatings15040383 - 25 Mar 2025
Viewed by 726
Abstract
Nanosecond laser ablation effectively modifies Cu-ETP copper surfaces by controlling wettability and microstructure. This study examines the effects of nanosecond fiber laser processing and subsequent oxidation on surface evolution. The analyzed parameters include fluence (25.46–1018.59 J/cm2), wavelength (1064 nm), repetition rate [...] Read more.
Nanosecond laser ablation effectively modifies Cu-ETP copper surfaces by controlling wettability and microstructure. This study examines the effects of nanosecond fiber laser processing and subsequent oxidation on surface evolution. The analyzed parameters include fluence (25.46–1018.59 J/cm2), wavelength (1064 nm), repetition rate (25–1000 kHz), and pulse duration (2–500 ns). To investigate high energy densities, fluence values were set above typical ablation thresholds, inducing hierarchical surface structures affecting wettability. Post-ablation oxidation was examined under two conditions: natural oxidation in ambient air and accelerated oxidation via low-temperature annealing (200 °C) in air. Contact angle measurements revealed that over time, the initially hydrophilic (θ < 90°) laser-textured surfaces exhibited a transition toward hydrophobicity (θ > 90°), which can be attributed to the adsorption of airborne organic compounds rather than oxidation alone. In contrast, annealing significantly accelerated hydrophobicity, attributed to controlled copper oxide growth. SEM and EDS analyses confirmed that higher fluences enhanced roughness and oxidation, forming multi-scale textures and oxide layers, which influenced water repellency. These findings demonstrate that high-fluence laser ablation, combined with controlled oxidation, enables precise wettability engineering. This method provides an efficient strategy for tuning surface properties, offering potential applications in anti-corrosion coatings, self-cleaning surfaces, and heat exchangers, where hydrophobicity and durability are essential. Full article
Show Figures

Figure 1

21 pages, 4988 KiB  
Article
Fabrication of Superhydrophobic Ultra-Fine Brass Wire by Laser Processing
by Jing Sun, Hao Huang, Jiajun Ji, Chen Zhang, Binghan Wu, Hao Liu and Jinlong Song
Materials 2025, 18(7), 1420; https://doi.org/10.3390/ma18071420 - 23 Mar 2025
Viewed by 2734
Abstract
Superhydrophobic metal wires have shown great application prospects in oil–water separation, anti-corrosion, anti-icing, and other fields due to their excellent water repellency. However, how to fabricate a superhydrophobic surface on ultra-fine metal wire remains a challenge. Here, we proposed a method using laser [...] Read more.
Superhydrophobic metal wires have shown great application prospects in oil–water separation, anti-corrosion, anti-icing, and other fields due to their excellent water repellency. However, how to fabricate a superhydrophobic surface on ultra-fine metal wire remains a challenge. Here, we proposed a method using laser processing to efficiently fabricate superhydrophobic ultra-fine brass wire. Firstly, we analyzed the mechanism of the laser processing of curved surfaces and designed a controllable angle rotation fixture to avoid the machining error caused by secondary positioning in the machining process. Then, we investigated the influences of the laser power, scanning speed, and scanning times on the surface morphology and wettability of the ultra-fine brass wire. The optimal laser processing parameters were obtained: laser power of 6 W, scanning speed of 500 mm/s, and scanning time of 1. After low surface energy modification, the water contact angle and surface roughness Sa of the ultra-fine brass wire were 156° and 1.107 μm, respectively. This work is expected to enrich the theory and technology for fabricating superhydrophobic ultra-fine brass wire. Full article
(This article belongs to the Special Issue Advances in Laser Processing Technology of Materials)
Show Figures

Graphical abstract

Back to TopTop