Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (120)

Search Parameters:
Keywords = water-related natural hazards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2574 KiB  
Article
Assessment of the Human Health Risks Associated with Heavy Metals in Surface Water Near Gold Mining Sites in Côte d’Ivoire
by Mahamadou Kamagate, Traore Lanciné, Kouadio Aya Nelly Berthe, Gone Droh Lanciné, Karim Kriaa, Amine Aymen Assadi, Jie Zhang and Hichem Tahraoui
Water 2025, 17(13), 1891; https://doi.org/10.3390/w17131891 - 25 Jun 2025
Viewed by 453
Abstract
Heavy metals are a major cause for concern in relation to water systems, due to their high toxicity at elevated levels. The metals can originate from both natural processes, including geological weathering and volcanic activity, as well as anthropogenic activi-ties such as industrial [...] Read more.
Heavy metals are a major cause for concern in relation to water systems, due to their high toxicity at elevated levels. The metals can originate from both natural processes, including geological weathering and volcanic activity, as well as anthropogenic activi-ties such as industrial discharges, agricultural runoff, mining, and urbanization, which significantly contribute to water pollution and environmental degradation. The as-sessment of these risks is crucial for protecting public health, especially in populations reliant on contaminated water sources. Exposure to such contaminants can result in severe health consequences, including neurological impairments, organ deterioration, and an elevated risk of cancer. To conduct this assessment study, six surface water sampling sites were selected (i.e., S1 (Gobia), S2 (Kouamefla), S3 (Benkro), S4 (Dou-kouya), S5 (Doka), and S6 (Zengue)) due to their proximity to mining activities. We used the hazard quotient (HQ) and hazard index (HI) methods to estimate the levels of non-carcinogenic health risk associated with heavy metals. Then, the assessment of carcinogenic health risk was carried out using the Incremental Lifetime Cancer Risk (ILCR) methods. First, the highest ILCR total values were observed in the Doya locality (i.e., 0.4237 for the children and 0.5650 for the adults) and during the great dry season (i.e., 0.4333 for the children and 0.5743 for the adults). These findings highlight that populations in this locale experience heightened exposure during the period of the Great Rainy Season. The results indicated that the population exposed to Cd and Hg may experience health concerns irrespective of season and locality. For As and Pb, risks are present in both seasons (i.e., Short Dry Season (SDS) and Short Rainy Season (SRS)). On the other hand, the HIs are well above 1, indicating that the population may be exposed to non-carcinogenic diseases associated with the metals, regardless of the season or locality. To further explore the results, the assessment by ILCR was em-ployed, which demonstrated that for all the designated localities, the ILCRs of As and Cd are well above 10−4 for the entire population, indicating that the population con-suming this water may develop major carcinogenic risks. In addition, the highest ILCR values were obtained for Cd, regardless of the age group. It should be noted that sea-sonal variation had no significant effect on the trend in ILCRs determined for the en-tire population. Full article
(This article belongs to the Special Issue Soil-Groundwater Pollution Investigations)
Show Figures

Figure 1

18 pages, 3754 KiB  
Article
Challenges of Sustainable Water Management in a Heavily Industrialized Urban Basin, Case of Bytomka River, Poland
by Ewa Katarzyn Janson and Adam Hamerla
Sustainability 2025, 17(13), 5707; https://doi.org/10.3390/su17135707 - 20 Jun 2025
Viewed by 440
Abstract
Industrial and urban activity has inevitably changed the water environment and caused significant impacts on water resources’ quality and quantity. The identification of related impacts is particularly important in the context of increasing water shortages due to climate change. Overlapping industrial impacts and [...] Read more.
Industrial and urban activity has inevitably changed the water environment and caused significant impacts on water resources’ quality and quantity. The identification of related impacts is particularly important in the context of increasing water shortages due to climate change. Overlapping industrial impacts and drought occurrence have resulted in the long-lasting deterioration of surface water status. Therefore, the mitigation of negative impacts is crucial for relevant and sustainable water management in river basins. One of the most impactful branches of industry is underground coal mining, which requires dewatering deposits and excavations. Mine waters discharged into rivers have induced significant increases of salinity, while urban wastewaters have increased biogenic contamination in surface waters. Sustainable development goals require water protection, energy transition, and circularity; therefore, coal will be repurposed in favor of alternative sources of energy. The phasing out of coal and cessation of dewatering of mines would rapidly reduce mine waters’ impact on the environment. However, in heavily industrialized urban basins, the share of natural waters in river flows is exceptionally low—due to significant and long-lasting transformations, industrial and urban wastewaters are the main constitutive components in certain river hydrological regimes. The case study of Bytomka in the Upper Silesian Coal Basin, Southern Poland is a vivid example of a river basin significantly impacted by urban and industrial activity over a long-term period. The Bytomka River’s water status and the development of its watershed area is an example of complex and overlapping impacts, wherein sustainable water management requires proper recognition of prevailing factors such as mine water discharges, climate change and drought periods, wastewater impacts, and urbanization of the water basin area. The presented study reveals key findings showing that future coal mine closures would result in significant water resource shortages due to a reduction of mine water discharges, significant biogenic (N and P) pollution increases, and hazards of harmful algal blooms. Therefore, there is an urgent need to increase the retention potential of the watershed, use nature-based solutions, and mitigate negative impacts of the coal mining transition. The increase in treatment capability of industrial wastewater and sewage discharge would help to cope with the natural water vulnerability induced by the impacts of climate change. Full article
(This article belongs to the Special Issue Sustainable Use of Water Resources in Climate Change Impacts)
Show Figures

Figure 1

22 pages, 7977 KiB  
Article
Unlocking Coastal Insights: An Integrated Geophysical Study for Engineering Projects—A Case Study of Thorikos, Attica, Greece
by Stavros Karizonis and George Apostolopoulos
Geosciences 2025, 15(6), 234; https://doi.org/10.3390/geosciences15060234 - 19 Jun 2025
Viewed by 328
Abstract
Urban expansion in coastal areas involves infrastructure development, industrial growth, and mining activities. These coastal environments face various environmental and geological hazards that require geo-engineers to devise solutions. An integrated geophysical approach aims to address such complex challenges as sea level rise, sea [...] Read more.
Urban expansion in coastal areas involves infrastructure development, industrial growth, and mining activities. These coastal environments face various environmental and geological hazards that require geo-engineers to devise solutions. An integrated geophysical approach aims to address such complex challenges as sea level rise, sea water intrusion, shoreline erosion, landslides and previous anthropogenic activity in coastal settings. In this study, the proposed methodology involves the systematic application of geophysical methods (FDEM, 3D GPR, 3D ERT, seismic), starting with a broad-scale survey and then proceeding to a localized exploration, in order to identify lithostratigraphy, bedrock depth, sea water intrusion and detect anthropogenic buried features. The critical aspect is to leverage the unique strengths and limitations of each method within the coastal environment, so as to derive valuable insights for survey design (extension and orientation of measurements) and data interpretation. The coastal zone of Throrikos valley, Attica, Greece, serves as the test site of our geophysical investigation methodology. The planning of the geophysical survey included three phases: The application of frequency-domain electromagnetic (FDEM) and 3D ground penetrating radar (GPR) methods followed by a 3D electrical resistivity tomography (ERT) survey and finally, using the seismic refraction tomography (SRT) and multichannel analysis of surface waves (MASW). The FDEM method confirmed the geomorphological study findings by revealing the paleo-coastline, superficial layers of coarse material deposits and sea water preferential flow due to the presence of anthropogenic buried features. Subsequently, the 3D GPR survey was able to offer greater detail in detecting the remains of an old marble pier inland and top layer relief of coarse material deposits. The 3D ERT measurements, deployed in a U-shaped grid, successfully identified the anthropogenic feature, mapped sea water intrusion, and revealed possible impermeable formation connected to the bedrock. ERT results cannot clearly discriminate between limestone or deposits, as sea water intrusion lowers resistivity values in both formations. Finally, SRT, in combination with MASW, clearly resolves this dilemma identifying the lithostratigraphy and bedrock top relief. The findings provide critical input for engineering decisions related to foundation planning, construction feasibility, and preservation of coastal infrastructure. The methodology supports risk-informed design and sustainable development in areas with both natural and cultural heritage sensitivity. The applied approach aims to provide a complete information package to the modern engineer when faced with specific challenges in coastal settings. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

24 pages, 1620 KiB  
Article
A Fusion of Deep Learning and Time Series Regression for Flood Forecasting: An Application to the Ratnapura Area Based on the Kalu River Basin in Sri Lanka
by Shanthi Saubhagya, Chandima Tilakaratne, Pemantha Lakraj and Musa Mammadov
Forecasting 2025, 7(2), 29; https://doi.org/10.3390/forecast7020029 - 18 Jun 2025
Viewed by 613
Abstract
Flooding is the most frequent natural hazard that accompanies hardships for millions of civilians and substantial economic losses. In Sri Lanka, fluvial floods cause the highest damage to lives and properties. Ratnapura, which is in the Kalu River Basin, is the area most [...] Read more.
Flooding is the most frequent natural hazard that accompanies hardships for millions of civilians and substantial economic losses. In Sri Lanka, fluvial floods cause the highest damage to lives and properties. Ratnapura, which is in the Kalu River Basin, is the area most vulnerable to frequent flood events in Sri Lanka due to inherent weather patterns and its geographical location. However, flood-related studies conducted based on the Kalu River Basin and its most vulnerable cities are given minimal attention by researchers. Therefore, it is crucial to develop a robust and reliable dynamic flood forecasting system to issue accurate and timely early flood warnings to vulnerable victims. Modeling the water level at the initial stage and then classifying the results of this into pre-defined flood risk levels facilitates more accurate forecasts for upcoming susceptibilities, since direct flood classification often produces less accurate predictions due to the heavily imbalanced nature of the data. Thus, this study introduces a novel hybrid model that combines a deep leaning technique with a traditional Linear Regression model to first forecast water levels and then detect rare but destructive flood events (i.e., major and critical floods) with high accuracy, from 1 to 3 days ahead. Initially, the water level of the Kalu River at Ratnapura was forecasted 1 to 3 days ahead by employing a Vanilla Bi-LSTM model. Similarly to water level modeling, rainfall at the same location was forecasted 1 to 3 days ahead by applying another Bi-LSTM model. To further improve the forecasting accuracy of the water level, the forecasted water level at day t was combined with the forecasted rainfall for the same day by applying a Time Series Regression model, thereby resulting in a hybrid model. This improvement is imperative mainly because the water level forecasts obtained for a longer lead time may change with the real-time appearance of heavy rainfall. Nevertheless, this important phenomenon has often been neglected in past studies related to modeling water levels. The performances of the models were compared by examining their ability to accurately forecast flood risks, especially at critical levels. The combined model with Bi-LSTM and Time Series Regression outperformed the single Vanilla Bi-LSTM model by forecasting actionable flood events (minor and critical) occurring in the testing period with accuracies of 80%, 80%, and 100% for 1- to 3-day-ahead forecasting, respectively. Moreover, overall, the results evidenced lower RMSE and MAE values (<0.4 m MSL) for three-days-ahead water level forecasts. Therefore, this enhanced approach enables more trustworthy, impact-based flood forecasting for the Rathnapura area in the Kalu River Basin. The same modeling approach could be applied to obtain flood risk levels caused by rivers across the globe. Full article
(This article belongs to the Section Environmental Forecasting)
Show Figures

Figure 1

16 pages, 2532 KiB  
Article
From Global to Local: Testing the UNEP Environmental Vulnerability Index in a Coastal Korea Context
by SaMin Han
Land 2025, 14(6), 1297; https://doi.org/10.3390/land14061297 - 18 Jun 2025
Viewed by 599
Abstract
As climate change intensifies, assessing vulnerability at territorial levels such as cities, countries, and regions is essential for effective adaptation planning. This study evaluates the applicability of the United Nations Environment Programme and South Pacific Applied Geoscience Commission’s Environmental Vulnerability Index (EVI) for [...] Read more.
As climate change intensifies, assessing vulnerability at territorial levels such as cities, countries, and regions is essential for effective adaptation planning. This study evaluates the applicability of the United Nations Environment Programme and South Pacific Applied Geoscience Commission’s Environmental Vulnerability Index (EVI) for coastal regions in South Korea. By adapting and localizing 50 international indicators and a Geographic Information System framework, this research developed a Korean Coastal Vulnerability Index and used spatial regression analysis to compare results to historical water-related disaster data from 2010 to 2019. The findings reveal that contrary to South Korea’s global classification of “extremely vulnerable”, most coastal counties appear relatively resilient when viewed through the localized model. Sub-index analyses indicate that ecological and anthropogenic damage factors show the strongest correlation with past disasters among the hazard, resistance, and damage categories. While the model’s explanatory power was modest (R2 = 0.017), the regression nonetheless provides meaningful insight into how global indices can reflect local vulnerability patterns. The regression results confirm that based on historical hazard records, the international model effectively predicts Korean coastal vulnerability. It demonstrates the potential of scaling down global models to fit national contexts, offering a replicable approach for countries lacking localized vulnerability frameworks. It advances climate adaptation research through methodological innovation, policy-relevant spatial analysis, and theoretical insights into the multidimensional nature of vulnerability. The results support more precise, data-driven resilience planning and promote international collaboration in climate risk management. Full article
(This article belongs to the Special Issue Vulnerability and Resilience of Urban Planning and Design)
Show Figures

Figure 1

29 pages, 767 KiB  
Review
Current Natural Degradation and Artificial Intervention Removal Techniques for Antibiotics in the Aquatic Environment: A Review
by Jing Ji, Haoqing Li and Shejiang Liu
Appl. Sci. 2025, 15(9), 5182; https://doi.org/10.3390/app15095182 - 7 May 2025
Cited by 1 | Viewed by 858
Abstract
The extensive use of antibiotics as essential medications in contemporary healthcare has resulted in significant amounts of these drugs entering the environment, both in original and metabolic forms, which presents serious ecological and health hazards. This paper examines the natural processes that break [...] Read more.
The extensive use of antibiotics as essential medications in contemporary healthcare has resulted in significant amounts of these drugs entering the environment, both in original and metabolic forms, which presents serious ecological and health hazards. This paper examines the natural processes that break down antibiotics in water, including photolysis, hydrolysis, and biodegradation. It also discusses advancements in artificial degradation technologies, such as advanced oxidation processes (AOPs), physicochemical methods, ionizing radiation degradation, artificial wetland technology, microalgae technology, microbial electrochemical systems, and innovative catalysts. While current technologies demonstrate promising potential for use, they encounter challenges related to the catalyst stability, cost, and ecological safety. Future research should focus on optimizing degradation methods and creating efficient, sustainable multi-technology systems, such as the photocatalysis–membrane filtration coupling system; the ultrasound–Fenton–artificial wetland synergistic system; the electrochemical–biodegradation combined system; and the microbial fuel cell (MFC)–photocatalysis synergistic system, to tackle the complexities of antibiotic pollution in the environment. Full article
(This article belongs to the Special Issue Advances in Pollutant Removal from Water Environments)
Show Figures

Figure 1

16 pages, 3108 KiB  
Article
Using Natural Isotopes for the Environmental Tracking of a Controlled Landfill Site for Non-Hazardous Waste in Liguria, Italy
by A. Izzotti, A. Pulliero, Z. Khalid, O. Ferrante, E. Aquilia, S. Sciacca, G. Oliveri Conti and M. Ferrante
Int. J. Environ. Res. Public Health 2025, 22(4), 528; https://doi.org/10.3390/ijerph22040528 - 31 Mar 2025
Viewed by 488
Abstract
The application of natural radioisotope and stable isotope tracing represents a novel, sensitive method for confirming the presence of environmental contamination due to leachate water from solid waste landfills. This study aimed to employ this approach to assess the efficiency of containment measures [...] Read more.
The application of natural radioisotope and stable isotope tracing represents a novel, sensitive method for confirming the presence of environmental contamination due to leachate water from solid waste landfills. This study aimed to employ this approach to assess the efficiency of containment measures and the potential environmental impact in the vicinity of a landfill designated for non-hazardous waste disposal. We collected leachate water samples from two distinct areas: one currently active, and another exhausted. In February, May, August, and November 2022, we collected deep water samples from a nearby stream utilizing piezometers, both upstream and downstream from the facility. We examined deuterium and tritium radioisotopes via liquid scintillation, and stable isotope oxygen-18 via ratio mass spectrometry. The results revealed the presence of anthropogenic radioisotopes within the landfill, with higher concentrations in the active site. No radioisotopes or stable isotopes above the natural background were identified in any of the samples obtained from outside. The levels of tritium were found to correlate with rainfall in the samples collected inside, but not in those obtained outside. These findings provide evidence of the effectiveness of the active structural, managerial, and procedural containment measures and the absence of environmental contamination stemming from the studied site, reinforcing the value of the responsible management of non-hazardous waste and its limited impact on the surrounding environment. The reported results highlight the utility of performing radioisotope and stable isotope monitoring not only inside but also outside the landfill, and analyzing the relation via pluviometry. Full article
Show Figures

Graphical abstract

25 pages, 1382 KiB  
Article
Water Security Under Climate Change: Challenges and Solutions Across 43 Countries
by Maridelly Amparo-Salcedo, Ana Pérez-Gimeno and Jose Navarro-Pedreño
Water 2025, 17(5), 633; https://doi.org/10.3390/w17050633 - 21 Feb 2025
Cited by 2 | Viewed by 3515
Abstract
Different countries face significant challenges in managing water-related natural hazards, such as floods and shortages, while ensuring adequate water quality and quantity to satisfy human needs and preserve ecosystems. Climate change projections exacerbate this situation by intensifying the hydrological cycle, resulting in substantial [...] Read more.
Different countries face significant challenges in managing water-related natural hazards, such as floods and shortages, while ensuring adequate water quality and quantity to satisfy human needs and preserve ecosystems. Climate change projections exacerbate this situation by intensifying the hydrological cycle, resulting in substantial changes in precipitation patterns, evapotranspiration, and groundwater storage. This study reviews water security challenges across 43 countries, drawing on 128 articles obtained from databases including EBSCOHOST, Scopus and ResearchGate, as well as specific journals. Key search terms included “water security”, “water security and climate change”, “water scarcity”, “water risk index”, “water balance”, “water assessment”, and “land use and land cover change”. The analysis reveals the main water security issues present in 43 countries (flash floods, drought and water quality), and the response measures identified these challenges to water security. All the countries studied face one or more critical water-related effects. Afghanistan, Bangladesh, India, and Mexico were identified as the most severely affected, dealing with a combination of water scarcity, flooding, and water pollution. The most suggested strategies for improving water security include sustainable urban planning, improving consumption efficiency, strategic land-use planning, applying technologies to predict availability of water resources and planning according to variations in resource availability over time. In addition, other general actions include enhancing water storage infrastructure, improving consumption efficiency and adopting sustainable urban planning. Full article
Show Figures

Figure 1

17 pages, 575 KiB  
Article
Spatial Planning for Tourism Destinations Resilient to Climate Change
by Marilena Papageorgiou
Tour. Hosp. 2025, 6(1), 8; https://doi.org/10.3390/tourhosp6010008 - 10 Jan 2025
Viewed by 2433
Abstract
Tourism and climate change have a two-way relation. Spatial planning can challenge this correlation, by making tourism destinations more resilient to climate change and tourism contributing less to the climate change acceleration. Based on literature review and theoretical research, this paper unravels the [...] Read more.
Tourism and climate change have a two-way relation. Spatial planning can challenge this correlation, by making tourism destinations more resilient to climate change and tourism contributing less to the climate change acceleration. Based on literature review and theoretical research, this paper unravels the spatial structure of tourism destinations and presents systematically the way tourism affects—and is affected by—climate change. The objective of this paper is to articulate policy and planning recommendations and guidelines to address resilience against climate change at all destination scales. The paper identifies as most threatened the destinations facing extreme weather events, temperature fluctuations, and sea level rise (and more precisely the coastal and mountainous destinations), followed by areas facing water shortage and droughts, areas with fragile tourism resources (natural and cultural), and those experiencing overtourism. In regard to spatial planning for tourism (cross-cutting or sectoral), the paper argues that it has a proactive nature (making tourism destinations less vulnerable to climate change) but also can contribute to the earlier recovery of them after a disaster/damage has occurred. Spatial planning is also important for moderating the uncontrolled tourism growth responsible for climate change acceleration. A key conclusion is that a risk assessment and analysis should be an integral part of spatial tourism planning, focusing on the hazards and threats related to climate change. Full article
(This article belongs to the Special Issue Rethinking Destination Planning Through Sustainable Local Development)
Show Figures

Figure 1

19 pages, 2278 KiB  
Article
Evaluating the Sustainability of Longtime Operating Infrastructure for Romanian Flood Risk Protection
by Ioana Popescu, Camelia Teau, Cristian Moisescu-Ciocan, Constantin Florescu, Relu Adam and Albert Titus Constantin
Sustainability 2024, 16(23), 10573; https://doi.org/10.3390/su162310573 - 2 Dec 2024
Cited by 1 | Viewed by 1140
Abstract
Flood protection infrastructures are crucial for enhancing the resilience of societies exposed to natural hazards. Newly designed infrastructures are evaluated for sustainability using a coherent and internationally recognized method defined by the International Hydropower Association (IHA). However, in operation, old structures require a [...] Read more.
Flood protection infrastructures are crucial for enhancing the resilience of societies exposed to natural hazards. Newly designed infrastructures are evaluated for sustainability using a coherent and internationally recognized method defined by the International Hydropower Association (IHA). However, in operation, old structures require a different assessment approach. Different work proposes a modified IHA protocol, mHSAP, which identifies opportunities for improvement and develops a sustainability evaluation framework for existing infrastructures. This paper applies the modified protocol to evaluate the sustainability of two types of flood protection structures: a unique canal system for flood–drought protection of an urban area and a flood protection dike. The time of operation of these structures is over 250 years and over 50 years, respectively. The application of the modified framework demonstrates its advantages in identifying areas for improving flood protection structure operation while maintaining the structure’s sustainability. It also illustrates how Romanian water boards can use such tools to facilitate collaboration between structure owners and stakeholders, allowing them to assess the risks and effects of flooding on society. Through these two examples from Romania, we also show that the mHSAP framework has the potential to actively support the fulfillment of the United Nations Agenda 2030 Sustainable Development Goals (SDGs). The results presented here show that this method can be further utilized by water board authorities to account for climate change effects, address related challenges in a coordinated and efficient manner, develop resilient flood management strategies, inform infrastructure investment decisions, and enhance collaboration among water management authorities. Full article
Show Figures

Figure 1

24 pages, 1800 KiB  
Review
Urban Stormwater Management Using Nature-Based Solutions: A Review and Conceptual Model of Floodable Parks
by Silvia Martín Muñoz, Simon Elliott, Jonas Schoelynck and Jan Staes
Land 2024, 13(11), 1858; https://doi.org/10.3390/land13111858 - 7 Nov 2024
Cited by 5 | Viewed by 3550
Abstract
Climate change is causing the alteration of atmospheric dynamics, leading to extreme precipitation events and floods. On the other hand, landscape modification and increased imperviousness due to urbanization exacerbate the impacts of flooding. In order to become more permeable, cities are increasingly embracing [...] Read more.
Climate change is causing the alteration of atmospheric dynamics, leading to extreme precipitation events and floods. On the other hand, landscape modification and increased imperviousness due to urbanization exacerbate the impacts of flooding. In order to become more permeable, cities are increasingly embracing aquatic Nature-based Solutions which, using natural processes, allow for the mitigation of water-related hazards. One of these solutions is floodable parks, where pluvial runoff is conveyed for its temporal storage into, firstly, permanent retention ponds and, eventually, the partial or totality of their surface. Floodable parks are still a novel aquatic Nature-based Solution and have not yet been investigated. In this paper, a systematic review on current floodable parks was performed in order to study (1) the conditions needed for their implementation, (2) their design, and (3) the connection between design and ecosystem services. A subsequent systematic review was performed to understand (4) the processes occurring within the park. With the obtained information, a conceptual model of floodable parks was developed. The results indicate that both the vegetation surrounding the permanent pond of the floodable park and the biodiversity within the pond enhance the performance of this solution and allow potential water reuse. The implementation of floodable parks will therefore facilitate the transformation of urban areas to create sustainable, climate-resilient, and circular cities. Full article
(This article belongs to the Special Issue Strategic Planning for Urban Sustainability)
Show Figures

Figure 1

19 pages, 8621 KiB  
Article
Using Spatial Literacy for Disaster Management in Coastal Communities of Small Island Developing States (SIDS): A Case Study from Lavongai, Papua New Guinea
by Anang Widhi Nirwansyah, Abdel Mandili, Bianca Inez-Pedro, John Aini, Sriyanto Sriyanto and Elly Hasan Sadeli
Sustainability 2024, 16(21), 9152; https://doi.org/10.3390/su16219152 - 22 Oct 2024
Viewed by 1908
Abstract
This study investigates the use of participatory geographic information systems (PGIS) for hazard assessment in small island developing states (SIDS), with a focus on spatial literacy and community-based disaster management. By partnering with the Lavongai community on Papua New Guinea, this research aimed [...] Read more.
This study investigates the use of participatory geographic information systems (PGIS) for hazard assessment in small island developing states (SIDS), with a focus on spatial literacy and community-based disaster management. By partnering with the Lavongai community on Papua New Guinea, this research aimed to empower community members through skill development in geodata processing. The program leveraged local knowledge and the global positioning system to create participatory maps, enhancing both community capacity and researcher data quality. Workshops and focus group discussions (FGDs) were conducted to assess the community’s understanding of spatial concepts related to disaster risks. The core objective was a preliminary assessment of the community’s social and economic vulnerability to coastal disasters, using household data and GIS analysis. The results showed varied vulnerability levels within the community, highlighting the need for targeted disaster mitigation training and nature-based solutions. High-resolution satellite imagery and a simple bathtub model simulated sea level rise, identifying land-uses at risk. The program concluded with a community presentation of thematic maps, fostering collaboration and transparency. Future projects will address environmental challenges identified by local leaders and prioritize skill development, social data collection, and water resource mapping. Full article
Show Figures

Figure 1

15 pages, 50410 KiB  
Article
Hydroacoustic Monitoring of Mayotte Submarine Volcano during Its Eruptive Phase
by Aude Lavayssière, Sara Bazin and Jean-Yves Royer
Geosciences 2024, 14(6), 170; https://doi.org/10.3390/geosciences14060170 - 17 Jun 2024
Cited by 4 | Viewed by 2712
Abstract
Submarine volcanoes are more challenging to monitor than subaerial volcanoes. Yet, the large eruption of the Hunga Tonga-Hunga Ha’apai volcano in the Tonga archipelago in 2022 was a reminder of their hazardous nature and hence demonstrated the need to study them. In October [...] Read more.
Submarine volcanoes are more challenging to monitor than subaerial volcanoes. Yet, the large eruption of the Hunga Tonga-Hunga Ha’apai volcano in the Tonga archipelago in 2022 was a reminder of their hazardous nature and hence demonstrated the need to study them. In October 2020, four autonomous hydrophones were moored in the sound fixing and ranging channel 50 km offshore Mayotte Island, in the North Mozambique Channel, to monitor the Fani Maoré 2018–2020 submarine eruption. Between their deployment and July 2022, this network of hydrophones, named MAHY, recorded sounds generated by the recent volcanic activity, along with earthquakes, submarine landslides, marine mammals calls, and marine traffic. Among the sounds generated by the volcanic activity, impulsive signals have been evidenced and interpreted as proxy for lava flow emplacements. The characteristics and the spatio-temporal evolution of these hydroacoustic signals allowed the estimation of effusion and flow rates, key parameters for volcano monitoring. These sounds are related to the non-explosive quenching of pillow lavas due to the rapid heat transfer between hot lava and cold seawater, with this process releasing an energy equivalent to an airgun source as used for active seismic exploration. Volcano observatories could hence use autonomous hydrophones in the water column to detect and monitor active submarine eruptions in the absence of regular on-site seafloor survey. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

17 pages, 2688 KiB  
Article
Health Impacts of Natural Background Radiation in High Air Pollution Area of Thailand
by Narongchai Autsavapromporn, Chutima Kranrod, Rawiwan Kritsananuwat, Phachirarat Sola, Pitchayaponne Klunklin, Imjai Chitapanarux, Churdsak Jaikang, Tawachai Monum, Masahiro Hosoda and Shinji Tokonami
Toxics 2024, 12(6), 428; https://doi.org/10.3390/toxics12060428 - 13 Jun 2024
Cited by 6 | Viewed by 2518
Abstract
Chiang Mai province of Thailand is known for having the highest natural background radiation in the country, as well as being recognized as one of the world’s most polluted cities for air quality. This represents the major contributor to the development of lung [...] Read more.
Chiang Mai province of Thailand is known for having the highest natural background radiation in the country, as well as being recognized as one of the world’s most polluted cities for air quality. This represents the major contributor to the development of lung cancer. This research aims to estimate the comprehensive dose of both internal and external exposure due to natural background radiation and related health perspectives in the highly polluted area of Chiang Mai. The average values of indoor radon and thoron concentrations in 99 houses over 6 months were 40.8 ± 22.6 and 17.8 ± 16.3 Bq/m3, respectively. These results exceed the worldwide value for indoor radon and thoron (40 and 10 Bq/m3), respectively. During burning season, the average values of indoor radon (56.7 ± 20 Bq/m3) and thoron (20.8 ± 20.4 Bq/m3) concentrations were higher than the world-wide averages. The radon concentration in drinking water (56 samples) varied from 0.1 to 91.9 Bq/L, with an average value of 9.1 ± 22.8 Bq/L. Most of the drinking water samples (87%) fell below the recommended maximum contamination limit of 11.1 Bq/L. The average values of natural radionuclide (226Ra, 232Th and 40K) in 48 soil samples were 47 ± 20.9, 77.9 ± 29.7 and 700.1 ± 233 Bq/kg, respectively. All values were higher than the worldwide average of 35, 30 and 400 Bq/kg, respectively. The average value of outdoor absorbed gamma dose rate (98 ± 32.5 nGy/h) exceeded the worldwide average of 59 nGy/h. Meanwhile, the average activity concentrations of 226Ra, 232Th and 40K in 25 plant food samples were 2.7 ± 0.1, 3.2 ± 1.6 and 1000.7 ± 1.9 Bq/kg, respectively. The 40K concentration was the most predominant in plant foods. The highest concentrations of 226Ra, 232Th and 40K were found in Chinese cabbage, celery and cilantro, respectively. The total annual effective dose for residents in the study area varied from 0.6 to 4.3 mSv, with an average value of 1.4 mSv. This indicates a significant long-term public health hazard due to natural background radiation and suggests a heightened radiation risk for the residents. The excess lifetime cancer risk value (5.4) associated with natural background radiation was found to be higher than the recommended value. Moreover, the number of lung cancer cases per year per million average of 25.2 per million persons per year was in the limit range 170–230 per million people. Overall, our results will be used for future decision making in the prevention of lung cancer risk associated with natural background radiation. Full article
(This article belongs to the Special Issue Radiation: Occurrence, Transport and Effect)
Show Figures

Figure 1

2 pages, 147 KiB  
Abstract
Direct Comparison of Powdered Activated Carbon (PAC) and Natural Powder in Urban Waste Water Treatment
by Mohamad Al Ajami, Zaher Abdel Baki, Amer Noaman, Jana Rammal, Salma Maana and Akram Hijazi
Proceedings 2024, 105(1), 139; https://doi.org/10.3390/proceedings2024105139 - 28 May 2024
Viewed by 447
Abstract
Today’s environmental issues related to wastewater are being tackled by growing public concern and tighter international regulation. Pollutant removal from wastewater is still a very challenging task. The removal of heavy metals from industrial and agricultural wastewater is a complex environmental issue due [...] Read more.
Today’s environmental issues related to wastewater are being tackled by growing public concern and tighter international regulation. Pollutant removal from wastewater is still a very challenging task. The removal of heavy metals from industrial and agricultural wastewater is a complex environmental issue due to its potential health hazards. There are different methods used for wastewater treatment. However, these technologies are either frequently ineffective or generate secondary metabolites. Adsorption, a physicochemical method, has proven effective in eliminating low-concentration inorganic pollutants. Powdered activated carbon and natural powders have emerged as potential solutions in urban wastewater treatment. This study provides an overview of their applications and effectiveness in removing contaminants from wastewater, thereby improving the overall treatment efficiency and water quality. For this purpose, experiments have been performed using three types of powders: Saccharum officinarum powder and its powdered activated carbon as an adsorbent, and Luffa aegyptiaca Luffa aegyptiaca powder. This study focused on the adsorption treatment of natural powders influenced by different parameters (pH, infrared spectroscopy, contact time, concentration, mass and particle size) during laboratory experiments. By maintaining a few parameters and using natural powders without carbonization or prior activation, this study demonstrated that powdered activated carbon remains more effective and shows better results than natural powders. Full article
Back to TopTop